1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069230702307123072230732307423075230762307723078230792308023081230822308323084230852308623087230882308923090230912309223093230942309523096230972309823099231002310123102231032310423105231062310723108231092311023111231122311323114231152311623117231182311923120231212312223123231242312523126231272312823129231302313123132231332313423135231362313723138231392314023141231422314323144231452314623147231482314923150231512315223153231542315523156231572315823159231602316123162231632316423165231662316723168231692317023171231722317323174231752317623177231782317923180231812318223183231842318523186231872318823189231902319123192231932319423195231962319723198231992320023201232022320323204232052320623207232082320923210232112321223213232142321523216232172321823219232202322123222232232322423225232262322723228232292323023231232322323323234232352323623237232382323923240232412324223243232442324523246232472324823249232502325123252232532325423255232562325723258232592326023261232622326323264232652326623267232682326923270232712327223273232742327523276232772327823279232802328123282232832328423285232862328723288232892329023291232922329323294232952329623297232982329923300233012330223303233042330523306233072330823309233102331123312233132331423315233162331723318233192332023321233222332323324233252332623327233282332923330233312333223333233342333523336233372333823339233402334123342233432334423345233462334723348233492335023351233522335323354233552335623357233582335923360233612336223363233642336523366233672336823369233702337123372233732337423375233762337723378233792338023381233822338323384233852338623387233882338923390233912339223393233942339523396233972339823399234002340123402234032340423405234062340723408234092341023411234122341323414234152341623417234182341923420234212342223423234242342523426234272342823429234302343123432234332343423435234362343723438234392344023441234422344323444234452344623447234482344923450234512345223453234542345523456234572345823459234602346123462234632346423465234662346723468234692347023471234722347323474234752347623477234782347923480234812348223483234842348523486234872348823489234902349123492234932349423495234962349723498234992350023501235022350323504235052350623507235082350923510235112351223513235142351523516235172351823519235202352123522235232352423525235262352723528235292353023531235322353323534235352353623537235382353923540235412354223543235442354523546235472354823549235502355123552235532355423555235562355723558235592356023561235622356323564235652356623567235682356923570235712357223573235742357523576235772357823579235802358123582235832358423585235862358723588235892359023591 |
- This is gfortran.info, produced by makeinfo version 5.1 from
- gfortran.texi.
- Copyright (C) 1999-2020 Free Software Foundation, Inc.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover Texts
- being (a) (see below), and with the Back-Cover Texts being (b) (see
- below). A copy of the license is included in the section entitled "GNU
- Free Documentation License".
- (a) The FSF's Front-Cover Text is:
- A GNU Manual
- (b) The FSF's Back-Cover Text is:
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise funds
- for GNU development.
- INFO-DIR-SECTION Software development
- START-INFO-DIR-ENTRY
- * gfortran: (gfortran). The GNU Fortran Compiler.
- END-INFO-DIR-ENTRY
- This file documents the use and the internals of the GNU Fortran
- compiler, ('gfortran').
- Published by the Free Software Foundation 51 Franklin Street, Fifth
- Floor Boston, MA 02110-1301 USA
- Copyright (C) 1999-2020 Free Software Foundation, Inc.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover Texts
- being (a) (see below), and with the Back-Cover Texts being (b) (see
- below). A copy of the license is included in the section entitled "GNU
- Free Documentation License".
- (a) The FSF's Front-Cover Text is:
- A GNU Manual
- (b) The FSF's Back-Cover Text is:
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise funds
- for GNU development.
- File: gfortran.info, Node: Top, Next: Introduction, Up: (dir)
- Introduction
- ************
- This manual documents the use of 'gfortran', the GNU Fortran compiler.
- You can find in this manual how to invoke 'gfortran', as well as its
- features and incompatibilities.
- * Menu:
- * Introduction::
- Part I: Invoking GNU Fortran
- * Invoking GNU Fortran:: Command options supported by 'gfortran'.
- * Runtime:: Influencing runtime behavior with environment variables.
- Part II: Language Reference
- * Fortran standards status:: Fortran 2003, 2008 and 2018 features supported by GNU Fortran.
- * Compiler Characteristics:: User-visible implementation details.
- * Extensions:: Language extensions implemented by GNU Fortran.
- * Mixed-Language Programming:: Interoperability with C
- * Coarray Programming::
- * Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
- * Intrinsic Modules:: Intrinsic modules supported by GNU Fortran.
- * Contributing:: How you can help.
- * Copying:: GNU General Public License says
- how you can copy and share GNU Fortran.
- * GNU Free Documentation License::
- How you can copy and share this manual.
- * Funding:: How to help assure continued work for free software.
- * Option Index:: Index of command line options
- * Keyword Index:: Index of concepts
- File: gfortran.info, Node: Introduction, Next: Invoking GNU Fortran, Prev: Top, Up: Top
- 1 Introduction
- **************
- The GNU Fortran compiler front end was designed initially as a free
- replacement for, or alternative to, the Unix 'f95' command; 'gfortran'
- is the command you will use to invoke the compiler.
- * Menu:
- * About GNU Fortran:: What you should know about the GNU Fortran compiler.
- * GNU Fortran and GCC:: You can compile Fortran, C, or other programs.
- * Preprocessing and conditional compilation:: The Fortran preprocessor
- * GNU Fortran and G77:: Why we chose to start from scratch.
- * Project Status:: Status of GNU Fortran, roadmap, proposed extensions.
- * Standards:: Standards supported by GNU Fortran.
- File: gfortran.info, Node: About GNU Fortran, Next: GNU Fortran and GCC, Up: Introduction
- 1.1 About GNU Fortran
- =====================
- The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards
- completely, parts of the Fortran 2003, 2008 and 2018 standards, and
- several vendor extensions. The development goal is to provide the
- following features:
- * Read a user's program, stored in a file and containing instructions
- written in Fortran 77, Fortran 90, Fortran 95, Fortran 2003,
- Fortran 2008 or Fortran 2018. This file contains "source code".
- * Translate the user's program into instructions a computer can carry
- out more quickly than it takes to translate the instructions in the
- first place. The result after compilation of a program is "machine
- code", code designed to be efficiently translated and processed by
- a machine such as your computer. Humans usually are not as good
- writing machine code as they are at writing Fortran (or C++, Ada,
- or Java), because it is easy to make tiny mistakes writing machine
- code.
- * Provide the user with information about the reasons why the
- compiler is unable to create a binary from the source code.
- Usually this will be the case if the source code is flawed. The
- Fortran 90 standard requires that the compiler can point out
- mistakes to the user. An incorrect usage of the language causes an
- "error message".
- The compiler will also attempt to diagnose cases where the user's
- program contains a correct usage of the language, but instructs the
- computer to do something questionable. This kind of diagnostics
- message is called a "warning message".
- * Provide optional information about the translation passes from the
- source code to machine code. This can help a user of the compiler
- to find the cause of certain bugs which may not be obvious in the
- source code, but may be more easily found at a lower level compiler
- output. It also helps developers to find bugs in the compiler
- itself.
- * Provide information in the generated machine code that can make it
- easier to find bugs in the program (using a debugging tool, called
- a "debugger", such as the GNU Debugger 'gdb').
- * Locate and gather machine code already generated to perform actions
- requested by statements in the user's program. This machine code
- is organized into "modules" and is located and "linked" to the user
- program.
- The GNU Fortran compiler consists of several components:
- * A version of the 'gcc' command (which also might be installed as
- the system's 'cc' command) that also understands and accepts
- Fortran source code. The 'gcc' command is the "driver" program for
- all the languages in the GNU Compiler Collection (GCC); With 'gcc',
- you can compile the source code of any language for which a front
- end is available in GCC.
- * The 'gfortran' command itself, which also might be installed as the
- system's 'f95' command. 'gfortran' is just another driver program,
- but specifically for the Fortran compiler only. The difference
- with 'gcc' is that 'gfortran' will automatically link the correct
- libraries to your program.
- * A collection of run-time libraries. These libraries contain the
- machine code needed to support capabilities of the Fortran language
- that are not directly provided by the machine code generated by the
- 'gfortran' compilation phase, such as intrinsic functions and
- subroutines, and routines for interaction with files and the
- operating system.
- * The Fortran compiler itself, ('f951'). This is the GNU Fortran
- parser and code generator, linked to and interfaced with the GCC
- backend library. 'f951' "translates" the source code to assembler
- code. You would typically not use this program directly; instead,
- the 'gcc' or 'gfortran' driver programs will call it for you.
- File: gfortran.info, Node: GNU Fortran and GCC, Next: Preprocessing and conditional compilation, Prev: About GNU Fortran, Up: Introduction
- 1.2 GNU Fortran and GCC
- =======================
- GNU Fortran is a part of GCC, the "GNU Compiler Collection". GCC
- consists of a collection of front ends for various languages, which
- translate the source code into a language-independent form called
- "GENERIC". This is then processed by a common middle end which provides
- optimization, and then passed to one of a collection of back ends which
- generate code for different computer architectures and operating
- systems.
- Functionally, this is implemented with a driver program ('gcc') which
- provides the command-line interface for the compiler. It calls the
- relevant compiler front-end program (e.g., 'f951' for Fortran) for each
- file in the source code, and then calls the assembler and linker as
- appropriate to produce the compiled output. In a copy of GCC which has
- been compiled with Fortran language support enabled, 'gcc' will
- recognize files with '.f', '.for', '.ftn', '.f90', '.f95', '.f03' and
- '.f08' extensions as Fortran source code, and compile it accordingly. A
- 'gfortran' driver program is also provided, which is identical to 'gcc'
- except that it automatically links the Fortran runtime libraries into
- the compiled program.
- Source files with '.f', '.for', '.fpp', '.ftn', '.F', '.FOR', '.FPP',
- and '.FTN' extensions are treated as fixed form. Source files with
- '.f90', '.f95', '.f03', '.f08', '.F90', '.F95', '.F03' and '.F08'
- extensions are treated as free form. The capitalized versions of either
- form are run through preprocessing. Source files with the lower case
- '.fpp' extension are also run through preprocessing.
- This manual specifically documents the Fortran front end, which
- handles the programming language's syntax and semantics. The aspects of
- GCC which relate to the optimization passes and the back-end code
- generation are documented in the GCC manual; see *note Introduction:
- (gcc)Top. The two manuals together provide a complete reference for the
- GNU Fortran compiler.
- File: gfortran.info, Node: Preprocessing and conditional compilation, Next: GNU Fortran and G77, Prev: GNU Fortran and GCC, Up: Introduction
- 1.3 Preprocessing and conditional compilation
- =============================================
- Many Fortran compilers including GNU Fortran allow passing the source
- code through a C preprocessor (CPP; sometimes also called the Fortran
- preprocessor, FPP) to allow for conditional compilation. In the case of
- GNU Fortran, this is the GNU C Preprocessor in the traditional mode. On
- systems with case-preserving file names, the preprocessor is
- automatically invoked if the filename extension is '.F', '.FOR', '.FTN',
- '.fpp', '.FPP', '.F90', '.F95', '.F03' or '.F08'. To manually invoke
- the preprocessor on any file, use '-cpp', to disable preprocessing on
- files where the preprocessor is run automatically, use '-nocpp'.
- If a preprocessed file includes another file with the Fortran
- 'INCLUDE' statement, the included file is not preprocessed. To
- preprocess included files, use the equivalent preprocessor statement
- '#include'.
- If GNU Fortran invokes the preprocessor, '__GFORTRAN__' is defined.
- The macros '__GNUC__', '__GNUC_MINOR__' and '__GNUC_PATCHLEVEL__' can be
- used to determine the version of the compiler. See *note Overview:
- (cpp)Top. for details.
- GNU Fortran supports a number of 'INTEGER' and 'REAL' kind types in
- additional to the kind types required by the Fortran standard. The
- availability of any given kind type is architecture dependent. The
- following pre-defined preprocessor macros can be used to conditionally
- include code for these additional kind types: '__GFC_INT_1__',
- '__GFC_INT_2__', '__GFC_INT_8__', '__GFC_INT_16__', '__GFC_REAL_10__',
- and '__GFC_REAL_16__'.
- While CPP is the de-facto standard for preprocessing Fortran code,
- Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
- Conditional Compilation, which is not widely used and not directly
- supported by the GNU Fortran compiler. You can use the program coco to
- preprocess such files (<http://www.daniellnagle.com/coco.html>).
- File: gfortran.info, Node: GNU Fortran and G77, Next: Project Status, Prev: Preprocessing and conditional compilation, Up: Introduction
- 1.4 GNU Fortran and G77
- =======================
- The GNU Fortran compiler is the successor to 'g77', the Fortran 77 front
- end included in GCC prior to version 4. It is an entirely new program
- that has been designed to provide Fortran 95 support and extensibility
- for future Fortran language standards, as well as providing backwards
- compatibility for Fortran 77 and nearly all of the GNU language
- extensions supported by 'g77'.
- File: gfortran.info, Node: Project Status, Next: Standards, Prev: GNU Fortran and G77, Up: Introduction
- 1.5 Project Status
- ==================
- As soon as 'gfortran' can parse all of the statements correctly, it
- will be in the "larva" state. When we generate code, the "puppa"
- state. When 'gfortran' is done, we'll see if it will be a
- beautiful butterfly, or just a big bug....
- -Andy Vaught, April 2000
- The start of the GNU Fortran 95 project was announced on the GCC
- homepage in March 18, 2000 (even though Andy had already been working on
- it for a while, of course).
- The GNU Fortran compiler is able to compile nearly all
- standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
- including a number of standard and non-standard extensions, and can be
- used on real-world programs. In particular, the supported extensions
- include OpenMP, Cray-style pointers, some old vendor extensions, and
- several Fortran 2003 and Fortran 2008 features, including TR 15581.
- However, it is still under development and has a few remaining rough
- edges. There also is initial support for OpenACC.
- At present, the GNU Fortran compiler passes the NIST Fortran 77 Test
- Suite (http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html), and
- produces acceptable results on the LAPACK Test Suite
- (http://www.netlib.org/lapack/faq.html#1.21). It also provides
- respectable performance on the Polyhedron Fortran compiler benchmarks
- (http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite)
- and the Livermore Fortran Kernels test
- (http://www.netlib.org/benchmark/livermore). It has been used to
- compile a number of large real-world programs, including the HARMONIE
- and HIRLAM weather forecasting code (http://hirlam.org/) and the Tonto
- quantum chemistry package
- (http://physical-chemistry.scb.uwa.edu.au/tonto/wiki/index.php/Main_Page);
- see <https://gcc.gnu.org/wiki/GfortranApps> for an extended list.
- Among other things, the GNU Fortran compiler is intended as a
- replacement for G77. At this point, nearly all programs that could be
- compiled with G77 can be compiled with GNU Fortran, although there are a
- few minor known regressions.
- The primary work remaining to be done on GNU Fortran falls into three
- categories: bug fixing (primarily regarding the treatment of invalid
- code and providing useful error messages), improving the compiler
- optimizations and the performance of compiled code, and extending the
- compiler to support future standards--in particular, Fortran 2003,
- Fortran 2008 and Fortran 2018.
- File: gfortran.info, Node: Standards, Prev: Project Status, Up: Introduction
- 1.6 Standards
- =============
- * Menu:
- * Varying Length Character Strings::
- The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As
- such, it can also compile essentially all standard-compliant Fortran 90
- and Fortran 77 programs. It also supports the ISO/IEC TR-15581
- enhancements to allocatable arrays.
- GNU Fortran also have a partial support for ISO/IEC 1539-1:2004
- (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical
- Specification 'Further Interoperability of Fortran with C' (ISO/IEC TS
- 29113:2012). Full support of those standards and future Fortran
- standards is planned. The current status of the support is can be found
- in the *note Fortran 2003 status::, *note Fortran 2008 status:: and
- *note Fortran 2018 status:: sections of the documentation.
- Additionally, the GNU Fortran compilers supports the OpenMP
- specification (version 4.0 and most of the features of the 4.5 version,
- <http://openmp.org/wp/openmp-specifications/>). There also is support
- for the OpenACC specification (targeting version 2.6,
- <http://www.openacc.org/>). See <https://gcc.gnu.org/wiki/OpenACC> for
- more information.
- File: gfortran.info, Node: Varying Length Character Strings, Up: Standards
- 1.6.1 Varying Length Character Strings
- --------------------------------------
- The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
- varying length character strings. While GNU Fortran currently does not
- support such strings directly, there exist two Fortran implementations
- for them, which work with GNU Fortran. They can be found at
- <http://www.fortran.com/iso_varying_string.f95> and at
- <ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/>.
- Deferred-length character strings of Fortran 2003 supports part of
- the features of 'ISO_VARYING_STRING' and should be considered as
- replacement. (Namely, allocatable or pointers of the type
- 'character(len=:)'.)
- File: gfortran.info, Node: Invoking GNU Fortran, Next: Runtime, Prev: Introduction, Up: Top
- 2 GNU Fortran Command Options
- *****************************
- The 'gfortran' command supports all the options supported by the 'gcc'
- command. Only options specific to GNU Fortran are documented here.
- *Note GCC Command Options: (gcc)Invoking GCC, for information on the
- non-Fortran-specific aspects of the 'gcc' command (and, therefore, the
- 'gfortran' command).
- All GCC and GNU Fortran options are accepted both by 'gfortran' and
- by 'gcc' (as well as any other drivers built at the same time, such as
- 'g++'), since adding GNU Fortran to the GCC distribution enables
- acceptance of GNU Fortran options by all of the relevant drivers.
- In some cases, options have positive and negative forms; the negative
- form of '-ffoo' would be '-fno-foo'. This manual documents only one of
- these two forms, whichever one is not the default.
- * Menu:
- * Option Summary:: Brief list of all 'gfortran' options,
- without explanations.
- * Fortran Dialect Options:: Controlling the variant of Fortran language
- compiled.
- * Preprocessing Options:: Enable and customize preprocessing.
- * Error and Warning Options:: How picky should the compiler be?
- * Debugging Options:: Symbol tables, measurements, and debugging dumps.
- * Directory Options:: Where to find module files
- * Link Options :: Influencing the linking step
- * Runtime Options:: Influencing runtime behavior
- * Code Gen Options:: Specifying conventions for function calls, data layout
- and register usage.
- * Interoperability Options:: Options for interoperability with other
- languages.
- * Environment Variables:: Environment variables that affect 'gfortran'.
- File: gfortran.info, Node: Option Summary, Next: Fortran Dialect Options, Up: Invoking GNU Fortran
- 2.1 Option summary
- ==================
- Here is a summary of all the options specific to GNU Fortran, grouped by
- type. Explanations are in the following sections.
- _Fortran Language Options_
- *Note Options controlling Fortran dialect: Fortran Dialect Options.
- -fall-intrinsics -fallow-argument-mismatch -fallow-invalid-boz
- -fbackslash -fcray-pointer -fd-lines-as-code -fd-lines-as-comments
- -fdec -fdec-char-conversions -fdec-structure -fdec-intrinsic-ints
- -fdec-static -fdec-math -fdec-include -fdec-format-defaults
- -fdec-blank-format-item -fdefault-double-8 -fdefault-integer-8
- -fdefault-real-8 -fdefault-real-10 -fdefault-real-16 -fdollar-ok
- -ffixed-line-length-N -ffixed-line-length-none -fpad-source
- -ffree-form -ffree-line-length-N -ffree-line-length-none
- -fimplicit-none -finteger-4-integer-8 -fmax-identifier-length
- -fmodule-private -ffixed-form -fno-range-check -fopenacc -fopenmp
- -freal-4-real-10 -freal-4-real-16 -freal-4-real-8 -freal-8-real-10
- -freal-8-real-16 -freal-8-real-4 -std=STD -ftest-forall-temp
- _Preprocessing Options_
- *Note Enable and customize preprocessing: Preprocessing Options.
- -A-QUESTION[=ANSWER]
- -AQUESTION=ANSWER -C -CC -DMACRO[=DEFN]
- -H -P
- -UMACRO -cpp -dD -dI -dM -dN -dU -fworking-directory
- -imultilib DIR
- -iprefix FILE -iquote -isysroot DIR -isystem DIR -nocpp
- -nostdinc
- -undef
- _Error and Warning Options_
- *Note Options to request or suppress errors and warnings: Error and
- Warning Options.
- -Waliasing -Wall -Wampersand -Warray-bounds
- -Wc-binding-type -Wcharacter-truncation -Wconversion
- -Wdo-subscript -Wfunction-elimination -Wimplicit-interface
- -Wimplicit-procedure -Wintrinsic-shadow -Wuse-without-only
- -Wintrinsics-std -Wline-truncation -Wno-align-commons
- -Wno-overwrite-recursive -Wno-tabs -Wreal-q-constant -Wsurprising
- -Wunderflow -Wunused-parameter -Wrealloc-lhs -Wrealloc-lhs-all
- -Wfrontend-loop-interchange -Wtarget-lifetime -fmax-errors=N
- -fsyntax-only -pedantic
- -pedantic-errors
- _Debugging Options_
- *Note Options for debugging your program or GNU Fortran: Debugging
- Options.
- -fbacktrace -fdump-fortran-optimized -fdump-fortran-original
- -fdump-fortran-global -fdump-parse-tree -ffpe-trap=LIST
- -ffpe-summary=LIST
- _Directory Options_
- *Note Options for directory search: Directory Options.
- -IDIR -JDIR -fintrinsic-modules-path DIR
- _Link Options_
- *Note Options for influencing the linking step: Link Options.
- -static-libgfortran
- _Runtime Options_
- *Note Options for influencing runtime behavior: Runtime Options.
- -fconvert=CONVERSION -fmax-subrecord-length=LENGTH
- -frecord-marker=LENGTH -fsign-zero
- _Interoperability Options_
- *Note Options for interoperability: Interoperability Options.
- -fc-prototypes -fc-prototypes-external
- _Code Generation Options_
- *Note Options for code generation conventions: Code Gen Options.
- -faggressive-function-elimination -fblas-matmul-limit=N
- -fbounds-check -ftail-call-workaround -ftail-call-workaround=N
- -fcheck-array-temporaries
- -fcheck=<ALL|ARRAY-TEMPS|BITS|BOUNDS|DO|MEM|POINTER|RECURSION>
- -fcoarray=<NONE|SINGLE|LIB> -fexternal-blas -ff2c
- -ffrontend-loop-interchange -ffrontend-optimize
- -finit-character=N -finit-integer=N -finit-local-zero
- -finit-derived -finit-logical=<TRUE|FALSE>
- -finit-real=<ZERO|INF|-INF|NAN|SNAN>
- -finline-matmul-limit=N
- -finline-arg-packing -fmax-array-constructor=N
- -fmax-stack-var-size=N -fno-align-commons -fno-automatic
- -fno-protect-parens -fno-underscoring -fsecond-underscore
- -fpack-derived -frealloc-lhs -frecursive -frepack-arrays
- -fshort-enums -fstack-arrays
- File: gfortran.info, Node: Fortran Dialect Options, Next: Preprocessing Options, Prev: Option Summary, Up: Invoking GNU Fortran
- 2.2 Options controlling Fortran dialect
- =======================================
- The following options control the details of the Fortran dialect
- accepted by the compiler:
- '-ffree-form'
- '-ffixed-form'
- Specify the layout used by the source file. The free form layout
- was introduced in Fortran 90. Fixed form was traditionally used in
- older Fortran programs. When neither option is specified, the
- source form is determined by the file extension.
- '-fall-intrinsics'
- This option causes all intrinsic procedures (including the
- GNU-specific extensions) to be accepted. This can be useful with
- '-std=f95' to force standard-compliance but get access to the full
- range of intrinsics available with 'gfortran'. As a consequence,
- '-Wintrinsics-std' will be ignored and no user-defined procedure
- with the same name as any intrinsic will be called except when it
- is explicitly declared 'EXTERNAL'.
- '-fallow-argument-mismatch'
- Some code contains calls to external procedures whith mismatches
- between the calls and the procedure definition, or with mismatches
- between different calls. Such code is non-conforming, and will
- usually be flagged wi1th an error. This options degrades the error
- to a warning, which can only be disabled by disabling all warnings
- vial '-w'. Only a single occurrence per argument is flagged by
- this warning. '-fallow-argument-mismatch' is implied by
- '-std=legacy'.
- Using this option is _strongly_ discouraged. It is possible to
- provide standard-conforming code which allows different types of
- arguments by using an explicit interface and 'TYPE(*)'.
- '-fallow-invalid-boz'
- A BOZ literal constant can occur in a limited number of contexts in
- standard conforming Fortran. This option degrades an error
- condition to a warning, and allows a BOZ literal constant to appear
- where the Fortran standard would otherwise prohibit its use.
- '-fd-lines-as-code'
- '-fd-lines-as-comments'
- Enable special treatment for lines beginning with 'd' or 'D' in
- fixed form sources. If the '-fd-lines-as-code' option is given
- they are treated as if the first column contained a blank. If the
- '-fd-lines-as-comments' option is given, they are treated as
- comment lines.
- '-fdec'
- DEC compatibility mode. Enables extensions and other features that
- mimic the default behavior of older compilers (such as DEC). These
- features are non-standard and should be avoided at all costs. For
- details on GNU Fortran's implementation of these extensions see the
- full documentation.
- Other flags enabled by this switch are: '-fdollar-ok'
- '-fcray-pointer' '-fdec-char-conversions' '-fdec-structure'
- '-fdec-intrinsic-ints' '-fdec-static' '-fdec-math' '-fdec-include'
- '-fdec-blank-format-item' '-fdec-format-defaults'
- If '-fd-lines-as-code'/'-fd-lines-as-comments' are unset, then
- '-fdec' also sets '-fd-lines-as-comments'.
- '-fdec-char-conversions'
- Enable the use of character literals in assignments and 'DATA'
- statements for non-character variables.
- '-fdec-structure'
- Enable DEC 'STRUCTURE' and 'RECORD' as well as 'UNION', 'MAP', and
- dot ('.') as a member separator (in addition to '%'). This is
- provided for compatibility only; Fortran 90 derived types should be
- used instead where possible.
- '-fdec-intrinsic-ints'
- Enable B/I/J/K kind variants of existing integer functions (e.g.
- BIAND, IIAND, JIAND, etc...). For a complete list of intrinsics
- see the full documentation.
- '-fdec-math'
- Enable legacy math intrinsics such as COTAN and degree-valued
- trigonometric functions (e.g. TAND, ATAND, etc...) for
- compatability with older code.
- '-fdec-static'
- Enable DEC-style STATIC and AUTOMATIC attributes to explicitly
- specify the storage of variables and other objects.
- '-fdec-include'
- Enable parsing of INCLUDE as a statement in addition to parsing it
- as INCLUDE line. When parsed as INCLUDE statement, INCLUDE does
- not have to be on a single line and can use line continuations.
- '-fdec-format-defaults'
- Enable format specifiers F, G and I to be used without width
- specifiers, default widths will be used instead.
- '-fdec-blank-format-item'
- Enable a blank format item at the end of a format specification
- i.e. nothing following the final comma.
- '-fdollar-ok'
- Allow '$' as a valid non-first character in a symbol name. Symbols
- that start with '$' are rejected since it is unclear which rules to
- apply to implicit typing as different vendors implement different
- rules. Using '$' in 'IMPLICIT' statements is also rejected.
- '-fbackslash'
- Change the interpretation of backslashes in string literals from a
- single backslash character to "C-style" escape characters. The
- following combinations are expanded '\a', '\b', '\f', '\n', '\r',
- '\t', '\v', '\\', and '\0' to the ASCII characters alert,
- backspace, form feed, newline, carriage return, horizontal tab,
- vertical tab, backslash, and NUL, respectively. Additionally,
- '\x'NN, '\u'NNNN and '\U'NNNNNNNN (where each N is a hexadecimal
- digit) are translated into the Unicode characters corresponding to
- the specified code points. All other combinations of a character
- preceded by \ are unexpanded.
- '-fmodule-private'
- Set the default accessibility of module entities to 'PRIVATE'.
- Use-associated entities will not be accessible unless they are
- explicitly declared as 'PUBLIC'.
- '-ffixed-line-length-N'
- Set column after which characters are ignored in typical fixed-form
- lines in the source file, and, unless '-fno-pad-source', through
- which spaces are assumed (as if padded to that length) after the
- ends of short fixed-form lines.
- Popular values for N include 72 (the standard and the default), 80
- (card image), and 132 (corresponding to "extended-source" options
- in some popular compilers). N may also be 'none', meaning that the
- entire line is meaningful and that continued character constants
- never have implicit spaces appended to them to fill out the line.
- '-ffixed-line-length-0' means the same thing as
- '-ffixed-line-length-none'.
- '-fno-pad-source'
- By default fixed-form lines have spaces assumed (as if padded to
- that length) after the ends of short fixed-form lines. This is not
- done either if '-ffixed-line-length-0', '-ffixed-line-length-none'
- or if '-fno-pad-source' option is used. With any of those options
- continued character constants never have implicit spaces appended
- to them to fill out the line.
- '-ffree-line-length-N'
- Set column after which characters are ignored in typical free-form
- lines in the source file. The default value is 132. N may be
- 'none', meaning that the entire line is meaningful.
- '-ffree-line-length-0' means the same thing as
- '-ffree-line-length-none'.
- '-fmax-identifier-length=N'
- Specify the maximum allowed identifier length. Typical values are
- 31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008).
- '-fimplicit-none'
- Specify that no implicit typing is allowed, unless overridden by
- explicit 'IMPLICIT' statements. This is the equivalent of adding
- 'implicit none' to the start of every procedure.
- '-fcray-pointer'
- Enable the Cray pointer extension, which provides C-like pointer
- functionality.
- '-fopenacc'
- Enable the OpenACC extensions. This includes OpenACC '!$acc'
- directives in free form and 'c$acc', '*$acc' and '!$acc' directives
- in fixed form, '!$' conditional compilation sentinels in free form
- and 'c$', '*$' and '!$' sentinels in fixed form, and when linking
- arranges for the OpenACC runtime library to be linked in.
- '-fopenmp'
- Enable the OpenMP extensions. This includes OpenMP '!$omp'
- directives in free form and 'c$omp', '*$omp' and '!$omp' directives
- in fixed form, '!$' conditional compilation sentinels in free form
- and 'c$', '*$' and '!$' sentinels in fixed form, and when linking
- arranges for the OpenMP runtime library to be linked in. The
- option '-fopenmp' implies '-frecursive'.
- '-fno-range-check'
- Disable range checking on results of simplification of constant
- expressions during compilation. For example, GNU Fortran will give
- an error at compile time when simplifying 'a = 1. / 0'. With this
- option, no error will be given and 'a' will be assigned the value
- '+Infinity'. If an expression evaluates to a value outside of the
- relevant range of ['-HUGE()':'HUGE()'], then the expression will be
- replaced by '-Inf' or '+Inf' as appropriate. Similarly, 'DATA
- i/Z'FFFFFFFF'/' will result in an integer overflow on most systems,
- but with '-fno-range-check' the value will "wrap around" and 'i'
- will be initialized to -1 instead.
- '-fdefault-integer-8'
- Set the default integer and logical types to an 8 byte wide type.
- This option also affects the kind of integer constants like '42'.
- Unlike '-finteger-4-integer-8', it does not promote variables with
- explicit kind declaration.
- '-fdefault-real-8'
- Set the default real type to an 8 byte wide type. This option also
- affects the kind of non-double real constants like '1.0'. This
- option promotes the default width of 'DOUBLE PRECISION' and double
- real constants like '1.d0' to 16 bytes if possible. If
- '-fdefault-double-8' is given along with 'fdefault-real-8', 'DOUBLE
- PRECISION' and double real constants are not promoted. Unlike
- '-freal-4-real-8', 'fdefault-real-8' does not promote variables
- with explicit kind declarations.
- '-fdefault-real-10'
- Set the default real type to an 10 byte wide type. This option
- also affects the kind of non-double real constants like '1.0'.
- This option promotes the default width of 'DOUBLE PRECISION' and
- double real constants like '1.d0' to 16 bytes if possible. If
- '-fdefault-double-8' is given along with 'fdefault-real-10',
- 'DOUBLE PRECISION' and double real constants are not promoted.
- Unlike '-freal-4-real-10', 'fdefault-real-10' does not promote
- variables with explicit kind declarations.
- '-fdefault-real-16'
- Set the default real type to an 16 byte wide type. This option
- also affects the kind of non-double real constants like '1.0'.
- This option promotes the default width of 'DOUBLE PRECISION' and
- double real constants like '1.d0' to 16 bytes if possible. If
- '-fdefault-double-8' is given along with 'fdefault-real-16',
- 'DOUBLE PRECISION' and double real constants are not promoted.
- Unlike '-freal-4-real-16', 'fdefault-real-16' does not promote
- variables with explicit kind declarations.
- '-fdefault-double-8'
- Set the 'DOUBLE PRECISION' type and double real constants like
- '1.d0' to an 8 byte wide type. Do nothing if this is already the
- default. This option prevents '-fdefault-real-8',
- '-fdefault-real-10', and '-fdefault-real-16', from promoting
- 'DOUBLE PRECISION' and double real constants like '1.d0' to 16
- bytes.
- '-finteger-4-integer-8'
- Promote all 'INTEGER(KIND=4)' entities to an 'INTEGER(KIND=8)'
- entities. If 'KIND=8' is unavailable, then an error will be
- issued. This option should be used with care and may not be
- suitable for your codes. Areas of possible concern include calls
- to external procedures, alignment in 'EQUIVALENCE' and/or 'COMMON',
- generic interfaces, BOZ literal constant conversion, and I/O.
- Inspection of the intermediate representation of the translated
- Fortran code, produced by '-fdump-tree-original', is suggested.
- '-freal-4-real-8'
- '-freal-4-real-10'
- '-freal-4-real-16'
- '-freal-8-real-4'
- '-freal-8-real-10'
- '-freal-8-real-16'
- Promote all 'REAL(KIND=M)' entities to 'REAL(KIND=N)' entities. If
- 'REAL(KIND=N)' is unavailable, then an error will be issued. All
- other real kind types are unaffected by this option. These options
- should be used with care and may not be suitable for your codes.
- Areas of possible concern include calls to external procedures,
- alignment in 'EQUIVALENCE' and/or 'COMMON', generic interfaces, BOZ
- literal constant conversion, and I/O. Inspection of the
- intermediate representation of the translated Fortran code,
- produced by '-fdump-tree-original', is suggested.
- '-std=STD'
- Specify the standard to which the program is expected to conform,
- which may be one of 'f95', 'f2003', 'f2008', 'f2018', 'gnu', or
- 'legacy'. The default value for STD is 'gnu', which specifies a
- superset of the latest Fortran standard that includes all of the
- extensions supported by GNU Fortran, although warnings will be
- given for obsolete extensions not recommended for use in new code.
- The 'legacy' value is equivalent but without the warnings for
- obsolete extensions, and may be useful for old non-standard
- programs. The 'f95', 'f2003', 'f2008', and 'f2018' values specify
- strict conformance to the Fortran 95, Fortran 2003, Fortran 2008
- and Fortran 2018 standards, respectively; errors are given for all
- extensions beyond the relevant language standard, and warnings are
- given for the Fortran 77 features that are permitted but
- obsolescent in later standards. The deprecated option
- '-std=f2008ts' acts as an alias for '-std=f2018'. It is only
- present for backwards compatibility with earlier gfortran versions
- and should not be used any more.
- '-ftest-forall-temp'
- Enhance test coverage by forcing most forall assignments to use
- temporary.
- File: gfortran.info, Node: Preprocessing Options, Next: Error and Warning Options, Prev: Fortran Dialect Options, Up: Invoking GNU Fortran
- 2.3 Enable and customize preprocessing
- ======================================
- Preprocessor related options. See section *note Preprocessing and
- conditional compilation:: for more detailed information on preprocessing
- in 'gfortran'.
- '-cpp'
- '-nocpp'
- Enable preprocessing. The preprocessor is automatically invoked if
- the file extension is '.fpp', '.FPP', '.F', '.FOR', '.FTN', '.F90',
- '.F95', '.F03' or '.F08'. Use this option to manually enable
- preprocessing of any kind of Fortran file.
- To disable preprocessing of files with any of the above listed
- extensions, use the negative form: '-nocpp'.
- The preprocessor is run in traditional mode. Any restrictions of
- the file-format, especially the limits on line length, apply for
- preprocessed output as well, so it might be advisable to use the
- '-ffree-line-length-none' or '-ffixed-line-length-none' options.
- '-dM'
- Instead of the normal output, generate a list of ''#define''
- directives for all the macros defined during the execution of the
- preprocessor, including predefined macros. This gives you a way of
- finding out what is predefined in your version of the preprocessor.
- Assuming you have no file 'foo.f90', the command
- touch foo.f90; gfortran -cpp -E -dM foo.f90
- will show all the predefined macros.
- '-dD'
- Like '-dM' except in two respects: it does not include the
- predefined macros, and it outputs both the '#define' directives and
- the result of preprocessing. Both kinds of output go to the
- standard output file.
- '-dN'
- Like '-dD', but emit only the macro names, not their expansions.
- '-dU'
- Like 'dD' except that only macros that are expanded, or whose
- definedness is tested in preprocessor directives, are output; the
- output is delayed until the use or test of the macro; and
- ''#undef'' directives are also output for macros tested but
- undefined at the time.
- '-dI'
- Output ''#include'' directives in addition to the result of
- preprocessing.
- '-fworking-directory'
- Enable generation of linemarkers in the preprocessor output that
- will let the compiler know the current working directory at the
- time of preprocessing. When this option is enabled, the
- preprocessor will emit, after the initial linemarker, a second
- linemarker with the current working directory followed by two
- slashes. GCC will use this directory, when it is present in the
- preprocessed input, as the directory emitted as the current working
- directory in some debugging information formats. This option is
- implicitly enabled if debugging information is enabled, but this
- can be inhibited with the negated form '-fno-working-directory'.
- If the '-P' flag is present in the command line, this option has no
- effect, since no '#line' directives are emitted whatsoever.
- '-idirafter DIR'
- Search DIR for include files, but do it after all directories
- specified with '-I' and the standard system directories have been
- exhausted. DIR is treated as a system include directory. If dir
- begins with '=', then the '=' will be replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
- '-imultilib DIR'
- Use DIR as a subdirectory of the directory containing
- target-specific C++ headers.
- '-iprefix PREFIX'
- Specify PREFIX as the prefix for subsequent '-iwithprefix' options.
- If the PREFIX represents a directory, you should include the final
- ''/''.
- '-isysroot DIR'
- This option is like the '--sysroot' option, but applies only to
- header files. See the '--sysroot' option for more information.
- '-iquote DIR'
- Search DIR only for header files requested with '#include "file"';
- they are not searched for '#include <file>', before all directories
- specified by '-I' and before the standard system directories. If
- DIR begins with '=', then the '=' will be replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
- '-isystem DIR'
- Search DIR for header files, after all directories specified by
- '-I' but before the standard system directories. Mark it as a
- system directory, so that it gets the same special treatment as is
- applied to the standard system directories. If DIR begins with
- '=', then the '=' will be replaced by the sysroot prefix; see
- '--sysroot' and '-isysroot'.
- '-nostdinc'
- Do not search the standard system directories for header files.
- Only the directories you have specified with '-I' options (and the
- directory of the current file, if appropriate) are searched.
- '-undef'
- Do not predefine any system-specific or GCC-specific macros. The
- standard predefined macros remain defined.
- '-APREDICATE=ANSWER'
- Make an assertion with the predicate PREDICATE and answer ANSWER.
- This form is preferred to the older form -A predicate(answer),
- which is still supported, because it does not use shell special
- characters.
- '-A-PREDICATE=ANSWER'
- Cancel an assertion with the predicate PREDICATE and answer ANSWER.
- '-C'
- Do not discard comments. All comments are passed through to the
- output file, except for comments in processed directives, which are
- deleted along with the directive.
- You should be prepared for side effects when using '-C'; it causes
- the preprocessor to treat comments as tokens in their own right.
- For example, comments appearing at the start of what would be a
- directive line have the effect of turning that line into an
- ordinary source line, since the first token on the line is no
- longer a ''#''.
- Warning: this currently handles C-Style comments only. The
- preprocessor does not yet recognize Fortran-style comments.
- '-CC'
- Do not discard comments, including during macro expansion. This is
- like '-C', except that comments contained within macros are also
- passed through to the output file where the macro is expanded.
- In addition to the side-effects of the '-C' option, the '-CC'
- option causes all C++-style comments inside a macro to be converted
- to C-style comments. This is to prevent later use of that macro
- from inadvertently commenting out the remainder of the source line.
- The '-CC' option is generally used to support lint comments.
- Warning: this currently handles C- and C++-Style comments only.
- The preprocessor does not yet recognize Fortran-style comments.
- '-DNAME'
- Predefine name as a macro, with definition '1'.
- '-DNAME=DEFINITION'
- The contents of DEFINITION are tokenized and processed as if they
- appeared during translation phase three in a ''#define'' directive.
- In particular, the definition will be truncated by embedded newline
- characters.
- If you are invoking the preprocessor from a shell or shell-like
- program you may need to use the shell's quoting syntax to protect
- characters such as spaces that have a meaning in the shell syntax.
- If you wish to define a function-like macro on the command line,
- write its argument list with surrounding parentheses before the
- equals sign (if any). Parentheses are meaningful to most shells,
- so you will need to quote the option. With sh and csh,
- '-D'name(args...)=definition'' works.
- '-D' and '-U' options are processed in the order they are given on
- the command line. All -imacros file and -include file options are
- processed after all -D and -U options.
- '-H'
- Print the name of each header file used, in addition to other
- normal activities. Each name is indented to show how deep in the
- ''#include'' stack it is.
- '-P'
- Inhibit generation of linemarkers in the output from the
- preprocessor. This might be useful when running the preprocessor
- on something that is not C code, and will be sent to a program
- which might be confused by the linemarkers.
- '-UNAME'
- Cancel any previous definition of NAME, either built in or provided
- with a '-D' option.
- File: gfortran.info, Node: Error and Warning Options, Next: Debugging Options, Prev: Preprocessing Options, Up: Invoking GNU Fortran
- 2.4 Options to request or suppress errors and warnings
- ======================================================
- Errors are diagnostic messages that report that the GNU Fortran compiler
- cannot compile the relevant piece of source code. The compiler will
- continue to process the program in an attempt to report further errors
- to aid in debugging, but will not produce any compiled output.
- Warnings are diagnostic messages that report constructions which are
- not inherently erroneous but which are risky or suggest there is likely
- to be a bug in the program. Unless '-Werror' is specified, they do not
- prevent compilation of the program.
- You can request many specific warnings with options beginning '-W',
- for example '-Wimplicit' to request warnings on implicit declarations.
- Each of these specific warning options also has a negative form
- beginning '-Wno-' to turn off warnings; for example, '-Wno-implicit'.
- This manual lists only one of the two forms, whichever is not the
- default.
- These options control the amount and kinds of errors and warnings
- produced by GNU Fortran:
- '-fmax-errors=N'
- Limits the maximum number of error messages to N, at which point
- GNU Fortran bails out rather than attempting to continue processing
- the source code. If N is 0, there is no limit on the number of
- error messages produced.
- '-fsyntax-only'
- Check the code for syntax errors, but do not actually compile it.
- This will generate module files for each module present in the
- code, but no other output file.
- '-Wpedantic'
- '-pedantic'
- Issue warnings for uses of extensions to Fortran. '-pedantic' also
- applies to C-language constructs where they occur in GNU Fortran
- source files, such as use of '\e' in a character constant within a
- directive like '#include'.
- Valid Fortran programs should compile properly with or without this
- option. However, without this option, certain GNU extensions and
- traditional Fortran features are supported as well. With this
- option, many of them are rejected.
- Some users try to use '-pedantic' to check programs for
- conformance. They soon find that it does not do quite what they
- want--it finds some nonstandard practices, but not all. However,
- improvements to GNU Fortran in this area are welcome.
- This should be used in conjunction with '-std=f95', '-std=f2003',
- '-std=f2008' or '-std=f2018'.
- '-pedantic-errors'
- Like '-pedantic', except that errors are produced rather than
- warnings.
- '-Wall'
- Enables commonly used warning options pertaining to usage that we
- recommend avoiding and that we believe are easy to avoid. This
- currently includes '-Waliasing', '-Wampersand', '-Wconversion',
- '-Wsurprising', '-Wc-binding-type', '-Wintrinsics-std', '-Wtabs',
- '-Wintrinsic-shadow', '-Wline-truncation', '-Wtarget-lifetime',
- '-Winteger-division', '-Wreal-q-constant', '-Wunused' and
- '-Wundefined-do-loop'.
- '-Waliasing'
- Warn about possible aliasing of dummy arguments. Specifically, it
- warns if the same actual argument is associated with a dummy
- argument with 'INTENT(IN)' and a dummy argument with 'INTENT(OUT)'
- in a call with an explicit interface.
- The following example will trigger the warning.
- interface
- subroutine bar(a,b)
- integer, intent(in) :: a
- integer, intent(out) :: b
- end subroutine
- end interface
- integer :: a
- call bar(a,a)
- '-Wampersand'
- Warn about missing ampersand in continued character constants. The
- warning is given with '-Wampersand', '-pedantic', '-std=f95',
- '-std=f2003', '-std=f2008' and '-std=f2018'. Note: With no
- ampersand given in a continued character constant, GNU Fortran
- assumes continuation at the first non-comment, non-whitespace
- character after the ampersand that initiated the continuation.
- '-Warray-temporaries'
- Warn about array temporaries generated by the compiler. The
- information generated by this warning is sometimes useful in
- optimization, in order to avoid such temporaries.
- '-Wc-binding-type'
- Warn if the a variable might not be C interoperable. In
- particular, warn if the variable has been declared using an
- intrinsic type with default kind instead of using a kind parameter
- defined for C interoperability in the intrinsic 'ISO_C_Binding'
- module. This option is implied by '-Wall'.
- '-Wcharacter-truncation'
- Warn when a character assignment will truncate the assigned string.
- '-Wline-truncation'
- Warn when a source code line will be truncated. This option is
- implied by '-Wall'. For free-form source code, the default is
- '-Werror=line-truncation' such that truncations are reported as
- error.
- '-Wconversion'
- Warn about implicit conversions that are likely to change the value
- of the expression after conversion. Implied by '-Wall'.
- '-Wconversion-extra'
- Warn about implicit conversions between different types and kinds.
- This option does _not_ imply '-Wconversion'.
- '-Wextra'
- Enables some warning options for usages of language features which
- may be problematic. This currently includes '-Wcompare-reals',
- '-Wunused-parameter' and '-Wdo-subscript'.
- '-Wfrontend-loop-interchange'
- Warn when using '-ffrontend-loop-interchange' for performing loop
- interchanges.
- '-Wimplicit-interface'
- Warn if a procedure is called without an explicit interface. Note
- this only checks that an explicit interface is present. It does
- not check that the declared interfaces are consistent across
- program units.
- '-Wimplicit-procedure'
- Warn if a procedure is called that has neither an explicit
- interface nor has been declared as 'EXTERNAL'.
- '-Winteger-division'
- Warn if a constant integer division truncates its result. As an
- example, 3/5 evaluates to 0.
- '-Wintrinsics-std'
- Warn if 'gfortran' finds a procedure named like an intrinsic not
- available in the currently selected standard (with '-std') and
- treats it as 'EXTERNAL' procedure because of this.
- '-fall-intrinsics' can be used to never trigger this behavior and
- always link to the intrinsic regardless of the selected standard.
- '-Wno-overwrite-recursive'
- Do not warn when '-fno-automatic' is used with '-frecursive'.
- Recursion will be broken if the relevant local variables do not
- have the attribute 'AUTOMATIC' explicitly declared. This option
- can be used to suppress the warning when it is known that recursion
- is not broken. Useful for build environments that use '-Werror'.
- '-Wreal-q-constant'
- Produce a warning if a real-literal-constant contains a 'q'
- exponent-letter.
- '-Wsurprising'
- Produce a warning when "suspicious" code constructs are
- encountered. While technically legal these usually indicate that
- an error has been made.
- This currently produces a warning under the following
- circumstances:
- * An INTEGER SELECT construct has a CASE that can never be
- matched as its lower value is greater than its upper value.
- * A LOGICAL SELECT construct has three CASE statements.
- * A TRANSFER specifies a source that is shorter than the
- destination.
- * The type of a function result is declared more than once with
- the same type. If '-pedantic' or standard-conforming mode is
- enabled, this is an error.
- * A 'CHARACTER' variable is declared with negative length.
- '-Wtabs'
- By default, tabs are accepted as whitespace, but tabs are not
- members of the Fortran Character Set. For continuation lines, a
- tab followed by a digit between 1 and 9 is supported. '-Wtabs'
- will cause a warning to be issued if a tab is encountered. Note,
- '-Wtabs' is active for '-pedantic', '-std=f95', '-std=f2003',
- '-std=f2008', '-std=f2018' and '-Wall'.
- '-Wundefined-do-loop'
- Warn if a DO loop with step either 1 or -1 yields an underflow or
- an overflow during iteration of an induction variable of the loop.
- This option is implied by '-Wall'.
- '-Wunderflow'
- Produce a warning when numerical constant expressions are
- encountered, which yield an UNDERFLOW during compilation. Enabled
- by default.
- '-Wintrinsic-shadow'
- Warn if a user-defined procedure or module procedure has the same
- name as an intrinsic; in this case, an explicit interface or
- 'EXTERNAL' or 'INTRINSIC' declaration might be needed to get calls
- later resolved to the desired intrinsic/procedure. This option is
- implied by '-Wall'.
- '-Wuse-without-only'
- Warn if a 'USE' statement has no 'ONLY' qualifier and thus
- implicitly imports all public entities of the used module.
- '-Wunused-dummy-argument'
- Warn about unused dummy arguments. This option is implied by
- '-Wall'.
- '-Wunused-parameter'
- Contrary to 'gcc''s meaning of '-Wunused-parameter', 'gfortran''s
- implementation of this option does not warn about unused dummy
- arguments (see '-Wunused-dummy-argument'), but about unused
- 'PARAMETER' values. '-Wunused-parameter' is implied by '-Wextra'
- if also '-Wunused' or '-Wall' is used.
- '-Walign-commons'
- By default, 'gfortran' warns about any occasion of variables being
- padded for proper alignment inside a 'COMMON' block. This warning
- can be turned off via '-Wno-align-commons'. See also
- '-falign-commons'.
- '-Wfunction-elimination'
- Warn if any calls to impure functions are eliminated by the
- optimizations enabled by the '-ffrontend-optimize' option. This
- option is implied by '-Wextra'.
- '-Wrealloc-lhs'
- Warn when the compiler might insert code to for allocation or
- reallocation of an allocatable array variable of intrinsic type in
- intrinsic assignments. In hot loops, the Fortran 2003 reallocation
- feature may reduce the performance. If the array is already
- allocated with the correct shape, consider using a whole-array
- array-spec (e.g. '(:,:,:)') for the variable on the left-hand side
- to prevent the reallocation check. Note that in some cases the
- warning is shown, even if the compiler will optimize reallocation
- checks away. For instance, when the right-hand side contains the
- same variable multiplied by a scalar. See also '-frealloc-lhs'.
- '-Wrealloc-lhs-all'
- Warn when the compiler inserts code to for allocation or
- reallocation of an allocatable variable; this includes scalars and
- derived types.
- '-Wcompare-reals'
- Warn when comparing real or complex types for equality or
- inequality. This option is implied by '-Wextra'.
- '-Wtarget-lifetime'
- Warn if the pointer in a pointer assignment might be longer than
- the its target. This option is implied by '-Wall'.
- '-Wzerotrip'
- Warn if a 'DO' loop is known to execute zero times at compile time.
- This option is implied by '-Wall'.
- '-Wdo-subscript'
- Warn if an array subscript inside a DO loop could lead to an
- out-of-bounds access even if the compiler cannot prove that the
- statement is actually executed, in cases like
- real a(3)
- do i=1,4
- if (condition(i)) then
- a(i) = 1.2
- end if
- end do
- This option is implied by '-Wextra'.
- '-Werror'
- Turns all warnings into errors.
- *Note Options to Request or Suppress Errors and Warnings:
- (gcc)Warning Options, for information on more options offered by the GBE
- shared by 'gfortran', 'gcc' and other GNU compilers.
- Some of these have no effect when compiling programs written in
- Fortran.
- File: gfortran.info, Node: Debugging Options, Next: Directory Options, Prev: Error and Warning Options, Up: Invoking GNU Fortran
- 2.5 Options for debugging your program or GNU Fortran
- =====================================================
- GNU Fortran has various special options that are used for debugging
- either your program or the GNU Fortran compiler.
- '-fdump-fortran-original'
- Output the internal parse tree after translating the source program
- into internal representation. This option is mostly useful for
- debugging the GNU Fortran compiler itself. The output generated by
- this option might change between releases. This option may also
- generate internal compiler errors for features which have only
- recently been added.
- '-fdump-fortran-optimized'
- Output the parse tree after front-end optimization. Mostly useful
- for debugging the GNU Fortran compiler itself. The output
- generated by this option might change between releases. This
- option may also generate internal compiler errors for features
- which have only recently been added.
- '-fdump-parse-tree'
- Output the internal parse tree after translating the source program
- into internal representation. Mostly useful for debugging the GNU
- Fortran compiler itself. The output generated by this option might
- change between releases. This option may also generate internal
- compiler errors for features which have only recently been added.
- This option is deprecated; use '-fdump-fortran-original' instead.
- '-fdump-fortran-global'
- Output a list of the global identifiers after translating into
- middle-end representation. Mostly useful for debugging the GNU
- Fortran compiler itself. The output generated by this option might
- change between releases. This option may also generate internal
- compiler errors for features which have only recently been added.
- '-ffpe-trap=LIST'
- Specify a list of floating point exception traps to enable. On
- most systems, if a floating point exception occurs and the trap for
- that exception is enabled, a SIGFPE signal will be sent and the
- program being aborted, producing a core file useful for debugging.
- LIST is a (possibly empty) comma-separated list of the following
- exceptions: 'invalid' (invalid floating point operation, such as
- 'SQRT(-1.0)'), 'zero' (division by zero), 'overflow' (overflow in a
- floating point operation), 'underflow' (underflow in a floating
- point operation), 'inexact' (loss of precision during operation),
- and 'denormal' (operation performed on a denormal value). The
- first five exceptions correspond to the five IEEE 754 exceptions,
- whereas the last one ('denormal') is not part of the IEEE 754
- standard but is available on some common architectures such as x86.
- The first three exceptions ('invalid', 'zero', and 'overflow')
- often indicate serious errors, and unless the program has
- provisions for dealing with these exceptions, enabling traps for
- these three exceptions is probably a good idea.
- If the option is used more than once in the command line, the lists
- will be joined: ''ffpe-trap='LIST1 'ffpe-trap='LIST2' is equivalent
- to 'ffpe-trap='LIST1,LIST2.
- Note that once enabled an exception cannot be disabled (no negative
- form).
- Many, if not most, floating point operations incur loss of
- precision due to rounding, and hence the 'ffpe-trap=inexact' is
- likely to be uninteresting in practice.
- By default no exception traps are enabled.
- '-ffpe-summary=LIST'
- Specify a list of floating-point exceptions, whose flag status is
- printed to 'ERROR_UNIT' when invoking 'STOP' and 'ERROR STOP'.
- LIST can be either 'none', 'all' or a comma-separated list of the
- following exceptions: 'invalid', 'zero', 'overflow', 'underflow',
- 'inexact' and 'denormal'. (See '-ffpe-trap' for a description of
- the exceptions.)
- If the option is used more than once in the command line, only the
- last one will be used.
- By default, a summary for all exceptions but 'inexact' is shown.
- '-fno-backtrace'
- When a serious runtime error is encountered or a deadly signal is
- emitted (segmentation fault, illegal instruction, bus error,
- floating-point exception, and the other POSIX signals that have the
- action 'core'), the Fortran runtime library tries to output a
- backtrace of the error. '-fno-backtrace' disables the backtrace
- generation. This option only has influence for compilation of the
- Fortran main program.
- *Note Options for Debugging Your Program or GCC: (gcc)Debugging
- Options, for more information on debugging options.
- File: gfortran.info, Node: Directory Options, Next: Link Options, Prev: Debugging Options, Up: Invoking GNU Fortran
- 2.6 Options for directory search
- ================================
- These options affect how GNU Fortran searches for files specified by the
- 'INCLUDE' directive and where it searches for previously compiled
- modules.
- It also affects the search paths used by 'cpp' when used to
- preprocess Fortran source.
- '-IDIR'
- These affect interpretation of the 'INCLUDE' directive (as well as
- of the '#include' directive of the 'cpp' preprocessor).
- Also note that the general behavior of '-I' and 'INCLUDE' is pretty
- much the same as of '-I' with '#include' in the 'cpp' preprocessor,
- with regard to looking for 'header.gcc' files and other such
- things.
- This path is also used to search for '.mod' files when previously
- compiled modules are required by a 'USE' statement.
- *Note Options for Directory Search: (gcc)Directory Options, for
- information on the '-I' option.
- '-JDIR'
- This option specifies where to put '.mod' files for compiled
- modules. It is also added to the list of directories to searched
- by an 'USE' statement.
- The default is the current directory.
- '-fintrinsic-modules-path DIR'
- This option specifies the location of pre-compiled intrinsic
- modules, if they are not in the default location expected by the
- compiler.
- File: gfortran.info, Node: Link Options, Next: Runtime Options, Prev: Directory Options, Up: Invoking GNU Fortran
- 2.7 Influencing the linking step
- ================================
- These options come into play when the compiler links object files into
- an executable output file. They are meaningless if the compiler is not
- doing a link step.
- '-static-libgfortran'
- On systems that provide 'libgfortran' as a shared and a static
- library, this option forces the use of the static version. If no
- shared version of 'libgfortran' was built when the compiler was
- configured, this option has no effect.
- File: gfortran.info, Node: Runtime Options, Next: Code Gen Options, Prev: Link Options, Up: Invoking GNU Fortran
- 2.8 Influencing runtime behavior
- ================================
- These options affect the runtime behavior of programs compiled with GNU
- Fortran.
- '-fconvert=CONVERSION'
- Specify the representation of data for unformatted files. Valid
- values for conversion are: 'native', the default; 'swap', swap
- between big- and little-endian; 'big-endian', use big-endian
- representation for unformatted files; 'little-endian', use
- little-endian representation for unformatted files.
- _This option has an effect only when used in the main program. The
- 'CONVERT' specifier and the GFORTRAN_CONVERT_UNIT environment
- variable override the default specified by '-fconvert'._
- '-frecord-marker=LENGTH'
- Specify the length of record markers for unformatted files. Valid
- values for LENGTH are 4 and 8. Default is 4. _This is different
- from previous versions of 'gfortran'_, which specified a default
- record marker length of 8 on most systems. If you want to read or
- write files compatible with earlier versions of 'gfortran', use
- '-frecord-marker=8'.
- '-fmax-subrecord-length=LENGTH'
- Specify the maximum length for a subrecord. The maximum permitted
- value for length is 2147483639, which is also the default. Only
- really useful for use by the gfortran testsuite.
- '-fsign-zero'
- When enabled, floating point numbers of value zero with the sign
- bit set are written as negative number in formatted output and
- treated as negative in the 'SIGN' intrinsic. '-fno-sign-zero' does
- not print the negative sign of zero values (or values rounded to
- zero for I/O) and regards zero as positive number in the 'SIGN'
- intrinsic for compatibility with Fortran 77. The default is
- '-fsign-zero'.
- File: gfortran.info, Node: Code Gen Options, Next: Interoperability Options, Prev: Runtime Options, Up: Invoking GNU Fortran
- 2.9 Options for code generation conventions
- ===========================================
- These machine-independent options control the interface conventions used
- in code generation.
- Most of them have both positive and negative forms; the negative form
- of '-ffoo' would be '-fno-foo'. In the table below, only one of the
- forms is listed--the one which is not the default. You can figure out
- the other form by either removing 'no-' or adding it.
- '-fno-automatic'
- Treat each program unit (except those marked as RECURSIVE) as if
- the 'SAVE' statement were specified for every local variable and
- array referenced in it. Does not affect common blocks. (Some
- Fortran compilers provide this option under the name '-static' or
- '-save'.) The default, which is '-fautomatic', uses the stack for
- local variables smaller than the value given by
- '-fmax-stack-var-size'. Use the option '-frecursive' to use no
- static memory.
- Local variables or arrays having an explicit 'SAVE' attribute are
- silently ignored unless the '-pedantic' option is added.
- '-ff2c'
- Generate code designed to be compatible with code generated by
- 'g77' and 'f2c'.
- The calling conventions used by 'g77' (originally implemented in
- 'f2c') require functions that return type default 'REAL' to
- actually return the C type 'double', and functions that return type
- 'COMPLEX' to return the values via an extra argument in the calling
- sequence that points to where to store the return value. Under the
- default GNU calling conventions, such functions simply return their
- results as they would in GNU C--default 'REAL' functions return the
- C type 'float', and 'COMPLEX' functions return the GNU C type
- 'complex'. Additionally, this option implies the
- '-fsecond-underscore' option, unless '-fno-second-underscore' is
- explicitly requested.
- This does not affect the generation of code that interfaces with
- the 'libgfortran' library.
- _Caution:_ It is not a good idea to mix Fortran code compiled with
- '-ff2c' with code compiled with the default '-fno-f2c' calling
- conventions as, calling 'COMPLEX' or default 'REAL' functions
- between program parts which were compiled with different calling
- conventions will break at execution time.
- _Caution:_ This will break code which passes intrinsic functions of
- type default 'REAL' or 'COMPLEX' as actual arguments, as the
- library implementations use the '-fno-f2c' calling conventions.
- '-fno-underscoring'
- Do not transform names of entities specified in the Fortran source
- file by appending underscores to them.
- With '-funderscoring' in effect, GNU Fortran appends one underscore
- to external names with no underscores. This is done to ensure
- compatibility with code produced by many UNIX Fortran compilers.
- _Caution_: The default behavior of GNU Fortran is incompatible with
- 'f2c' and 'g77', please use the '-ff2c' option if you want object
- files compiled with GNU Fortran to be compatible with object code
- created with these tools.
- Use of '-fno-underscoring' is not recommended unless you are
- experimenting with issues such as integration of GNU Fortran into
- existing system environments (vis-a`-vis existing libraries, tools,
- and so on).
- For example, with '-funderscoring', and assuming that 'j()' and
- 'max_count()' are external functions while 'my_var' and 'lvar' are
- local variables, a statement like
- I = J() + MAX_COUNT (MY_VAR, LVAR)
- is implemented as something akin to:
- i = j_() + max_count__(&my_var__, &lvar);
- With '-fno-underscoring', the same statement is implemented as:
- i = j() + max_count(&my_var, &lvar);
- Use of '-fno-underscoring' allows direct specification of
- user-defined names while debugging and when interfacing GNU Fortran
- code with other languages.
- Note that just because the names match does _not_ mean that the
- interface implemented by GNU Fortran for an external name matches
- the interface implemented by some other language for that same
- name. That is, getting code produced by GNU Fortran to link to
- code produced by some other compiler using this or any other method
- can be only a small part of the overall solution--getting the code
- generated by both compilers to agree on issues other than naming
- can require significant effort, and, unlike naming disagreements,
- linkers normally cannot detect disagreements in these other areas.
- Also, note that with '-fno-underscoring', the lack of appended
- underscores introduces the very real possibility that a
- user-defined external name will conflict with a name in a system
- library, which could make finding unresolved-reference bugs quite
- difficult in some cases--they might occur at program run time, and
- show up only as buggy behavior at run time.
- In future versions of GNU Fortran we hope to improve naming and
- linking issues so that debugging always involves using the names as
- they appear in the source, even if the names as seen by the linker
- are mangled to prevent accidental linking between procedures with
- incompatible interfaces.
- '-fsecond-underscore'
- By default, GNU Fortran appends an underscore to external names.
- If this option is used GNU Fortran appends two underscores to names
- with underscores and one underscore to external names with no
- underscores. GNU Fortran also appends two underscores to internal
- names with underscores to avoid naming collisions with external
- names.
- This option has no effect if '-fno-underscoring' is in effect. It
- is implied by the '-ff2c' option.
- Otherwise, with this option, an external name such as 'MAX_COUNT'
- is implemented as a reference to the link-time external symbol
- 'max_count__', instead of 'max_count_'. This is required for
- compatibility with 'g77' and 'f2c', and is implied by use of the
- '-ff2c' option.
- '-fcoarray=<KEYWORD>'
- 'none'
- Disable coarray support; using coarray declarations and
- image-control statements will produce a compile-time error.
- (Default)
- 'single'
- Single-image mode, i.e. 'num_images()' is always one.
- 'lib'
- Library-based coarray parallelization; a suitable GNU Fortran
- coarray library needs to be linked.
- '-fcheck=<KEYWORD>'
- Enable the generation of run-time checks; the argument shall be a
- comma-delimited list of the following keywords. Prefixing a check
- with 'no-' disables it if it was activated by a previous
- specification.
- 'all'
- Enable all run-time test of '-fcheck'.
- 'array-temps'
- Warns at run time when for passing an actual argument a
- temporary array had to be generated. The information
- generated by this warning is sometimes useful in optimization,
- in order to avoid such temporaries.
- Note: The warning is only printed once per location.
- 'bits'
- Enable generation of run-time checks for invalid arguments to
- the bit manipulation intrinsics.
- 'bounds'
- Enable generation of run-time checks for array subscripts and
- against the declared minimum and maximum values. It also
- checks array indices for assumed and deferred shape arrays
- against the actual allocated bounds and ensures that all
- string lengths are equal for character array constructors
- without an explicit typespec.
- Some checks require that '-fcheck=bounds' is set for the
- compilation of the main program.
- Note: In the future this may also include other forms of
- checking, e.g., checking substring references.
- 'do'
- Enable generation of run-time checks for invalid modification
- of loop iteration variables.
- 'mem'
- Enable generation of run-time checks for memory allocation.
- Note: This option does not affect explicit allocations using
- the 'ALLOCATE' statement, which will be always checked.
- 'pointer'
- Enable generation of run-time checks for pointers and
- allocatables.
- 'recursion'
- Enable generation of run-time checks for recursively called
- subroutines and functions which are not marked as recursive.
- See also '-frecursive'. Note: This check does not work for
- OpenMP programs and is disabled if used together with
- '-frecursive' and '-fopenmp'.
- Example: Assuming you have a file 'foo.f90', the command
- gfortran -fcheck=all,no-array-temps foo.f90
- will compile the file with all checks enabled as specified above
- except warnings for generated array temporaries.
- '-fbounds-check'
- Deprecated alias for '-fcheck=bounds'.
- '-ftail-call-workaround'
- '-ftail-call-workaround=N'
- Some C interfaces to Fortran codes violate the gfortran ABI by
- omitting the hidden character length arguments as described in
- *Note Argument passing conventions::. This can lead to crashes
- because pushing arguments for tail calls can overflow the stack.
- To provide a workaround for existing binary packages, this option
- disables tail call optimization for gfortran procedures with
- character arguments. With '-ftail-call-workaround=2' tail call
- optimization is disabled in all gfortran procedures with character
- arguments, with '-ftail-call-workaround=1' or equivalent
- '-ftail-call-workaround' only in gfortran procedures with character
- arguments that call implicitly prototyped procedures.
- Using this option can lead to problems including crashes due to
- insufficient stack space.
- It is _very strongly_ recommended to fix the code in question. The
- '-fc-prototypes-external' option can be used to generate prototypes
- which conform to gfortran's ABI, for inclusion in the source code.
- Support for this option will likely be withdrawn in a future
- release of gfortran.
- The negative form, '-fno-tail-call-workaround' or equivalent
- '-ftail-call-workaround=0', can be used to disable this option.
- Default is currently '-ftail-call-workaround', this will change in
- future releases.
- '-fcheck-array-temporaries'
- Deprecated alias for '-fcheck=array-temps'.
- '-fmax-array-constructor=N'
- This option can be used to increase the upper limit permitted in
- array constructors. The code below requires this option to expand
- the array at compile time.
- program test
- implicit none
- integer j
- integer, parameter :: n = 100000
- integer, parameter :: i(n) = (/ (2*j, j = 1, n) /)
- print '(10(I0,1X))', i
- end program test
- _Caution: This option can lead to long compile times and
- excessively large object files._
- The default value for N is 65535.
- '-fmax-stack-var-size=N'
- This option specifies the size in bytes of the largest array that
- will be put on the stack; if the size is exceeded static memory is
- used (except in procedures marked as RECURSIVE). Use the option
- '-frecursive' to allow for recursive procedures which do not have a
- RECURSIVE attribute or for parallel programs. Use '-fno-automatic'
- to never use the stack.
- This option currently only affects local arrays declared with
- constant bounds, and may not apply to all character variables.
- Future versions of GNU Fortran may improve this behavior.
- The default value for N is 65536.
- '-fstack-arrays'
- Adding this option will make the Fortran compiler put all arrays of
- unknown size and array temporaries onto stack memory. If your
- program uses very large local arrays it is possible that you will
- have to extend your runtime limits for stack memory on some
- operating systems. This flag is enabled by default at optimization
- level '-Ofast' unless '-fmax-stack-var-size' is specified.
- '-fpack-derived'
- This option tells GNU Fortran to pack derived type members as
- closely as possible. Code compiled with this option is likely to
- be incompatible with code compiled without this option, and may
- execute slower.
- '-frepack-arrays'
- In some circumstances GNU Fortran may pass assumed shape array
- sections via a descriptor describing a noncontiguous area of
- memory. This option adds code to the function prologue to repack
- the data into a contiguous block at runtime.
- This should result in faster accesses to the array. However it can
- introduce significant overhead to the function call, especially
- when the passed data is noncontiguous.
- '-fshort-enums'
- This option is provided for interoperability with C code that was
- compiled with the '-fshort-enums' option. It will make GNU Fortran
- choose the smallest 'INTEGER' kind a given enumerator set will fit
- in, and give all its enumerators this kind.
- '-finline-arg-packing'
- When passing an assumed-shape argument of a procedure as actual
- argument to an assumed-size or explicit size or as argument to a
- procedure that does not have an explicit interface, the argument
- may have to be packed, that is put into contiguous memory. An
- example is the call to 'foo' in
- subroutine foo(a)
- real, dimension(*) :: a
- end subroutine foo
- subroutine bar(b)
- real, dimension(:) :: b
- call foo(b)
- end subroutine bar
- When '-finline-arg-packing' is in effect, this packing will be
- performed by inline code. This allows for more optimization while
- increasing code size.
- '-finline-arg-packing' is implied by any of the '-O' options except
- when optimizing for size via '-Os'. If the code contains a very
- large number of argument that have to be packed, code size and also
- compilation time may become excessive. If that is the case, it may
- be better to disable this option. Instances of packing can be
- found by using by using '-Warray-temporaries'.
- '-fexternal-blas'
- This option will make 'gfortran' generate calls to BLAS functions
- for some matrix operations like 'MATMUL', instead of using our own
- algorithms, if the size of the matrices involved is larger than a
- given limit (see '-fblas-matmul-limit'). This may be profitable if
- an optimized vendor BLAS library is available. The BLAS library
- will have to be specified at link time.
- '-fblas-matmul-limit=N'
- Only significant when '-fexternal-blas' is in effect. Matrix
- multiplication of matrices with size larger than (or equal to) N
- will be performed by calls to BLAS functions, while others will be
- handled by 'gfortran' internal algorithms. If the matrices
- involved are not square, the size comparison is performed using the
- geometric mean of the dimensions of the argument and result
- matrices.
- The default value for N is 30.
- '-finline-matmul-limit=N'
- When front-end optimiztion is active, some calls to the 'MATMUL'
- intrinsic function will be inlined. This may result in code size
- increase if the size of the matrix cannot be determined at compile
- time, as code for both cases is generated. Setting
- '-finline-matmul-limit=0' will disable inlining in all cases.
- Setting this option with a value of N will produce inline code for
- matrices with size up to N. If the matrices involved are not
- square, the size comparison is performed using the geometric mean
- of the dimensions of the argument and result matrices.
- The default value for N is 30. The '-fblas-matmul-limit' can be
- used to change this value.
- '-frecursive'
- Allow indirect recursion by forcing all local arrays to be
- allocated on the stack. This flag cannot be used together with
- '-fmax-stack-var-size=' or '-fno-automatic'.
- '-finit-local-zero'
- '-finit-derived'
- '-finit-integer=N'
- '-finit-real=<ZERO|INF|-INF|NAN|SNAN>'
- '-finit-logical=<TRUE|FALSE>'
- '-finit-character=N'
- The '-finit-local-zero' option instructs the compiler to initialize
- local 'INTEGER', 'REAL', and 'COMPLEX' variables to zero, 'LOGICAL'
- variables to false, and 'CHARACTER' variables to a string of null
- bytes. Finer-grained initialization options are provided by the
- '-finit-integer=N', '-finit-real=<ZERO|INF|-INF|NAN|SNAN>' (which
- also initializes the real and imaginary parts of local 'COMPLEX'
- variables), '-finit-logical=<TRUE|FALSE>', and '-finit-character=N'
- (where N is an ASCII character value) options.
- With '-finit-derived', components of derived type variables will be
- initialized according to these flags. Components whose type is not
- covered by an explicit '-finit-*' flag will be treated as described
- above with '-finit-local-zero'.
- These options do not initialize
- * objects with the POINTER attribute
- * allocatable arrays
- * variables that appear in an 'EQUIVALENCE' statement.
- (These limitations may be removed in future releases).
- Note that the '-finit-real=nan' option initializes 'REAL' and
- 'COMPLEX' variables with a quiet NaN. For a signalling NaN use
- '-finit-real=snan'; note, however, that compile-time optimizations
- may convert them into quiet NaN and that trapping needs to be
- enabled (e.g. via '-ffpe-trap').
- The '-finit-integer' option will parse the value into an integer of
- type 'INTEGER(kind=C_LONG)' on the host. Said value is then
- assigned to the integer variables in the Fortran code, which might
- result in wraparound if the value is too large for the kind.
- Finally, note that enabling any of the '-finit-*' options will
- silence warnings that would have been emitted by '-Wuninitialized'
- for the affected local variables.
- '-falign-commons'
- By default, 'gfortran' enforces proper alignment of all variables
- in a 'COMMON' block by padding them as needed. On certain
- platforms this is mandatory, on others it increases performance.
- If a 'COMMON' block is not declared with consistent data types
- everywhere, this padding can cause trouble, and
- '-fno-align-commons' can be used to disable automatic alignment.
- The same form of this option should be used for all files that
- share a 'COMMON' block. To avoid potential alignment issues in
- 'COMMON' blocks, it is recommended to order objects from largest to
- smallest.
- '-fno-protect-parens'
- By default the parentheses in expression are honored for all
- optimization levels such that the compiler does not do any
- re-association. Using '-fno-protect-parens' allows the compiler to
- reorder 'REAL' and 'COMPLEX' expressions to produce faster code.
- Note that for the re-association optimization '-fno-signed-zeros'
- and '-fno-trapping-math' need to be in effect. The parentheses
- protection is enabled by default, unless '-Ofast' is given.
- '-frealloc-lhs'
- An allocatable left-hand side of an intrinsic assignment is
- automatically (re)allocated if it is either unallocated or has a
- different shape. The option is enabled by default except when
- '-std=f95' is given. See also '-Wrealloc-lhs'.
- '-faggressive-function-elimination'
- Functions with identical argument lists are eliminated within
- statements, regardless of whether these functions are marked 'PURE'
- or not. For example, in
- a = f(b,c) + f(b,c)
- there will only be a single call to 'f'. This option only works if
- '-ffrontend-optimize' is in effect.
- '-ffrontend-optimize'
- This option performs front-end optimization, based on manipulating
- parts the Fortran parse tree. Enabled by default by any '-O'
- option except '-O0' and '-Og'. Optimizations enabled by this
- option include:
- * inlining calls to 'MATMUL',
- * elimination of identical function calls within expressions,
- * removing unnecessary calls to 'TRIM' in comparisons and
- assignments,
- * replacing 'TRIM(a)' with 'a(1:LEN_TRIM(a))' and
- * short-circuiting of logical operators ('.AND.' and '.OR.').
- It can be deselected by specifying '-fno-frontend-optimize'.
- '-ffrontend-loop-interchange'
- Attempt to interchange loops in the Fortran front end where
- profitable. Enabled by default by any '-O' option. At the moment,
- this option only affects 'FORALL' and 'DO CONCURRENT' statements
- with several forall triplets.
- *Note Options for Code Generation Conventions: (gcc)Code Gen Options,
- for information on more options offered by the GBE shared by 'gfortran',
- 'gcc', and other GNU compilers.
- File: gfortran.info, Node: Interoperability Options, Next: Environment Variables, Prev: Code Gen Options, Up: Invoking GNU Fortran
- 2.10 Options for interoperability with other languages
- ======================================================
- -fc-prototypes
- This option will generate C prototypes from 'BIND(C)' variable
- declarations, types and procedure interfaces and writes them to
- standard output. 'ENUM' is not yet supported.
- The generated prototypes may need inclusion of an appropriate
- header, such as '<stdint.h>' or '<stdlib.h>'. For types which are
- not specified using the appropriate kind from the 'iso_c_binding'
- module, a warning is added as a comment to the code.
- For function pointers, a pointer to a function returning 'int'
- without an explicit argument list is generated.
- Example of use:
- $ gfortran -fc-prototypes -fsyntax-only foo.f90 > foo.h
- where the C code intended for interoperating with the Fortran code
- then uses '#include "foo.h"'.
- -fc-prototypes-external
- This option will generate C prototypes from external functions and
- subroutines and write them to standard output. This may be useful
- for making sure that C bindings to Fortran code are correct. This
- option does not generate prototypes for 'BIND(C)' procedures, use
- '-fc-prototypes' for that.
- The generated prototypes may need inclusion of an appropriate
- header, such as as '<stdint.h>' or '<stdlib.h>'.
- This is primarily meant for legacy code to ensure that existing C
- bindings match what 'gfortran' emits. The generated C prototypes
- should be correct for the current version of the compiler, but may
- not match what other compilers or earlier versions of 'gfortran'
- need. For new developments, use of the 'BIND(C)' features is
- recommended.
- Example of use:
- $ gfortran -fc-prototypes-external -fsyntax-only foo.f > foo.h
- where the C code intended for interoperating with the Fortran code
- then uses '#include "foo.h"'.
- File: gfortran.info, Node: Environment Variables, Prev: Interoperability Options, Up: Invoking GNU Fortran
- 2.11 Environment variables affecting 'gfortran'
- ===============================================
- The 'gfortran' compiler currently does not make use of any environment
- variables to control its operation above and beyond those that affect
- the operation of 'gcc'.
- *Note Environment Variables Affecting GCC: (gcc)Environment
- Variables, for information on environment variables.
- *Note Runtime::, for environment variables that affect the run-time
- behavior of programs compiled with GNU Fortran.
- File: gfortran.info, Node: Runtime, Next: Fortran standards status, Prev: Invoking GNU Fortran, Up: Top
- 3 Runtime: Influencing runtime behavior with environment variables
- ******************************************************************
- The behavior of the 'gfortran' can be influenced by environment
- variables.
- Malformed environment variables are silently ignored.
- * Menu:
- * TMPDIR:: Directory for scratch files
- * GFORTRAN_STDIN_UNIT:: Unit number for standard input
- * GFORTRAN_STDOUT_UNIT:: Unit number for standard output
- * GFORTRAN_STDERR_UNIT:: Unit number for standard error
- * GFORTRAN_UNBUFFERED_ALL:: Do not buffer I/O for all units
- * GFORTRAN_UNBUFFERED_PRECONNECTED:: Do not buffer I/O for preconnected units.
- * GFORTRAN_SHOW_LOCUS:: Show location for runtime errors
- * GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
- * GFORTRAN_LIST_SEPARATOR:: Separator for list output
- * GFORTRAN_CONVERT_UNIT:: Set endianness for unformatted I/O
- * GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
- * GFORTRAN_FORMATTED_BUFFER_SIZE:: Buffer size for formatted files
- * GFORTRAN_UNFORMATTED_BUFFER_SIZE:: Buffer size for unformatted files
- File: gfortran.info, Node: TMPDIR, Next: GFORTRAN_STDIN_UNIT, Up: Runtime
- 3.1 'TMPDIR'--Directory for scratch files
- =========================================
- When opening a file with 'STATUS='SCRATCH'', GNU Fortran tries to create
- the file in one of the potential directories by testing each directory
- in the order below.
- 1. The environment variable 'TMPDIR', if it exists.
- 2. On the MinGW target, the directory returned by the 'GetTempPath'
- function. Alternatively, on the Cygwin target, the 'TMP' and
- 'TEMP' environment variables, if they exist, in that order.
- 3. The 'P_tmpdir' macro if it is defined, otherwise the directory
- '/tmp'.
- File: gfortran.info, Node: GFORTRAN_STDIN_UNIT, Next: GFORTRAN_STDOUT_UNIT, Prev: TMPDIR, Up: Runtime
- 3.2 'GFORTRAN_STDIN_UNIT'--Unit number for standard input
- =========================================================
- This environment variable can be used to select the unit number
- preconnected to standard input. This must be a positive integer. The
- default value is 5.
- File: gfortran.info, Node: GFORTRAN_STDOUT_UNIT, Next: GFORTRAN_STDERR_UNIT, Prev: GFORTRAN_STDIN_UNIT, Up: Runtime
- 3.3 'GFORTRAN_STDOUT_UNIT'--Unit number for standard output
- ===========================================================
- This environment variable can be used to select the unit number
- preconnected to standard output. This must be a positive integer. The
- default value is 6.
- File: gfortran.info, Node: GFORTRAN_STDERR_UNIT, Next: GFORTRAN_UNBUFFERED_ALL, Prev: GFORTRAN_STDOUT_UNIT, Up: Runtime
- 3.4 'GFORTRAN_STDERR_UNIT'--Unit number for standard error
- ==========================================================
- This environment variable can be used to select the unit number
- preconnected to standard error. This must be a positive integer. The
- default value is 0.
- File: gfortran.info, Node: GFORTRAN_UNBUFFERED_ALL, Next: GFORTRAN_UNBUFFERED_PRECONNECTED, Prev: GFORTRAN_STDERR_UNIT, Up: Runtime
- 3.5 'GFORTRAN_UNBUFFERED_ALL'--Do not buffer I/O on all units
- =============================================================
- This environment variable controls whether all I/O is unbuffered. If
- the first letter is 'y', 'Y' or '1', all I/O is unbuffered. This will
- slow down small sequential reads and writes. If the first letter is
- 'n', 'N' or '0', I/O is buffered. This is the default.
- File: gfortran.info, Node: GFORTRAN_UNBUFFERED_PRECONNECTED, Next: GFORTRAN_SHOW_LOCUS, Prev: GFORTRAN_UNBUFFERED_ALL, Up: Runtime
- 3.6 'GFORTRAN_UNBUFFERED_PRECONNECTED'--Do not buffer I/O on preconnected units
- ===============================================================================
- The environment variable named 'GFORTRAN_UNBUFFERED_PRECONNECTED'
- controls whether I/O on a preconnected unit (i.e. STDOUT or STDERR) is
- unbuffered. If the first letter is 'y', 'Y' or '1', I/O is unbuffered.
- This will slow down small sequential reads and writes. If the first
- letter is 'n', 'N' or '0', I/O is buffered. This is the default.
- File: gfortran.info, Node: GFORTRAN_SHOW_LOCUS, Next: GFORTRAN_OPTIONAL_PLUS, Prev: GFORTRAN_UNBUFFERED_PRECONNECTED, Up: Runtime
- 3.7 'GFORTRAN_SHOW_LOCUS'--Show location for runtime errors
- ===========================================================
- If the first letter is 'y', 'Y' or '1', filename and line numbers for
- runtime errors are printed. If the first letter is 'n', 'N' or '0', do
- not print filename and line numbers for runtime errors. The default is
- to print the location.
- File: gfortran.info, Node: GFORTRAN_OPTIONAL_PLUS, Next: GFORTRAN_LIST_SEPARATOR, Prev: GFORTRAN_SHOW_LOCUS, Up: Runtime
- 3.8 'GFORTRAN_OPTIONAL_PLUS'--Print leading + where permitted
- =============================================================
- If the first letter is 'y', 'Y' or '1', a plus sign is printed where
- permitted by the Fortran standard. If the first letter is 'n', 'N' or
- '0', a plus sign is not printed in most cases. Default is not to print
- plus signs.
- File: gfortran.info, Node: GFORTRAN_LIST_SEPARATOR, Next: GFORTRAN_CONVERT_UNIT, Prev: GFORTRAN_OPTIONAL_PLUS, Up: Runtime
- 3.9 'GFORTRAN_LIST_SEPARATOR'--Separator for list output
- ========================================================
- This environment variable specifies the separator when writing
- list-directed output. It may contain any number of spaces and at most
- one comma. If you specify this on the command line, be sure to quote
- spaces, as in
- $ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out
- when 'a.out' is the compiled Fortran program that you want to run.
- Default is a single space.
- File: gfortran.info, Node: GFORTRAN_CONVERT_UNIT, Next: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_LIST_SEPARATOR, Up: Runtime
- 3.10 'GFORTRAN_CONVERT_UNIT'--Set endianness for unformatted I/O
- ================================================================
- By setting the 'GFORTRAN_CONVERT_UNIT' variable, it is possible to
- change the representation of data for unformatted files. The syntax for
- the 'GFORTRAN_CONVERT_UNIT' variable is:
- GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
- mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
- exception: mode ':' unit_list | unit_list ;
- unit_list: unit_spec | unit_list unit_spec ;
- unit_spec: INTEGER | INTEGER '-' INTEGER ;
- The variable consists of an optional default mode, followed by a list
- of optional exceptions, which are separated by semicolons from the
- preceding default and each other. Each exception consists of a format
- and a comma-separated list of units. Valid values for the modes are the
- same as for the 'CONVERT' specifier:
- 'NATIVE' Use the native format. This is the default.
- 'SWAP' Swap between little- and big-endian.
- 'LITTLE_ENDIAN' Use the little-endian format for unformatted files.
- 'BIG_ENDIAN' Use the big-endian format for unformatted files.
- A missing mode for an exception is taken to mean 'BIG_ENDIAN'.
- Examples of values for 'GFORTRAN_CONVERT_UNIT' are:
- ''big_endian'' Do all unformatted I/O in big_endian mode.
- ''little_endian;native:10-20,25'' Do all unformatted I/O in
- little_endian mode, except for units 10 to 20 and 25, which are in
- native format.
- ''10-20'' Units 10 to 20 are big-endian, the rest is native.
- Setting the environment variables should be done on the command line
- or via the 'export' command for 'sh'-compatible shells and via 'setenv'
- for 'csh'-compatible shells.
- Example for 'sh':
- $ gfortran foo.f90
- $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
- Example code for 'csh':
- % gfortran foo.f90
- % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
- % ./a.out
- Using anything but the native representation for unformatted data
- carries a significant speed overhead. If speed in this area matters to
- you, it is best if you use this only for data that needs to be portable.
- *Note CONVERT specifier::, for an alternative way to specify the data
- representation for unformatted files. *Note Runtime Options::, for
- setting a default data representation for the whole program. The
- 'CONVERT' specifier overrides the '-fconvert' compile options.
- _Note that the values specified via the GFORTRAN_CONVERT_UNIT
- environment variable will override the CONVERT specifier in the open
- statement_. This is to give control over data formats to users who do
- not have the source code of their program available.
- File: gfortran.info, Node: GFORTRAN_ERROR_BACKTRACE, Next: GFORTRAN_FORMATTED_BUFFER_SIZE, Prev: GFORTRAN_CONVERT_UNIT, Up: Runtime
- 3.11 'GFORTRAN_ERROR_BACKTRACE'--Show backtrace on run-time errors
- ==================================================================
- If the 'GFORTRAN_ERROR_BACKTRACE' variable is set to 'y', 'Y' or '1'
- (only the first letter is relevant) then a backtrace is printed when a
- serious run-time error occurs. To disable the backtracing, set the
- variable to 'n', 'N', '0'. Default is to print a backtrace unless the
- '-fno-backtrace' compile option was used.
- File: gfortran.info, Node: GFORTRAN_FORMATTED_BUFFER_SIZE, Next: GFORTRAN_UNFORMATTED_BUFFER_SIZE, Prev: GFORTRAN_ERROR_BACKTRACE, Up: Runtime
- 3.12 'GFORTRAN_FORMATTED_BUFFER_SIZE'--Set buffer size for formatted I/O
- ========================================================================
- The 'GFORTRAN_FORMATTED_BUFFER_SIZE' environment variable specifies
- buffer size in bytes to be used for formatted output. The default value
- is 8192.
- File: gfortran.info, Node: GFORTRAN_UNFORMATTED_BUFFER_SIZE, Prev: GFORTRAN_FORMATTED_BUFFER_SIZE, Up: Runtime
- 3.13 'GFORTRAN_UNFORMATTED_BUFFER_SIZE'--Set buffer size for unformatted I/O
- ============================================================================
- The 'GFORTRAN_UNFORMATTED_BUFFER_SIZE' environment variable specifies
- buffer size in bytes to be used for unformatted output. The default
- value is 131072.
- File: gfortran.info, Node: Fortran standards status, Next: Compiler Characteristics, Prev: Runtime, Up: Top
- 4 Fortran standards status
- **************************
- * Menu:
- * Fortran 2003 status::
- * Fortran 2008 status::
- * Fortran 2018 status::
- File: gfortran.info, Node: Fortran 2003 status, Next: Fortran 2008 status, Up: Fortran standards status
- 4.1 Fortran 2003 status
- =======================
- GNU Fortran supports several Fortran 2003 features; an incomplete list
- can be found below. See also the wiki page
- (https://gcc.gnu.org/wiki/Fortran2003) about Fortran 2003.
- * Procedure pointers including procedure-pointer components with
- 'PASS' attribute.
- * Procedures which are bound to a derived type (type-bound
- procedures) including 'PASS', 'PROCEDURE' and 'GENERIC', and
- operators bound to a type.
- * Abstract interfaces and type extension with the possibility to
- override type-bound procedures or to have deferred binding.
- * Polymorphic entities ("'CLASS'") for derived types and unlimited
- polymorphism ("'CLASS(*)'") - including 'SAME_TYPE_AS',
- 'EXTENDS_TYPE_OF' and 'SELECT TYPE' for scalars and arrays and
- finalization.
- * Generic interface names, which have the same name as derived types,
- are now supported. This allows one to write constructor functions.
- Note that Fortran does not support static constructor functions.
- For static variables, only default initialization or
- structure-constructor initialization are available.
- * The 'ASSOCIATE' construct.
- * Interoperability with C including enumerations,
- * In structure constructors the components with default values may be
- omitted.
- * Extensions to the 'ALLOCATE' statement, allowing for a
- type-specification with type parameter and for allocation and
- initialization from a 'SOURCE=' expression; 'ALLOCATE' and
- 'DEALLOCATE' optionally return an error message string via
- 'ERRMSG='.
- * Reallocation on assignment: If an intrinsic assignment is used, an
- allocatable variable on the left-hand side is automatically
- allocated (if unallocated) or reallocated (if the shape is
- different). Currently, scalar deferred character length left-hand
- sides are correctly handled but arrays are not yet fully
- implemented.
- * Deferred-length character variables and scalar deferred-length
- character components of derived types are supported. (Note that
- array-valued compoents are not yet implemented.)
- * Transferring of allocations via 'MOVE_ALLOC'.
- * The 'PRIVATE' and 'PUBLIC' attributes may be given individually to
- derived-type components.
- * In pointer assignments, the lower bound may be specified and the
- remapping of elements is supported.
- * For pointers an 'INTENT' may be specified which affect the
- association status not the value of the pointer target.
- * Intrinsics 'command_argument_count', 'get_command',
- 'get_command_argument', and 'get_environment_variable'.
- * Support for Unicode characters (ISO 10646) and UTF-8, including the
- 'SELECTED_CHAR_KIND' and 'NEW_LINE' intrinsic functions.
- * Support for binary, octal and hexadecimal (BOZ) constants in the
- intrinsic functions 'INT', 'REAL', 'CMPLX' and 'DBLE'.
- * Support for namelist variables with allocatable and pointer
- attribute and nonconstant length type parameter.
- * Array constructors using square brackets. That is, '[...]' rather
- than '(/.../)'. Type-specification for array constructors like '(/
- some-type :: ... /)'.
- * Extensions to the specification and initialization expressions,
- including the support for intrinsics with real and complex
- arguments.
- * Support for the asynchronous input/output.
- * 'FLUSH' statement.
- * 'IOMSG=' specifier for I/O statements.
- * Support for the declaration of enumeration constants via the 'ENUM'
- and 'ENUMERATOR' statements. Interoperability with 'gcc' is
- guaranteed also for the case where the '-fshort-enums' command line
- option is given.
- * TR 15581:
- * 'ALLOCATABLE' dummy arguments.
- * 'ALLOCATABLE' function results
- * 'ALLOCATABLE' components of derived types
- * The 'OPEN' statement supports the 'ACCESS='STREAM'' specifier,
- allowing I/O without any record structure.
- * Namelist input/output for internal files.
- * Minor I/O features: Rounding during formatted output, using of a
- decimal comma instead of a decimal point, setting whether a plus
- sign should appear for positive numbers. On systems where 'strtod'
- honours the rounding mode, the rounding mode is also supported for
- input.
- * The 'PROTECTED' statement and attribute.
- * The 'VALUE' statement and attribute.
- * The 'VOLATILE' statement and attribute.
- * The 'IMPORT' statement, allowing to import host-associated derived
- types.
- * The intrinsic modules 'ISO_FORTRAN_ENVIRONMENT' is supported, which
- contains parameters of the I/O units, storage sizes. Additionally,
- procedures for C interoperability are available in the
- 'ISO_C_BINDING' module.
- * 'USE' statement with 'INTRINSIC' and 'NON_INTRINSIC' attribute;
- supported intrinsic modules: 'ISO_FORTRAN_ENV', 'ISO_C_BINDING',
- 'OMP_LIB' and 'OMP_LIB_KINDS', and 'OPENACC'.
- * Renaming of operators in the 'USE' statement.
- File: gfortran.info, Node: Fortran 2008 status, Next: Fortran 2018 status, Prev: Fortran 2003 status, Up: Fortran standards status
- 4.2 Fortran 2008 status
- =======================
- The latest version of the Fortran standard is ISO/IEC 1539-1:2010,
- informally known as Fortran 2008. The official version is available
- from International Organization for Standardization (ISO) or its
- national member organizations. The the final draft (FDIS) can be
- downloaded free of charge from
- <http://www.nag.co.uk/sc22wg5/links.html>. Fortran is developed by the
- Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1
- of the International Organization for Standardization and the
- International Electrotechnical Commission (IEC). This group is known as
- WG5 (http://www.nag.co.uk/sc22wg5/).
- The GNU Fortran compiler supports several of the new features of
- Fortran 2008; the wiki (https://gcc.gnu.org/wiki/Fortran2008Status) has
- some information about the current Fortran 2008 implementation status.
- In particular, the following is implemented.
- * The '-std=f2008' option and support for the file extensions '.f08'
- and '.F08'.
- * The 'OPEN' statement now supports the 'NEWUNIT=' option, which
- returns a unique file unit, thus preventing inadvertent use of the
- same unit in different parts of the program.
- * The 'g0' format descriptor and unlimited format items.
- * The mathematical intrinsics 'ASINH', 'ACOSH', 'ATANH', 'ERF',
- 'ERFC', 'GAMMA', 'LOG_GAMMA', 'BESSEL_J0', 'BESSEL_J1',
- 'BESSEL_JN', 'BESSEL_Y0', 'BESSEL_Y1', 'BESSEL_YN', 'HYPOT',
- 'NORM2', and 'ERFC_SCALED'.
- * Using complex arguments with 'TAN', 'SINH', 'COSH', 'TANH', 'ASIN',
- 'ACOS', and 'ATAN' is now possible; 'ATAN'(Y,X) is now an alias for
- 'ATAN2'(Y,X).
- * Support of the 'PARITY' intrinsic functions.
- * The following bit intrinsics: 'LEADZ' and 'TRAILZ' for counting the
- number of leading and trailing zero bits, 'POPCNT' and 'POPPAR' for
- counting the number of one bits and returning the parity; 'BGE',
- 'BGT', 'BLE', and 'BLT' for bitwise comparisons; 'DSHIFTL' and
- 'DSHIFTR' for combined left and right shifts, 'MASKL' and 'MASKR'
- for simple left and right justified masks, 'MERGE_BITS' for a
- bitwise merge using a mask, 'SHIFTA', 'SHIFTL' and 'SHIFTR' for
- shift operations, and the transformational bit intrinsics 'IALL',
- 'IANY' and 'IPARITY'.
- * Support of the 'EXECUTE_COMMAND_LINE' intrinsic subroutine.
- * Support for the 'STORAGE_SIZE' intrinsic inquiry function.
- * The 'INT{8,16,32}' and 'REAL{32,64,128}' kind type parameters and
- the array-valued named constants 'INTEGER_KINDS', 'LOGICAL_KINDS',
- 'REAL_KINDS' and 'CHARACTER_KINDS' of the intrinsic module
- 'ISO_FORTRAN_ENV'.
- * The module procedures 'C_SIZEOF' of the intrinsic module
- 'ISO_C_BINDINGS' and 'COMPILER_VERSION' and 'COMPILER_OPTIONS' of
- 'ISO_FORTRAN_ENV'.
- * Coarray support for serial programs with '-fcoarray=single' flag
- and experimental support for multiple images with the
- '-fcoarray=lib' flag.
- * Submodules are supported. It should noted that 'MODULEs' do not
- produce the smod file needed by the descendent 'SUBMODULEs' unless
- they contain at least one 'MODULE PROCEDURE' interface. The reason
- for this is that 'SUBMODULEs' are useless without 'MODULE
- PROCEDUREs'. See http://j3-fortran.org/doc/meeting/207/15-209.txt
- for a discussion and a draft interpretation. Adopting this
- interpretation has the advantage that code that does not use
- submodules does not generate smod files.
- * The 'DO CONCURRENT' construct is supported.
- * The 'BLOCK' construct is supported.
- * The 'STOP' and the new 'ERROR STOP' statements now support all
- constant expressions. Both show the signals which were signaling
- at termination.
- * Support for the 'CONTIGUOUS' attribute.
- * Support for 'ALLOCATE' with 'MOLD'.
- * Support for the 'IMPURE' attribute for procedures, which allows for
- 'ELEMENTAL' procedures without the restrictions of 'PURE'.
- * Null pointers (including 'NULL()') and not-allocated variables can
- be used as actual argument to optional non-pointer, non-allocatable
- dummy arguments, denoting an absent argument.
- * Non-pointer variables with 'TARGET' attribute can be used as actual
- argument to 'POINTER' dummies with 'INTENT(IN)'.
- * Pointers including procedure pointers and those in a derived type
- (pointer components) can now be initialized by a target instead of
- only by 'NULL'.
- * The 'EXIT' statement (with construct-name) can be now be used to
- leave not only the 'DO' but also the 'ASSOCIATE', 'BLOCK', 'IF',
- 'SELECT CASE' and 'SELECT TYPE' constructs.
- * Internal procedures can now be used as actual argument.
- * Minor features: obsolesce diagnostics for 'ENTRY' with
- '-std=f2008'; a line may start with a semicolon; for internal and
- module procedures 'END' can be used instead of 'END SUBROUTINE' and
- 'END FUNCTION'; 'SELECTED_REAL_KIND' now also takes a 'RADIX'
- argument; intrinsic types are supported for
- 'TYPE'(INTRINSIC-TYPE-SPEC); multiple type-bound procedures can be
- declared in a single 'PROCEDURE' statement; implied-shape arrays
- are supported for named constants ('PARAMETER').
- File: gfortran.info, Node: Fortran 2018 status, Prev: Fortran 2008 status, Up: Fortran standards status
- 4.3 Status of Fortran 2018 support
- ==================================
- * ERROR STOP in a PURE procedure An 'ERROR STOP' statement is
- permitted in a 'PURE' procedure.
- * IMPLICIT NONE with a spec-list Support the 'IMPLICIT NONE'
- statement with an 'implicit-none-spec-list'.
- * Behavior of INQUIRE with the RECL= specifier
- The behavior of the 'INQUIRE' statement with the 'RECL=' specifier
- now conforms to Fortran 2018.
- 4.3.1 TS 29113 Status (Further Interoperability with C)
- -------------------------------------------------------
- GNU Fortran supports some of the new features of the Technical
- Specification (TS) 29113 on Further Interoperability of Fortran with C.
- The wiki (https://gcc.gnu.org/wiki/TS29113Status) has some information
- about the current TS 29113 implementation status. In particular, the
- following is implemented.
- See also *note Further Interoperability of Fortran with C::.
- * The 'OPTIONAL' attribute is allowed for dummy arguments of 'BIND(C)
- procedures.'
- * The 'RANK' intrinsic is supported.
- * GNU Fortran's implementation for variables with 'ASYNCHRONOUS'
- attribute is compatible with TS 29113.
- * Assumed types ('TYPE(*)').
- * Assumed-rank ('DIMENSION(..)').
- * ISO_Fortran_binding (now in Fortran 2018 18.4) is implemented such
- that conversion of the array descriptor for assumed type or assumed
- rank arrays is done in the library. The include file
- ISO_Fortran_binding.h is can be found in
- '~prefix/lib/gcc/$target/$version'.
- 4.3.2 TS 18508 Status (Additional Parallel Features)
- ----------------------------------------------------
- GNU Fortran supports the following new features of the Technical
- Specification 18508 on Additional Parallel Features in Fortran:
- * The new atomic ADD, CAS, FETCH and ADD/OR/XOR, OR and XOR
- intrinsics.
- * The 'CO_MIN' and 'CO_MAX' and 'SUM' reduction intrinsics. And the
- 'CO_BROADCAST' and 'CO_REDUCE' intrinsic, except that those do not
- support polymorphic types or types with allocatable, pointer or
- polymorphic components.
- * Events ('EVENT POST', 'EVENT WAIT', 'EVENT_QUERY')
- * Failed images ('FAIL IMAGE', 'IMAGE_STATUS', 'FAILED_IMAGES',
- 'STOPPED_IMAGES')
- File: gfortran.info, Node: Compiler Characteristics, Next: Extensions, Prev: Fortran standards status, Up: Top
- 5 Compiler Characteristics
- **************************
- This chapter describes certain characteristics of the GNU Fortran
- compiler, that are not specified by the Fortran standard, but which
- might in some way or another become visible to the programmer.
- * Menu:
- * KIND Type Parameters::
- * Internal representation of LOGICAL variables::
- * Evaluation of logical expressions::
- * MAX and MIN intrinsics with REAL NaN arguments::
- * Thread-safety of the runtime library::
- * Data consistency and durability::
- * Files opened without an explicit ACTION= specifier::
- * File operations on symbolic links::
- * File format of unformatted sequential files::
- * Asynchronous I/O::
- File: gfortran.info, Node: KIND Type Parameters, Next: Internal representation of LOGICAL variables, Up: Compiler Characteristics
- 5.1 KIND Type Parameters
- ========================
- The 'KIND' type parameters supported by GNU Fortran for the primitive
- data types are:
- 'INTEGER'
- 1, 2, 4, 8*, 16*, default: 4**
- 'LOGICAL'
- 1, 2, 4, 8*, 16*, default: 4**
- 'REAL'
- 4, 8, 10*, 16*, default: 4***
- 'COMPLEX'
- 4, 8, 10*, 16*, default: 4***
- 'DOUBLE PRECISION'
- 4, 8, 10*, 16*, default: 8***
- 'CHARACTER'
- 1, 4, default: 1
- * not available on all systems
- ** unless '-fdefault-integer-8' is used
- *** unless '-fdefault-real-8' is used (see *note Fortran Dialect
- Options::)
- The 'KIND' value matches the storage size in bytes, except for 'COMPLEX'
- where the storage size is twice as much (or both real and imaginary part
- are a real value of the given size). It is recommended to use the *note
- SELECTED_CHAR_KIND::, *note SELECTED_INT_KIND:: and *note
- SELECTED_REAL_KIND:: intrinsics or the 'INT8', 'INT16', 'INT32',
- 'INT64', 'REAL32', 'REAL64', and 'REAL128' parameters of the
- 'ISO_FORTRAN_ENV' module instead of the concrete values. The available
- kind parameters can be found in the constant arrays 'CHARACTER_KINDS',
- 'INTEGER_KINDS', 'LOGICAL_KINDS' and 'REAL_KINDS' in the *note
- ISO_FORTRAN_ENV:: module. For C interoperability, the kind parameters
- of the *note ISO_C_BINDING:: module should be used.
- File: gfortran.info, Node: Internal representation of LOGICAL variables, Next: Evaluation of logical expressions, Prev: KIND Type Parameters, Up: Compiler Characteristics
- 5.2 Internal representation of LOGICAL variables
- ================================================
- The Fortran standard does not specify how variables of 'LOGICAL' type
- are represented, beyond requiring that 'LOGICAL' variables of default
- kind have the same storage size as default 'INTEGER' and 'REAL'
- variables. The GNU Fortran internal representation is as follows.
- A 'LOGICAL(KIND=N)' variable is represented as an 'INTEGER(KIND=N)'
- variable, however, with only two permissible values: '1' for '.TRUE.'
- and '0' for '.FALSE.'. Any other integer value results in undefined
- behavior.
- See also *note Argument passing conventions:: and *note
- Interoperability with C::.
- File: gfortran.info, Node: Evaluation of logical expressions, Next: MAX and MIN intrinsics with REAL NaN arguments, Prev: Internal representation of LOGICAL variables, Up: Compiler Characteristics
- 5.3 Evaluation of logical expressions
- =====================================
- The Fortran standard does not require the compiler to evaluate all parts
- of an expression, if they do not contribute to the final result. For
- logical expressions with '.AND.' or '.OR.' operators, in particular, GNU
- Fortran will optimize out function calls (even to impure functions) if
- the result of the expression can be established without them. However,
- since not all compilers do that, and such an optimization can
- potentially modify the program flow and subsequent results, GNU Fortran
- throws warnings for such situations with the '-Wfunction-elimination'
- flag.
- File: gfortran.info, Node: MAX and MIN intrinsics with REAL NaN arguments, Next: Thread-safety of the runtime library, Prev: Evaluation of logical expressions, Up: Compiler Characteristics
- 5.4 MAX and MIN intrinsics with REAL NaN arguments
- ==================================================
- The Fortran standard does not specify what the result of the 'MAX' and
- 'MIN' intrinsics are if one of the arguments is a 'NaN'. Accordingly,
- the GNU Fortran compiler does not specify that either, as this allows
- for faster and more compact code to be generated. If the programmer
- wishes to take some specific action in case one of the arguments is a
- 'NaN', it is necessary to explicitly test the arguments before calling
- 'MAX' or 'MIN', e.g. with the 'IEEE_IS_NAN' function from the intrinsic
- module 'IEEE_ARITHMETIC'.
- File: gfortran.info, Node: Thread-safety of the runtime library, Next: Data consistency and durability, Prev: MAX and MIN intrinsics with REAL NaN arguments, Up: Compiler Characteristics
- 5.5 Thread-safety of the runtime library
- ========================================
- GNU Fortran can be used in programs with multiple threads, e.g. by using
- OpenMP, by calling OS thread handling functions via the 'ISO_C_BINDING'
- facility, or by GNU Fortran compiled library code being called from a
- multi-threaded program.
- The GNU Fortran runtime library, ('libgfortran'), supports being
- called concurrently from multiple threads with the following exceptions.
- During library initialization, the C 'getenv' function is used, which
- need not be thread-safe. Similarly, the 'getenv' function is used to
- implement the 'GET_ENVIRONMENT_VARIABLE' and 'GETENV' intrinsics. It is
- the responsibility of the user to ensure that the environment is not
- being updated concurrently when any of these actions are taking place.
- The 'EXECUTE_COMMAND_LINE' and 'SYSTEM' intrinsics are implemented
- with the 'system' function, which need not be thread-safe. It is the
- responsibility of the user to ensure that 'system' is not called
- concurrently.
- For platforms not supporting thread-safe POSIX functions, further
- functionality might not be thread-safe. For details, please consult the
- documentation for your operating system.
- The GNU Fortran runtime library uses various C library functions that
- depend on the locale, such as 'strtod' and 'snprintf'. In order to work
- correctly in locale-aware programs that set the locale using
- 'setlocale', the locale is reset to the default "C" locale while
- executing a formatted 'READ' or 'WRITE' statement. On targets
- supporting the POSIX 2008 per-thread locale functions (e.g.
- 'newlocale', 'uselocale', 'freelocale'), these are used and thus the
- global locale set using 'setlocale' or the per-thread locales in other
- threads are not affected. However, on targets lacking this
- functionality, the global LC_NUMERIC locale is set to "C" during the
- formatted I/O. Thus, on such targets it's not safe to call 'setlocale'
- concurrently from another thread while a Fortran formatted I/O operation
- is in progress. Also, other threads doing something dependent on the
- LC_NUMERIC locale might not work correctly if a formatted I/O operation
- is in progress in another thread.
- File: gfortran.info, Node: Data consistency and durability, Next: Files opened without an explicit ACTION= specifier, Prev: Thread-safety of the runtime library, Up: Compiler Characteristics
- 5.6 Data consistency and durability
- ===================================
- This section contains a brief overview of data and metadata consistency
- and durability issues when doing I/O.
- With respect to durability, GNU Fortran makes no effort to ensure
- that data is committed to stable storage. If this is required, the GNU
- Fortran programmer can use the intrinsic 'FNUM' to retrieve the low
- level file descriptor corresponding to an open Fortran unit. Then,
- using e.g. the 'ISO_C_BINDING' feature, one can call the underlying
- system call to flush dirty data to stable storage, such as 'fsync' on
- POSIX, '_commit' on MingW, or 'fcntl(fd, F_FULLSYNC, 0)' on Mac OS X.
- The following example shows how to call fsync:
- ! Declare the interface for POSIX fsync function
- interface
- function fsync (fd) bind(c,name="fsync")
- use iso_c_binding, only: c_int
- integer(c_int), value :: fd
- integer(c_int) :: fsync
- end function fsync
- end interface
- ! Variable declaration
- integer :: ret
- ! Opening unit 10
- open (10,file="foo")
- ! ...
- ! Perform I/O on unit 10
- ! ...
- ! Flush and sync
- flush(10)
- ret = fsync(fnum(10))
- ! Handle possible error
- if (ret /= 0) stop "Error calling FSYNC"
- With respect to consistency, for regular files GNU Fortran uses
- buffered I/O in order to improve performance. This buffer is flushed
- automatically when full and in some other situations, e.g. when closing
- a unit. It can also be explicitly flushed with the 'FLUSH' statement.
- Also, the buffering can be turned off with the 'GFORTRAN_UNBUFFERED_ALL'
- and 'GFORTRAN_UNBUFFERED_PRECONNECTED' environment variables. Special
- files, such as terminals and pipes, are always unbuffered. Sometimes,
- however, further things may need to be done in order to allow other
- processes to see data that GNU Fortran has written, as follows.
- The Windows platform supports a relaxed metadata consistency model,
- where file metadata is written to the directory lazily. This means
- that, for instance, the 'dir' command can show a stale size for a file.
- One can force a directory metadata update by closing the unit, or by
- calling '_commit' on the file descriptor. Note, though, that '_commit'
- will force all dirty data to stable storage, which is often a very slow
- operation.
- The Network File System (NFS) implements a relaxed consistency model
- called open-to-close consistency. Closing a file forces dirty data and
- metadata to be flushed to the server, and opening a file forces the
- client to contact the server in order to revalidate cached data.
- 'fsync' will also force a flush of dirty data and metadata to the
- server. Similar to 'open' and 'close', acquiring and releasing 'fcntl'
- file locks, if the server supports them, will also force cache
- validation and flushing dirty data and metadata.
- File: gfortran.info, Node: Files opened without an explicit ACTION= specifier, Next: File operations on symbolic links, Prev: Data consistency and durability, Up: Compiler Characteristics
- 5.7 Files opened without an explicit ACTION= specifier
- ======================================================
- The Fortran standard says that if an 'OPEN' statement is executed
- without an explicit 'ACTION=' specifier, the default value is processor
- dependent. GNU Fortran behaves as follows:
- 1. Attempt to open the file with 'ACTION='READWRITE''
- 2. If that fails, try to open with 'ACTION='READ''
- 3. If that fails, try to open with 'ACTION='WRITE''
- 4. If that fails, generate an error
- File: gfortran.info, Node: File operations on symbolic links, Next: File format of unformatted sequential files, Prev: Files opened without an explicit ACTION= specifier, Up: Compiler Characteristics
- 5.8 File operations on symbolic links
- =====================================
- This section documents the behavior of GNU Fortran for file operations
- on symbolic links, on systems that support them.
- * Results of INQUIRE statements of the "inquire by file" form will
- relate to the target of the symbolic link. For example,
- 'INQUIRE(FILE="foo",EXIST=ex)' will set EX to .TRUE. if FOO is a
- symbolic link pointing to an existing file, and .FALSE. if FOO
- points to an non-existing file ("dangling" symbolic link).
- * Using the 'OPEN' statement with a 'STATUS="NEW"' specifier on a
- symbolic link will result in an error condition, whether the
- symbolic link points to an existing target or is dangling.
- * If a symbolic link was connected, using the 'CLOSE' statement with
- a 'STATUS="DELETE"' specifier will cause the symbolic link itself
- to be deleted, not its target.
- File: gfortran.info, Node: File format of unformatted sequential files, Next: Asynchronous I/O, Prev: File operations on symbolic links, Up: Compiler Characteristics
- 5.9 File format of unformatted sequential files
- ===============================================
- Unformatted sequential files are stored as logical records using record
- markers. Each logical record consists of one of more subrecords.
- Each subrecord consists of a leading record marker, the data written
- by the user program, and a trailing record marker. The record markers
- are four-byte integers by default, and eight-byte integers if the
- '-fmax-subrecord-length=8' option (which exists for backwards
- compability only) is in effect.
- The representation of the record markers is that of unformatted files
- given with the '-fconvert' option, the *note CONVERT specifier:: in an
- open statement or the *note GFORTRAN_CONVERT_UNIT:: environment
- variable.
- The maximum number of bytes of user data in a subrecord is 2147483639
- (2 GiB - 9) for a four-byte record marker. This limit can be lowered
- with the '-fmax-subrecord-length' option, altough this is rarely useful.
- If the length of a logical record exceeds this limit, the data is
- distributed among several subrecords.
- The absolute of the number stored in the record markers is the number
- of bytes of user data in the corresponding subrecord. If the leading
- record marker of a subrecord contains a negative number, another
- subrecord follows the current one. If the trailing record marker
- contains a negative number, then there is a preceding subrecord.
- In the most simple case, with only one subrecord per logical record,
- both record markers contain the number of bytes of user data in the
- record.
- The format for unformatted sequential data can be duplicated using
- unformatted stream, as shown in the example program for an unformatted
- record containing a single subrecord:
- program main
- use iso_fortran_env, only: int32
- implicit none
- integer(int32) :: i
- real, dimension(10) :: a, b
- call random_number(a)
- open (10,file='test.dat',form='unformatted',access='stream')
- inquire (iolength=i) a
- write (10) i, a, i
- close (10)
- open (10,file='test.dat',form='unformatted')
- read (10) b
- if (all (a == b)) print *,'success!'
- end program main
- File: gfortran.info, Node: Asynchronous I/O, Prev: File format of unformatted sequential files, Up: Compiler Characteristics
- 5.10 Asynchronous I/O
- =====================
- Asynchronous I/O is supported if the program is linked against the POSIX
- thread library. If that is not the case, all I/O is performed as
- synchronous. On systems which do not support pthread condition
- variables, such as AIX, I/O is also performed as synchronous.
- On some systems, such as Darwin or Solaris, the POSIX thread library
- is always linked in, so asynchronous I/O is always performed. On other
- sytems, such as Linux, it is necessary to specify '-pthread',
- '-lpthread' or '-fopenmp' during the linking step.
- File: gfortran.info, Node: Extensions, Next: Mixed-Language Programming, Prev: Compiler Characteristics, Up: Top
- 6 Extensions
- ************
- The two sections below detail the extensions to standard Fortran that
- are implemented in GNU Fortran, as well as some of the popular or
- historically important extensions that are not (or not yet) implemented.
- For the latter case, we explain the alternatives available to GNU
- Fortran users, including replacement by standard-conforming code or GNU
- extensions.
- * Menu:
- * Extensions implemented in GNU Fortran::
- * Extensions not implemented in GNU Fortran::
- File: gfortran.info, Node: Extensions implemented in GNU Fortran, Next: Extensions not implemented in GNU Fortran, Up: Extensions
- 6.1 Extensions implemented in GNU Fortran
- =========================================
- GNU Fortran implements a number of extensions over standard Fortran.
- This chapter contains information on their syntax and meaning. There
- are currently two categories of GNU Fortran extensions, those that
- provide functionality beyond that provided by any standard, and those
- that are supported by GNU Fortran purely for backward compatibility with
- legacy compilers. By default, '-std=gnu' allows the compiler to accept
- both types of extensions, but to warn about the use of the latter.
- Specifying either '-std=f95', '-std=f2003', '-std=f2008', or
- '-std=f2018' disables both types of extensions, and '-std=legacy' allows
- both without warning. The special compile flag '-fdec' enables
- additional compatibility extensions along with those enabled by
- '-std=legacy'.
- * Menu:
- * Old-style kind specifications::
- * Old-style variable initialization::
- * Extensions to namelist::
- * X format descriptor without count field::
- * Commas in FORMAT specifications::
- * Missing period in FORMAT specifications::
- * Default widths for F, G and I format descriptors::
- * I/O item lists::
- * 'Q' exponent-letter::
- * BOZ literal constants::
- * Real array indices::
- * Unary operators::
- * Implicitly convert LOGICAL and INTEGER values::
- * Hollerith constants support::
- * Character conversion::
- * Cray pointers::
- * CONVERT specifier::
- * OpenMP::
- * OpenACC::
- * Argument list functions::
- * Read/Write after EOF marker::
- * STRUCTURE and RECORD::
- * UNION and MAP::
- * Type variants for integer intrinsics::
- * AUTOMATIC and STATIC attributes::
- * Extended math intrinsics::
- * Form feed as whitespace::
- * TYPE as an alias for PRINT::
- * %LOC as an rvalue::
- * .XOR. operator::
- * Bitwise logical operators::
- * Extended I/O specifiers::
- * Legacy PARAMETER statements::
- * Default exponents::
- File: gfortran.info, Node: Old-style kind specifications, Next: Old-style variable initialization, Up: Extensions implemented in GNU Fortran
- 6.1.1 Old-style kind specifications
- -----------------------------------
- GNU Fortran allows old-style kind specifications in declarations. These
- look like:
- TYPESPEC*size x,y,z
- where 'TYPESPEC' is a basic type ('INTEGER', 'REAL', etc.), and where
- 'size' is a byte count corresponding to the storage size of a valid kind
- for that type. (For 'COMPLEX' variables, 'size' is the total size of
- the real and imaginary parts.) The statement then declares 'x', 'y' and
- 'z' to be of type 'TYPESPEC' with the appropriate kind. This is
- equivalent to the standard-conforming declaration
- TYPESPEC(k) x,y,z
- where 'k' is the kind parameter suitable for the intended precision. As
- kind parameters are implementation-dependent, use the 'KIND',
- 'SELECTED_INT_KIND' and 'SELECTED_REAL_KIND' intrinsics to retrieve the
- correct value, for instance 'REAL*8 x' can be replaced by:
- INTEGER, PARAMETER :: dbl = KIND(1.0d0)
- REAL(KIND=dbl) :: x
- File: gfortran.info, Node: Old-style variable initialization, Next: Extensions to namelist, Prev: Old-style kind specifications, Up: Extensions implemented in GNU Fortran
- 6.1.2 Old-style variable initialization
- ---------------------------------------
- GNU Fortran allows old-style initialization of variables of the form:
- INTEGER i/1/,j/2/
- REAL x(2,2) /3*0.,1./
- The syntax for the initializers is as for the 'DATA' statement, but
- unlike in a 'DATA' statement, an initializer only applies to the
- variable immediately preceding the initialization. In other words,
- something like 'INTEGER I,J/2,3/' is not valid. This style of
- initialization is only allowed in declarations without double colons
- ('::'); the double colons were introduced in Fortran 90, which also
- introduced a standard syntax for initializing variables in type
- declarations.
- Examples of standard-conforming code equivalent to the above example
- are:
- ! Fortran 90
- INTEGER :: i = 1, j = 2
- REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
- ! Fortran 77
- INTEGER i, j
- REAL x(2,2)
- DATA i/1/, j/2/, x/3*0.,1./
- Note that variables which are explicitly initialized in declarations
- or in 'DATA' statements automatically acquire the 'SAVE' attribute.
- File: gfortran.info, Node: Extensions to namelist, Next: X format descriptor without count field, Prev: Old-style variable initialization, Up: Extensions implemented in GNU Fortran
- 6.1.3 Extensions to namelist
- ----------------------------
- GNU Fortran fully supports the Fortran 95 standard for namelist I/O
- including array qualifiers, substrings and fully qualified derived
- types. The output from a namelist write is compatible with namelist
- read. The output has all names in upper case and indentation to column
- 1 after the namelist name. Two extensions are permitted:
- Old-style use of '$' instead of '&'
- $MYNML
- X(:)%Y(2) = 1.0 2.0 3.0
- CH(1:4) = "abcd"
- $END
- It should be noted that the default terminator is '/' rather than
- '&END'.
- Querying of the namelist when inputting from stdin. After at least
- one space, entering '?' sends to stdout the namelist name and the names
- of the variables in the namelist:
- ?
- &mynml
- x
- x%y
- ch
- &end
- Entering '=?' outputs the namelist to stdout, as if 'WRITE(*,NML =
- mynml)' had been called:
- =?
- &MYNML
- X(1)%Y= 0.000000 , 1.000000 , 0.000000 ,
- X(2)%Y= 0.000000 , 2.000000 , 0.000000 ,
- X(3)%Y= 0.000000 , 3.000000 , 0.000000 ,
- CH=abcd, /
- To aid this dialog, when input is from stdin, errors send their
- messages to stderr and execution continues, even if 'IOSTAT' is set.
- 'PRINT' namelist is permitted. This causes an error if '-std=f95' is
- used.
- PROGRAM test_print
- REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
- NAMELIST /mynml/ x
- PRINT mynml
- END PROGRAM test_print
- Expanded namelist reads are permitted. This causes an error if
- '-std=f95' is used. In the following example, the first element of the
- array will be given the value 0.00 and the two succeeding elements will
- be given the values 1.00 and 2.00.
- &MYNML
- X(1,1) = 0.00 , 1.00 , 2.00
- /
- When writing a namelist, if no 'DELIM=' is specified, by default a
- double quote is used to delimit character strings. If -std=F95, F2003,
- or F2008, etc, the delim status is set to 'none'. Defaulting to quotes
- ensures that namelists with character strings can be subsequently read
- back in accurately.
- File: gfortran.info, Node: X format descriptor without count field, Next: Commas in FORMAT specifications, Prev: Extensions to namelist, Up: Extensions implemented in GNU Fortran
- 6.1.4 'X' format descriptor without count field
- -----------------------------------------------
- To support legacy codes, GNU Fortran permits the count field of the 'X'
- edit descriptor in 'FORMAT' statements to be omitted. When omitted, the
- count is implicitly assumed to be one.
- PRINT 10, 2, 3
- 10 FORMAT (I1, X, I1)
- File: gfortran.info, Node: Commas in FORMAT specifications, Next: Missing period in FORMAT specifications, Prev: X format descriptor without count field, Up: Extensions implemented in GNU Fortran
- 6.1.5 Commas in 'FORMAT' specifications
- ---------------------------------------
- To support legacy codes, GNU Fortran allows the comma separator to be
- omitted immediately before and after character string edit descriptors
- in 'FORMAT' statements. A comma with no following format decriptor is
- permited if the '-fdec-blank-format-item' is given on the command line.
- This is considered non-conforming code and is discouraged.
- PRINT 10, 2, 3
- 10 FORMAT ('FOO='I1' BAR='I2)
- print 20, 5, 6
- 20 FORMAT (I3, I3,)
- File: gfortran.info, Node: Missing period in FORMAT specifications, Next: Default widths for F, G and I format descriptors, Prev: Commas in FORMAT specifications, Up: Extensions implemented in GNU Fortran
- 6.1.6 Missing period in 'FORMAT' specifications
- -----------------------------------------------
- To support legacy codes, GNU Fortran allows missing periods in format
- specifications if and only if '-std=legacy' is given on the command
- line. This is considered non-conforming code and is discouraged.
- REAL :: value
- READ(*,10) value
- 10 FORMAT ('F4')
- File: gfortran.info, Node: Default widths for F, G and I format descriptors, Next: I/O item lists, Prev: Missing period in FORMAT specifications, Up: Extensions implemented in GNU Fortran
- 6.1.7 Default widths for 'F', 'G' and 'I' format descriptors
- ------------------------------------------------------------
- To support legacy codes, GNU Fortran allows width to be omitted from
- format specifications if and only if '-fdec-format-defaults' is given on
- the command line. Default widths will be used. This is considered
- non-conforming code and is discouraged.
- REAL :: value1
- INTEGER :: value2
- WRITE(*,10) value1, value1, value2
- 10 FORMAT ('F, G, I')
- File: gfortran.info, Node: I/O item lists, Next: 'Q' exponent-letter, Prev: Default widths for F, G and I format descriptors, Up: Extensions implemented in GNU Fortran
- 6.1.8 I/O item lists
- --------------------
- To support legacy codes, GNU Fortran allows the input item list of the
- 'READ' statement, and the output item lists of the 'WRITE' and 'PRINT'
- statements, to start with a comma.
- File: gfortran.info, Node: 'Q' exponent-letter, Next: BOZ literal constants, Prev: I/O item lists, Up: Extensions implemented in GNU Fortran
- 6.1.9 'Q' exponent-letter
- -------------------------
- GNU Fortran accepts real literal constants with an exponent-letter of
- 'Q', for example, '1.23Q45'. The constant is interpreted as a
- 'REAL(16)' entity on targets that support this type. If the target does
- not support 'REAL(16)' but has a 'REAL(10)' type, then the
- real-literal-constant will be interpreted as a 'REAL(10)' entity. In
- the absence of 'REAL(16)' and 'REAL(10)', an error will occur.
- File: gfortran.info, Node: BOZ literal constants, Next: Real array indices, Prev: 'Q' exponent-letter, Up: Extensions implemented in GNU Fortran
- 6.1.10 BOZ literal constants
- ----------------------------
- Besides decimal constants, Fortran also supports binary ('b'), octal
- ('o') and hexadecimal ('z') integer constants. The syntax is: 'prefix
- quote digits quote', were the prefix is either 'b', 'o' or 'z', quote is
- either ''' or '"' and the digits are '0' or '1' for binary, between '0'
- and '7' for octal, and between '0' and 'F' for hexadecimal. (Example:
- 'b'01011101''.)
- Up to Fortran 95, BOZ literal constants were only allowed to
- initialize integer variables in DATA statements. Since Fortran 2003 BOZ
- literal constants are also allowed as actual arguments to the 'REAL',
- 'DBLE', 'INT' and 'CMPLX' intrinsic functions. The BOZ literal constant
- is simply a string of bits, which is padded or truncated as needed,
- during conversion to a numeric type. The Fortran standard states that
- the treatment of the sign bit is processor dependent. Gfortran
- interprets the sign bit as a user would expect.
- As a deprecated extension, GNU Fortran allows hexadecimal BOZ literal
- constants to be specified using the 'X' prefix. That the BOZ literal
- constant can also be specified by adding a suffix to the string, for
- example, 'Z'ABC'' and ''ABC'X' are equivalent. Additionally, as
- extension, BOZ literals are permitted in some contexts outside of 'DATA'
- and the intrinsic functions listed in the Fortran standard. Use
- '-fallow-invalid-boz' to enable the extension.
- File: gfortran.info, Node: Real array indices, Next: Unary operators, Prev: BOZ literal constants, Up: Extensions implemented in GNU Fortran
- 6.1.11 Real array indices
- -------------------------
- As an extension, GNU Fortran allows the use of 'REAL' expressions or
- variables as array indices.
- File: gfortran.info, Node: Unary operators, Next: Implicitly convert LOGICAL and INTEGER values, Prev: Real array indices, Up: Extensions implemented in GNU Fortran
- 6.1.12 Unary operators
- ----------------------
- As an extension, GNU Fortran allows unary plus and unary minus operators
- to appear as the second operand of binary arithmetic operators without
- the need for parenthesis.
- X = Y * -Z
- File: gfortran.info, Node: Implicitly convert LOGICAL and INTEGER values, Next: Hollerith constants support, Prev: Unary operators, Up: Extensions implemented in GNU Fortran
- 6.1.13 Implicitly convert 'LOGICAL' and 'INTEGER' values
- --------------------------------------------------------
- As an extension for backwards compatibility with other compilers, GNU
- Fortran allows the implicit conversion of 'LOGICAL' values to 'INTEGER'
- values and vice versa. When converting from a 'LOGICAL' to an
- 'INTEGER', '.FALSE.' is interpreted as zero, and '.TRUE.' is interpreted
- as one. When converting from 'INTEGER' to 'LOGICAL', the value zero is
- interpreted as '.FALSE.' and any nonzero value is interpreted as
- '.TRUE.'.
- LOGICAL :: l
- l = 1
- INTEGER :: i
- i = .TRUE.
- However, there is no implicit conversion of 'INTEGER' values in
- 'if'-statements, nor of 'LOGICAL' or 'INTEGER' values in I/O operations.
- File: gfortran.info, Node: Hollerith constants support, Next: Character conversion, Prev: Implicitly convert LOGICAL and INTEGER values, Up: Extensions implemented in GNU Fortran
- 6.1.14 Hollerith constants support
- ----------------------------------
- GNU Fortran supports Hollerith constants in assignments, 'DATA'
- statements, function and subroutine arguments. A Hollerith constant is
- written as a string of characters preceded by an integer constant
- indicating the character count, and the letter 'H' or 'h', and stored in
- bytewise fashion in a numeric ('INTEGER', 'REAL', or 'COMPLEX'),
- 'LOGICAL' or 'CHARACTER' variable. The constant will be padded with
- spaces or truncated to fit the size of the variable in which it is
- stored.
- Examples of valid uses of Hollerith constants:
- complex*16 x(2)
- data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
- x(1) = 16HABCDEFGHIJKLMNOP
- call foo (4h abc)
- Examples of Hollerith constants:
- integer*4 a
- a = 0H ! Invalid, at least one character is needed.
- a = 4HAB12 ! Valid
- a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
- a = 3Hxyz ! Valid, but the Hollerith constant will be padded.
- In general, Hollerith constants were used to provide a rudimentary
- facility for handling character strings in early Fortran compilers,
- prior to the introduction of 'CHARACTER' variables in Fortran 77; in
- those cases, the standard-compliant equivalent is to convert the program
- to use proper character strings. On occasion, there may be a case where
- the intent is specifically to initialize a numeric variable with a given
- byte sequence. In these cases, the same result can be obtained by using
- the 'TRANSFER' statement, as in this example.
- integer(kind=4) :: a
- a = transfer ("abcd", a) ! equivalent to: a = 4Habcd
- The use of the '-fdec' option extends support of Hollerith constants
- to comparisons:
- integer*4 a
- a = 4hABCD
- if (a .ne. 4habcd) then
- write(*,*) "no match"
- end if
- Supported types are numeric ('INTEGER', 'REAL', or 'COMPLEX'), and
- 'CHARACTER'.
- File: gfortran.info, Node: Character conversion, Next: Cray pointers, Prev: Hollerith constants support, Up: Extensions implemented in GNU Fortran
- 6.1.15 Character conversion
- ---------------------------
- Allowing character literals to be used in a similar way to Hollerith
- constants is a non-standard extension. This feature is enabled using
- -fdec-char-conversions and only applies to character literals of
- 'kind=1'.
- Character literals can be used in 'DATA' statements and assignments
- with numeric ('INTEGER', 'REAL', or 'COMPLEX') or 'LOGICAL' variables.
- Like Hollerith constants they are copied byte-wise fashion. The
- constant will be padded with spaces or truncated to fit the size of the
- variable in which it is stored.
- Examples:
- integer*4 x
- data x / 'abcd' /
- x = 'A' ! Will be padded.
- x = 'ab1234' ! Will be truncated.
- File: gfortran.info, Node: Cray pointers, Next: CONVERT specifier, Prev: Character conversion, Up: Extensions implemented in GNU Fortran
- 6.1.16 Cray pointers
- --------------------
- Cray pointers are part of a non-standard extension that provides a
- C-like pointer in Fortran. This is accomplished through a pair of
- variables: an integer "pointer" that holds a memory address, and a
- "pointee" that is used to dereference the pointer.
- Pointer/pointee pairs are declared in statements of the form:
- pointer ( <pointer> , <pointee> )
- or,
- pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
- The pointer is an integer that is intended to hold a memory address.
- The pointee may be an array or scalar. If an assumed-size array is
- permitted within the scoping unit, a pointee can be an assumed-size
- array. That is, the last dimension may be left unspecified by using a
- '*' in place of a value. A pointee cannot be an assumed shape array.
- No space is allocated for the pointee.
- The pointee may have its type declared before or after the pointer
- statement, and its array specification (if any) may be declared before,
- during, or after the pointer statement. The pointer may be declared as
- an integer prior to the pointer statement. However, some machines have
- default integer sizes that are different than the size of a pointer, and
- so the following code is not portable:
- integer ipt
- pointer (ipt, iarr)
- If a pointer is declared with a kind that is too small, the compiler
- will issue a warning; the resulting binary will probably not work
- correctly, because the memory addresses stored in the pointers may be
- truncated. It is safer to omit the first line of the above example; if
- explicit declaration of ipt's type is omitted, then the compiler will
- ensure that ipt is an integer variable large enough to hold a pointer.
- Pointer arithmetic is valid with Cray pointers, but it is not the
- same as C pointer arithmetic. Cray pointers are just ordinary integers,
- so the user is responsible for determining how many bytes to add to a
- pointer in order to increment it. Consider the following example:
- real target(10)
- real pointee(10)
- pointer (ipt, pointee)
- ipt = loc (target)
- ipt = ipt + 1
- The last statement does not set 'ipt' to the address of 'target(1)',
- as it would in C pointer arithmetic. Adding '1' to 'ipt' just adds one
- byte to the address stored in 'ipt'.
- Any expression involving the pointee will be translated to use the
- value stored in the pointer as the base address.
- To get the address of elements, this extension provides an intrinsic
- function 'LOC()'. The 'LOC()' function is equivalent to the '&'
- operator in C, except the address is cast to an integer type:
- real ar(10)
- pointer(ipt, arpte(10))
- real arpte
- ipt = loc(ar) ! Makes arpte is an alias for ar
- arpte(1) = 1.0 ! Sets ar(1) to 1.0
- The pointer can also be set by a call to the 'MALLOC' intrinsic (see
- *note MALLOC::).
- Cray pointees often are used to alias an existing variable. For
- example:
- integer target(10)
- integer iarr(10)
- pointer (ipt, iarr)
- ipt = loc(target)
- As long as 'ipt' remains unchanged, 'iarr' is now an alias for
- 'target'. The optimizer, however, will not detect this aliasing, so it
- is unsafe to use 'iarr' and 'target' simultaneously. Using a pointee in
- any way that violates the Fortran aliasing rules or assumptions is
- illegal. It is the user's responsibility to avoid doing this; the
- compiler works under the assumption that no such aliasing occurs.
- Cray pointers will work correctly when there is no aliasing (i.e.,
- when they are used to access a dynamically allocated block of memory),
- and also in any routine where a pointee is used, but any variable with
- which it shares storage is not used. Code that violates these rules may
- not run as the user intends. This is not a bug in the optimizer; any
- code that violates the aliasing rules is illegal. (Note that this is
- not unique to GNU Fortran; any Fortran compiler that supports Cray
- pointers will "incorrectly" optimize code with illegal aliasing.)
- There are a number of restrictions on the attributes that can be
- applied to Cray pointers and pointees. Pointees may not have the
- 'ALLOCATABLE', 'INTENT', 'OPTIONAL', 'DUMMY', 'TARGET', 'INTRINSIC', or
- 'POINTER' attributes. Pointers may not have the 'DIMENSION', 'POINTER',
- 'TARGET', 'ALLOCATABLE', 'EXTERNAL', or 'INTRINSIC' attributes, nor may
- they be function results. Pointees may not occur in more than one
- pointer statement. A pointee cannot be a pointer. Pointees cannot
- occur in equivalence, common, or data statements.
- A Cray pointer may also point to a function or a subroutine. For
- example, the following excerpt is valid:
- implicit none
- external sub
- pointer (subptr,subpte)
- external subpte
- subptr = loc(sub)
- call subpte()
- [...]
- subroutine sub
- [...]
- end subroutine sub
- A pointer may be modified during the course of a program, and this
- will change the location to which the pointee refers. However, when
- pointees are passed as arguments, they are treated as ordinary variables
- in the invoked function. Subsequent changes to the pointer will not
- change the base address of the array that was passed.
- File: gfortran.info, Node: CONVERT specifier, Next: OpenMP, Prev: Cray pointers, Up: Extensions implemented in GNU Fortran
- 6.1.17 'CONVERT' specifier
- --------------------------
- GNU Fortran allows the conversion of unformatted data between little-
- and big-endian representation to facilitate moving of data between
- different systems. The conversion can be indicated with the 'CONVERT'
- specifier on the 'OPEN' statement. *Note GFORTRAN_CONVERT_UNIT::, for
- an alternative way of specifying the data format via an environment
- variable.
- Valid values for 'CONVERT' are:
- 'CONVERT='NATIVE'' Use the native format. This is the default.
- 'CONVERT='SWAP'' Swap between little- and big-endian.
- 'CONVERT='LITTLE_ENDIAN'' Use the little-endian representation for
- unformatted files.
- 'CONVERT='BIG_ENDIAN'' Use the big-endian representation for
- unformatted files.
- Using the option could look like this:
- open(file='big.dat',form='unformatted',access='sequential', &
- convert='big_endian')
- The value of the conversion can be queried by using
- 'INQUIRE(CONVERT=ch)'. The values returned are ''BIG_ENDIAN'' and
- ''LITTLE_ENDIAN''.
- 'CONVERT' works between big- and little-endian for 'INTEGER' values
- of all supported kinds and for 'REAL' on IEEE systems of kinds 4 and 8.
- Conversion between different "extended double" types on different
- architectures such as m68k and x86_64, which GNU Fortran supports as
- 'REAL(KIND=10)' and 'REAL(KIND=16)', will probably not work.
- _Note that the values specified via the GFORTRAN_CONVERT_UNIT
- environment variable will override the CONVERT specifier in the open
- statement_. This is to give control over data formats to users who do
- not have the source code of their program available.
- Using anything but the native representation for unformatted data
- carries a significant speed overhead. If speed in this area matters to
- you, it is best if you use this only for data that needs to be portable.
- File: gfortran.info, Node: OpenMP, Next: OpenACC, Prev: CONVERT specifier, Up: Extensions implemented in GNU Fortran
- 6.1.18 OpenMP
- -------------
- OpenMP (Open Multi-Processing) is an application programming interface
- (API) that supports multi-platform shared memory multiprocessing
- programming in C/C++ and Fortran on many architectures, including Unix
- and Microsoft Windows platforms. It consists of a set of compiler
- directives, library routines, and environment variables that influence
- run-time behavior.
- GNU Fortran strives to be compatible to the OpenMP Application
- Program Interface v4.5 (http://openmp.org/wp/openmp-specifications/).
- To enable the processing of the OpenMP directive '!$omp' in free-form
- source code; the 'c$omp', '*$omp' and '!$omp' directives in fixed form;
- the '!$' conditional compilation sentinels in free form; and the 'c$',
- '*$' and '!$' sentinels in fixed form, 'gfortran' needs to be invoked
- with the '-fopenmp'. This also arranges for automatic linking of the
- GNU Offloading and Multi Processing Runtime Library *note libgomp:
- (libgomp)Top.
- The OpenMP Fortran runtime library routines are provided both in a
- form of a Fortran 90 module named 'omp_lib' and in a form of a Fortran
- 'include' file named 'omp_lib.h'.
- An example of a parallelized loop taken from Appendix A.1 of the
- OpenMP Application Program Interface v2.5:
- SUBROUTINE A1(N, A, B)
- INTEGER I, N
- REAL B(N), A(N)
- !$OMP PARALLEL DO !I is private by default
- DO I=2,N
- B(I) = (A(I) + A(I-1)) / 2.0
- ENDDO
- !$OMP END PARALLEL DO
- END SUBROUTINE A1
- Please note:
- * '-fopenmp' implies '-frecursive', i.e., all local arrays will be
- allocated on the stack. When porting existing code to OpenMP, this
- may lead to surprising results, especially to segmentation faults
- if the stacksize is limited.
- * On glibc-based systems, OpenMP enabled applications cannot be
- statically linked due to limitations of the underlying
- pthreads-implementation. It might be possible to get a working
- solution if '-Wl,--whole-archive -lpthread -Wl,--no-whole-archive'
- is added to the command line. However, this is not supported by
- 'gcc' and thus not recommended.
- File: gfortran.info, Node: OpenACC, Next: Argument list functions, Prev: OpenMP, Up: Extensions implemented in GNU Fortran
- 6.1.19 OpenACC
- --------------
- OpenACC is an application programming interface (API) that supports
- offloading of code to accelerator devices. It consists of a set of
- compiler directives, library routines, and environment variables that
- influence run-time behavior.
- GNU Fortran strives to be compatible to the OpenACC Application
- Programming Interface v2.6 (http://www.openacc.org/).
- To enable the processing of the OpenACC directive '!$acc' in
- free-form source code; the 'c$acc', '*$acc' and '!$acc' directives in
- fixed form; the '!$' conditional compilation sentinels in free form; and
- the 'c$', '*$' and '!$' sentinels in fixed form, 'gfortran' needs to be
- invoked with the '-fopenacc'. This also arranges for automatic linking
- of the GNU Offloading and Multi Processing Runtime Library *note
- libgomp: (libgomp)Top.
- The OpenACC Fortran runtime library routines are provided both in a
- form of a Fortran 90 module named 'openacc' and in a form of a Fortran
- 'include' file named 'openacc_lib.h'.
- File: gfortran.info, Node: Argument list functions, Next: Read/Write after EOF marker, Prev: OpenACC, Up: Extensions implemented in GNU Fortran
- 6.1.20 Argument list functions '%VAL', '%REF' and '%LOC'
- --------------------------------------------------------
- GNU Fortran supports argument list functions '%VAL', '%REF' and '%LOC'
- statements, for backward compatibility with g77. It is recommended that
- these should be used only for code that is accessing facilities outside
- of GNU Fortran, such as operating system or windowing facilities. It is
- best to constrain such uses to isolated portions of a program-portions
- that deal specifically and exclusively with low-level, system-dependent
- facilities. Such portions might well provide a portable interface for
- use by the program as a whole, but are themselves not portable, and
- should be thoroughly tested each time they are rebuilt using a new
- compiler or version of a compiler.
- '%VAL' passes a scalar argument by value, '%REF' passes it by
- reference and '%LOC' passes its memory location. Since gfortran already
- passes scalar arguments by reference, '%REF' is in effect a do-nothing.
- '%LOC' has the same effect as a Fortran pointer.
- An example of passing an argument by value to a C subroutine foo.:
- C
- C prototype void foo_ (float x);
- C
- external foo
- real*4 x
- x = 3.14159
- call foo (%VAL (x))
- end
- For details refer to the g77 manual
- <https://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top>.
- Also, 'c_by_val.f' and its partner 'c_by_val.c' of the GNU Fortran
- testsuite are worth a look.
- File: gfortran.info, Node: Read/Write after EOF marker, Next: STRUCTURE and RECORD, Prev: Argument list functions, Up: Extensions implemented in GNU Fortran
- 6.1.21 Read/Write after EOF marker
- ----------------------------------
- Some legacy codes rely on allowing 'READ' or 'WRITE' after the EOF file
- marker in order to find the end of a file. GNU Fortran normally rejects
- these codes with a run-time error message and suggests the user consider
- 'BACKSPACE' or 'REWIND' to properly position the file before the EOF
- marker. As an extension, the run-time error may be disabled using
- -std=legacy.
- File: gfortran.info, Node: STRUCTURE and RECORD, Next: UNION and MAP, Prev: Read/Write after EOF marker, Up: Extensions implemented in GNU Fortran
- 6.1.22 'STRUCTURE' and 'RECORD'
- -------------------------------
- Record structures are a pre-Fortran-90 vendor extension to create
- user-defined aggregate data types. Support for record structures in GNU
- Fortran can be enabled with the '-fdec-structure' compile flag. If you
- have a choice, you should instead use Fortran 90's "derived types",
- which have a different syntax.
- In many cases, record structures can easily be converted to derived
- types. To convert, replace 'STRUCTURE /'STRUCTURE-NAME'/' by 'TYPE'
- TYPE-NAME. Additionally, replace 'RECORD /'STRUCTURE-NAME'/' by
- 'TYPE('TYPE-NAME')'. Finally, in the component access, replace the
- period ('.') by the percent sign ('%').
- Here is an example of code using the non portable record structure
- syntax:
- ! Declaring a structure named ``item'' and containing three fields:
- ! an integer ID, an description string and a floating-point price.
- STRUCTURE /item/
- INTEGER id
- CHARACTER(LEN=200) description
- REAL price
- END STRUCTURE
- ! Define two variables, an single record of type ``item''
- ! named ``pear'', and an array of items named ``store_catalog''
- RECORD /item/ pear, store_catalog(100)
- ! We can directly access the fields of both variables
- pear.id = 92316
- pear.description = "juicy D'Anjou pear"
- pear.price = 0.15
- store_catalog(7).id = 7831
- store_catalog(7).description = "milk bottle"
- store_catalog(7).price = 1.2
- ! We can also manipulate the whole structure
- store_catalog(12) = pear
- print *, store_catalog(12)
- This code can easily be rewritten in the Fortran 90 syntax as following:
- ! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
- ! ``TYPE name ... END TYPE''
- TYPE item
- INTEGER id
- CHARACTER(LEN=200) description
- REAL price
- END TYPE
- ! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
- TYPE(item) pear, store_catalog(100)
- ! Instead of using a dot (.) to access fields of a record, the
- ! standard syntax uses a percent sign (%)
- pear%id = 92316
- pear%description = "juicy D'Anjou pear"
- pear%price = 0.15
- store_catalog(7)%id = 7831
- store_catalog(7)%description = "milk bottle"
- store_catalog(7)%price = 1.2
- ! Assignments of a whole variable do not change
- store_catalog(12) = pear
- print *, store_catalog(12)
- GNU Fortran implements STRUCTURES like derived types with the following
- rules and exceptions:
- * Structures act like derived types with the 'SEQUENCE' attribute.
- Otherwise they may contain no specifiers.
- * Structures may contain a special field with the name '%FILL'. This
- will create an anonymous component which cannot be accessed but
- occupies space just as if a component of the same type was declared
- in its place, useful for alignment purposes. As an example, the
- following structure will consist of at least sixteen bytes:
- structure /padded/
- character(4) start
- character(8) %FILL
- character(4) end
- end structure
- * Structures may share names with other symbols. For example, the
- following is invalid for derived types, but valid for structures:
- structure /header/
- ! ...
- end structure
- record /header/ header
- * Structure types may be declared nested within another parent
- structure. The syntax is:
- structure /type-name/
- ...
- structure [/<type-name>/] <field-list>
- ...
- The type name may be ommitted, in which case the structure type
- itself is anonymous, and other structures of the same type cannot
- be instantiated. The following shows some examples:
- structure /appointment/
- ! nested structure definition: app_time is an array of two 'time'
- structure /time/ app_time (2)
- integer(1) hour, minute
- end structure
- character(10) memo
- end structure
- ! The 'time' structure is still usable
- record /time/ now
- now = time(5, 30)
- ...
- structure /appointment/
- ! anonymous nested structure definition
- structure start, end
- integer(1) hour, minute
- end structure
- character(10) memo
- end structure
- * Structures may contain 'UNION' blocks. For more detail see the
- section on *note UNION and MAP::.
- * Structures support old-style initialization of components, like
- those described in *note Old-style variable initialization::. For
- array initializers, an initializer may contain a repeat
- specification of the form '<literal-integer> *
- <constant-initializer>'. The value of the integer indicates the
- number of times to repeat the constant initializer when expanding
- the initializer list.
- File: gfortran.info, Node: UNION and MAP, Next: Type variants for integer intrinsics, Prev: STRUCTURE and RECORD, Up: Extensions implemented in GNU Fortran
- 6.1.23 'UNION' and 'MAP'
- ------------------------
- Unions are an old vendor extension which were commonly used with the
- non-standard *note STRUCTURE and RECORD:: extensions. Use of 'UNION'
- and 'MAP' is automatically enabled with '-fdec-structure'.
- A 'UNION' declaration occurs within a structure; within the
- definition of each union is a number of 'MAP' blocks. Each 'MAP' shares
- storage with its sibling maps (in the same union), and the size of the
- union is the size of the largest map within it, just as with unions in
- C. The major difference is that component references do not indicate
- which union or map the component is in (the compiler gets to figure that
- out).
- Here is a small example:
- structure /myunion/
- union
- map
- character(2) w0, w1, w2
- end map
- map
- character(6) long
- end map
- end union
- end structure
- record /myunion/ rec
- ! After this assignment...
- rec.long = 'hello!'
- ! The following is true:
- ! rec.w0 === 'he'
- ! rec.w1 === 'll'
- ! rec.w2 === 'o!'
- The two maps share memory, and the size of the union is ultimately
- six bytes:
- 0 1 2 3 4 5 6 Byte offset
- -------------------------------
- | | | | | | |
- -------------------------------
- ^ W0 ^ W1 ^ W2 ^
- \-------/ \-------/ \-------/
- ^ LONG ^
- \---------------------------/
- Following is an example mirroring the layout of an Intel x86_64
- register:
- structure /reg/
- union ! U0 ! rax
- map
- character(16) rx
- end map
- map
- character(8) rh ! rah
- union ! U1
- map
- character(8) rl ! ral
- end map
- map
- character(8) ex ! eax
- end map
- map
- character(4) eh ! eah
- union ! U2
- map
- character(4) el ! eal
- end map
- map
- character(4) x ! ax
- end map
- map
- character(2) h ! ah
- character(2) l ! al
- end map
- end union
- end map
- end union
- end map
- end union
- end structure
- record /reg/ a
- ! After this assignment...
- a.rx = 'AAAAAAAA.BBB.C.D'
- ! The following is true:
- a.rx === 'AAAAAAAA.BBB.C.D'
- a.rh === 'AAAAAAAA'
- a.rl === '.BBB.C.D'
- a.ex === '.BBB.C.D'
- a.eh === '.BBB'
- a.el === '.C.D'
- a.x === '.C.D'
- a.h === '.C'
- a.l === '.D'
- File: gfortran.info, Node: Type variants for integer intrinsics, Next: AUTOMATIC and STATIC attributes, Prev: UNION and MAP, Up: Extensions implemented in GNU Fortran
- 6.1.24 Type variants for integer intrinsics
- -------------------------------------------
- Similar to the D/C prefixes to real functions to specify the
- input/output types, GNU Fortran offers B/I/J/K prefixes to integer
- functions for compatibility with DEC programs. The types implied by
- each are:
- B - INTEGER(kind=1)
- I - INTEGER(kind=2)
- J - INTEGER(kind=4)
- K - INTEGER(kind=8)
- GNU Fortran supports these with the flag '-fdec-intrinsic-ints'.
- Intrinsics for which prefixed versions are available and in what form
- are noted in *note Intrinsic Procedures::. The complete list of
- supported intrinsics is here:
- Intrinsic B I J K
-
- ---------------------------------------------------------------------------
- '*note 'BABS' 'IIABS' 'JIABS' 'KIABS'
- ABS::'
- '*note 'BBTEST' 'BITEST' 'BJTEST' 'BKTEST'
- BTEST::'
- '*note 'BIAND' 'IIAND' 'JIAND' 'KIAND'
- IAND::'
- '*note 'BBCLR' 'IIBCLR' 'JIBCLR' 'KIBCLR'
- IBCLR::'
- '*note 'BBITS' 'IIBITS' 'JIBITS' 'KIBITS'
- IBITS::'
- '*note 'BBSET' 'IIBSET' 'JIBSET' 'KIBSET'
- IBSET::'
- '*note 'BIEOR' 'IIEOR' 'JIEOR' 'KIEOR'
- IEOR::'
- '*note 'BIOR' 'IIOR' 'JIOR' 'KIOR'
- IOR::'
- '*note 'BSHFT' 'IISHFT' 'JISHFT' 'KISHFT'
- ISHFT::'
- '*note 'BSHFTC' 'IISHFTC' 'JISHFTC' 'KISHFTC'
- ISHFTC::'
- '*note 'BMOD' 'IMOD' 'JMOD' 'KMOD'
- MOD::'
- '*note 'BNOT' 'INOT' 'JNOT' 'KNOT'
- NOT::'
- '*note '--' 'FLOATI' 'FLOATJ' 'FLOATK'
- REAL::'
- File: gfortran.info, Node: AUTOMATIC and STATIC attributes, Next: Extended math intrinsics, Prev: Type variants for integer intrinsics, Up: Extensions implemented in GNU Fortran
- 6.1.25 'AUTOMATIC' and 'STATIC' attributes
- ------------------------------------------
- With '-fdec-static' GNU Fortran supports the DEC extended attributes
- 'STATIC' and 'AUTOMATIC' to provide explicit specification of entity
- storage. These follow the syntax of the Fortran standard 'SAVE'
- attribute.
- 'STATIC' is exactly equivalent to 'SAVE', and specifies that an
- entity should be allocated in static memory. As an example, 'STATIC'
- local variables will retain their values across multiple calls to a
- function.
- Entities marked 'AUTOMATIC' will be stack automatic whenever
- possible. 'AUTOMATIC' is the default for local variables smaller than
- '-fmax-stack-var-size', unless '-fno-automatic' is given. This
- attribute overrides '-fno-automatic', '-fmax-stack-var-size', and
- blanket 'SAVE' statements.
- Examples:
- subroutine f
- integer, automatic :: i ! automatic variable
- integer x, y ! static variables
- save
- ...
- endsubroutine
- subroutine f
- integer a, b, c, x, y, z
- static :: x
- save y
- automatic z, c
- ! a, b, c, and z are automatic
- ! x and y are static
- endsubroutine
- ! Compiled with -fno-automatic
- subroutine f
- integer a, b, c, d
- automatic :: a
- ! a is automatic; b, c, and d are static
- endsubroutine
- File: gfortran.info, Node: Extended math intrinsics, Next: Form feed as whitespace, Prev: AUTOMATIC and STATIC attributes, Up: Extensions implemented in GNU Fortran
- 6.1.26 Extended math intrinsics
- -------------------------------
- GNU Fortran supports an extended list of mathematical intrinsics with
- the compile flag '-fdec-math' for compatability with legacy code. These
- intrinsics are described fully in *note Intrinsic Procedures:: where it
- is noted that they are extensions and should be avoided whenever
- possible.
- Specifically, '-fdec-math' enables the *note COTAN:: intrinsic, and
- trigonometric intrinsics which accept or produce values in degrees
- instead of radians. Here is a summary of the new intrinsics:
- Radians Degrees
- --------------------------------------------------------------------------
- '*note ACOS::' '*note ACOSD::'*
- '*note ASIN::' '*note ASIND::'*
- '*note ATAN::' '*note ATAND::'*
- '*note ATAN2::' '*note ATAN2D::'*
- '*note COS::' '*note COSD::'*
- '*note COTAN::'* '*note COTAND::'*
- '*note SIN::' '*note SIND::'*
- '*note TAN::' '*note TAND::'*
- * Enabled with '-fdec-math'.
- For advanced users, it may be important to know the implementation of
- these functions. They are simply wrappers around the standard radian
- functions, which have more accurate builtin versions. These functions
- convert their arguments (or results) to degrees (or radians) by taking
- the value modulus 360 (or 2*pi) and then multiplying it by a constant
- radian-to-degree (or degree-to-radian) factor, as appropriate. The
- factor is computed at compile-time as 180/pi (or pi/180).
- File: gfortran.info, Node: Form feed as whitespace, Next: TYPE as an alias for PRINT, Prev: Extended math intrinsics, Up: Extensions implemented in GNU Fortran
- 6.1.27 Form feed as whitespace
- ------------------------------
- Historically, legacy compilers allowed insertion of form feed characters
- ('\f', ASCII 0xC) at the beginning of lines for formatted output to line
- printers, though the Fortran standard does not mention this. GNU
- Fortran supports the interpretation of form feed characters in source as
- whitespace for compatibility.
- File: gfortran.info, Node: TYPE as an alias for PRINT, Next: %LOC as an rvalue, Prev: Form feed as whitespace, Up: Extensions implemented in GNU Fortran
- 6.1.28 TYPE as an alias for PRINT
- ---------------------------------
- For compatibility, GNU Fortran will interpret 'TYPE' statements as
- 'PRINT' statements with the flag '-fdec'. With this flag asserted, the
- following two examples are equivalent:
- TYPE *, 'hello world'
- PRINT *, 'hello world'
- File: gfortran.info, Node: %LOC as an rvalue, Next: .XOR. operator, Prev: TYPE as an alias for PRINT, Up: Extensions implemented in GNU Fortran
- 6.1.29 %LOC as an rvalue
- ------------------------
- Normally '%LOC' is allowed only in parameter lists. However the
- intrinsic function 'LOC' does the same thing, and is usable as the
- right-hand-side of assignments. For compatibility, GNU Fortran supports
- the use of '%LOC' as an alias for the builtin 'LOC' with '-std=legacy'.
- With this feature enabled the following two examples are equivalent:
- integer :: i, l
- l = %loc(i)
- call sub(l)
- integer :: i
- call sub(%loc(i))
- File: gfortran.info, Node: .XOR. operator, Next: Bitwise logical operators, Prev: %LOC as an rvalue, Up: Extensions implemented in GNU Fortran
- 6.1.30 .XOR. operator
- ---------------------
- GNU Fortran supports '.XOR.' as a logical operator with '-std=legacy'
- for compatibility with legacy code. '.XOR.' is equivalent to '.NEQV.'.
- That is, the output is true if and only if the inputs differ.
- File: gfortran.info, Node: Bitwise logical operators, Next: Extended I/O specifiers, Prev: .XOR. operator, Up: Extensions implemented in GNU Fortran
- 6.1.31 Bitwise logical operators
- --------------------------------
- With '-fdec', GNU Fortran relaxes the type constraints on logical
- operators to allow integer operands, and performs the corresponding
- bitwise operation instead. This flag is for compatibility only, and
- should be avoided in new code. Consider:
- INTEGER :: i, j
- i = z'33'
- j = z'cc'
- print *, i .AND. j
- In this example, compiled with '-fdec', GNU Fortran will replace the
- '.AND.' operation with a call to the intrinsic '*note IAND::' function,
- yielding the bitwise-and of 'i' and 'j'.
- Note that this conversion will occur if at least one operand is of
- integral type. As a result, a logical operand will be converted to an
- integer when the other operand is an integer in a logical operation. In
- this case, '.TRUE.' is converted to '1' and '.FALSE.' to '0'.
- Here is the mapping of logical operator to bitwise intrinsic used
- with '-fdec':
- Operator Intrinsic Bitwise operation
- ---------------------------------------------------------------------------
- '.NOT.' '*note NOT::' complement
- '.AND.' '*note IAND::' intersection
- '.OR.' '*note IOR::' union
- '.NEQV.' '*note IEOR::' exclusive or
- '.EQV.' '*note complement of exclusive or
- NOT::(*note
- IEOR::)'
- File: gfortran.info, Node: Extended I/O specifiers, Next: Legacy PARAMETER statements, Prev: Bitwise logical operators, Up: Extensions implemented in GNU Fortran
- 6.1.32 Extended I/O specifiers
- ------------------------------
- GNU Fortran supports the additional legacy I/O specifiers
- 'CARRIAGECONTROL', 'READONLY', and 'SHARE' with the compile flag
- '-fdec', for compatibility.
- 'CARRIAGECONTROL'
- The 'CARRIAGECONTROL' specifier allows a user to control line
- termination settings between output records for an I/O unit. The
- specifier has no meaning for readonly files. When
- 'CARRAIGECONTROL' is specified upon opening a unit for formatted
- writing, the exact 'CARRIAGECONTROL' setting determines what
- characters to write between output records. The syntax is:
- OPEN(..., CARRIAGECONTROL=cc)
- Where _cc_ is a character expression that evaluates to one of the
- following values:
- ''LIST'' One line feed between records (default)
- ''FORTRAN'' Legacy interpretation of the first character (see below)
- ''NONE'' No separator between records
- With 'CARRIAGECONTROL='FORTRAN'', when a record is written, the
- first character of the input record is not written, and instead
- determines the output record separator as follows:
- Leading character Meaning Output separating
- character(s)
- ----------------------------------------------------------------------------
- ''+'' Overprinting Carriage return only
- ''-'' New line Line feed and carriage
- return
- ''0'' Skip line Two line feeds and carriage
- return
- ''1'' New page Form feed and carriage
- return
- ''$'' Prompting Line feed (no carriage
- return)
- 'CHAR(0)' Overprinting (no None
- advance)
- 'READONLY'
- The 'READONLY' specifier may be given upon opening a unit, and is
- equivalent to specifying 'ACTION='READ'', except that the file may
- not be deleted on close (i.e. 'CLOSE' with 'STATUS="DELETE"').
- The syntax is:
- OPEN(..., READONLY)
- 'SHARE'
- The 'SHARE' specifier allows system-level locking on a unit upon
- opening it for controlled access from multiple processes/threads.
- The 'SHARE' specifier has several forms:
- OPEN(..., SHARE=sh)
- OPEN(..., SHARED)
- OPEN(..., NOSHARED)
- Where _sh_ in the first form is a character expression that
- evaluates to a value as seen in the table below. The latter two
- forms are aliases for particular values of _sh_:
- Explicit form Short form Meaning
- ----------------------------------------------------------------------------
- 'SHARE='DENYRW'' 'NOSHARED' Exclusive (write) lock
- 'SHARE='DENYNONE'' 'SHARED' Shared (read) lock
- In general only one process may hold an exclusive (write) lock for
- a given file at a time, whereas many processes may hold shared
- (read) locks for the same file.
- The behavior of locking may vary with your operating system. On
- POSIX systems, locking is implemented with 'fcntl'. Consult your
- corresponding operating system's manual pages for further details.
- Locking via 'SHARE=' is not supported on other systems.
- File: gfortran.info, Node: Legacy PARAMETER statements, Next: Default exponents, Prev: Extended I/O specifiers, Up: Extensions implemented in GNU Fortran
- 6.1.33 Legacy PARAMETER statements
- ----------------------------------
- For compatibility, GNU Fortran supports legacy PARAMETER statements
- without parentheses with '-std=legacy'. A warning is emitted if used
- with '-std=gnu', and an error is acknowledged with a real Fortran
- standard flag ('-std=f95', etc...). These statements take the following
- form:
- implicit real (E)
- parameter e = 2.718282
- real c
- parameter c = 3.0e8
- File: gfortran.info, Node: Default exponents, Prev: Legacy PARAMETER statements, Up: Extensions implemented in GNU Fortran
- 6.1.34 Default exponents
- ------------------------
- For compatibility, GNU Fortran supports a default exponent of zero in
- real constants with '-fdec'. For example, '9e' would be interpreted as
- '9e0', rather than an error.
- File: gfortran.info, Node: Extensions not implemented in GNU Fortran, Prev: Extensions implemented in GNU Fortran, Up: Extensions
- 6.2 Extensions not implemented in GNU Fortran
- =============================================
- The long history of the Fortran language, its wide use and broad
- userbase, the large number of different compiler vendors and the lack of
- some features crucial to users in the first standards have lead to the
- existence of a number of important extensions to the language. While
- some of the most useful or popular extensions are supported by the GNU
- Fortran compiler, not all existing extensions are supported. This
- section aims at listing these extensions and offering advice on how best
- make code that uses them running with the GNU Fortran compiler.
- * Menu:
- * ENCODE and DECODE statements::
- * Variable FORMAT expressions::
- * Alternate complex function syntax::
- * Volatile COMMON blocks::
- * OPEN( ... NAME=)::
- * Q edit descriptor::
- File: gfortran.info, Node: ENCODE and DECODE statements, Next: Variable FORMAT expressions, Up: Extensions not implemented in GNU Fortran
- 6.2.1 'ENCODE' and 'DECODE' statements
- --------------------------------------
- GNU Fortran does not support the 'ENCODE' and 'DECODE' statements.
- These statements are best replaced by 'READ' and 'WRITE' statements
- involving internal files ('CHARACTER' variables and arrays), which have
- been part of the Fortran standard since Fortran 77. For example,
- replace a code fragment like
- INTEGER*1 LINE(80)
- REAL A, B, C
- c ... Code that sets LINE
- DECODE (80, 9000, LINE) A, B, C
- 9000 FORMAT (1X, 3(F10.5))
- with the following:
- CHARACTER(LEN=80) LINE
- REAL A, B, C
- c ... Code that sets LINE
- READ (UNIT=LINE, FMT=9000) A, B, C
- 9000 FORMAT (1X, 3(F10.5))
- Similarly, replace a code fragment like
- INTEGER*1 LINE(80)
- REAL A, B, C
- c ... Code that sets A, B and C
- ENCODE (80, 9000, LINE) A, B, C
- 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
- with the following:
- CHARACTER(LEN=80) LINE
- REAL A, B, C
- c ... Code that sets A, B and C
- WRITE (UNIT=LINE, FMT=9000) A, B, C
- 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
- File: gfortran.info, Node: Variable FORMAT expressions, Next: Alternate complex function syntax, Prev: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran
- 6.2.2 Variable 'FORMAT' expressions
- -----------------------------------
- A variable 'FORMAT' expression is format statement which includes angle
- brackets enclosing a Fortran expression: 'FORMAT(I<N>)'. GNU Fortran
- does not support this legacy extension. The effect of variable format
- expressions can be reproduced by using the more powerful (and standard)
- combination of internal output and string formats. For example, replace
- a code fragment like this:
- WRITE(6,20) INT1
- 20 FORMAT(I<N+1>)
- with the following:
- c Variable declaration
- CHARACTER(LEN=20) FMT
- c
- c Other code here...
- c
- WRITE(FMT,'("(I", I0, ")")') N+1
- WRITE(6,FMT) INT1
- or with:
- c Variable declaration
- CHARACTER(LEN=20) FMT
- c
- c Other code here...
- c
- WRITE(FMT,*) N+1
- WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1
- File: gfortran.info, Node: Alternate complex function syntax, Next: Volatile COMMON blocks, Prev: Variable FORMAT expressions, Up: Extensions not implemented in GNU Fortran
- 6.2.3 Alternate complex function syntax
- ---------------------------------------
- Some Fortran compilers, including 'g77', let the user declare complex
- functions with the syntax 'COMPLEX FUNCTION name*16()', as well as
- 'COMPLEX*16 FUNCTION name()'. Both are non-standard, legacy extensions.
- 'gfortran' accepts the latter form, which is more common, but not the
- former.
- File: gfortran.info, Node: Volatile COMMON blocks, Next: OPEN( ... NAME=), Prev: Alternate complex function syntax, Up: Extensions not implemented in GNU Fortran
- 6.2.4 Volatile 'COMMON' blocks
- ------------------------------
- Some Fortran compilers, including 'g77', let the user declare 'COMMON'
- with the 'VOLATILE' attribute. This is invalid standard Fortran syntax
- and is not supported by 'gfortran'. Note that 'gfortran' accepts
- 'VOLATILE' variables in 'COMMON' blocks since revision 4.3.
- File: gfortran.info, Node: OPEN( ... NAME=), Next: Q edit descriptor, Prev: Volatile COMMON blocks, Up: Extensions not implemented in GNU Fortran
- 6.2.5 'OPEN( ... NAME=)'
- ------------------------
- Some Fortran compilers, including 'g77', let the user declare 'OPEN( ...
- NAME=)'. This is invalid standard Fortran syntax and is not supported
- by 'gfortran'. 'OPEN( ... NAME=)' should be replaced with 'OPEN( ...
- FILE=)'.
- File: gfortran.info, Node: Q edit descriptor, Prev: OPEN( ... NAME=), Up: Extensions not implemented in GNU Fortran
- 6.2.6 'Q' edit descriptor
- -------------------------
- Some Fortran compilers provide the 'Q' edit descriptor, which transfers
- the number of characters left within an input record into an integer
- variable.
- A direct replacement of the 'Q' edit descriptor is not available in
- 'gfortran'. How to replicate its functionality using
- standard-conforming code depends on what the intent of the original code
- is.
- Options to replace 'Q' may be to read the whole line into a character
- variable and then counting the number of non-blank characters left using
- 'LEN_TRIM'. Another method may be to use formatted stream, read the
- data up to the position where the 'Q' descriptor occurred, use 'INQUIRE'
- to get the file position, count the characters up to the next 'NEW_LINE'
- and then start reading from the position marked previously.
- File: gfortran.info, Node: Mixed-Language Programming, Next: Coarray Programming, Prev: Extensions, Up: Top
- 7 Mixed-Language Programming
- ****************************
- * Menu:
- * Interoperability with C::
- * GNU Fortran Compiler Directives::
- * Non-Fortran Main Program::
- * Naming and argument-passing conventions::
- This chapter is about mixed-language interoperability, but also applies
- if one links Fortran code compiled by different compilers. In most
- cases, use of the C Binding features of the Fortran 2003 standard is
- sufficient, and their use is highly recommended.
- File: gfortran.info, Node: Interoperability with C, Next: GNU Fortran Compiler Directives, Up: Mixed-Language Programming
- 7.1 Interoperability with C
- ===========================
- * Menu:
- * Intrinsic Types::
- * Derived Types and struct::
- * Interoperable Global Variables::
- * Interoperable Subroutines and Functions::
- * Working with Pointers::
- * Further Interoperability of Fortran with C::
- Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way
- to generate procedure and derived-type declarations and global variables
- which are interoperable with C (ISO/IEC 9899:1999). The 'bind(C)'
- attribute has been added to inform the compiler that a symbol shall be
- interoperable with C; also, some constraints are added. Note, however,
- that not all C features have a Fortran equivalent or vice versa. For
- instance, neither C's unsigned integers nor C's functions with variable
- number of arguments have an equivalent in Fortran.
- Note that array dimensions are reversely ordered in C and that arrays
- in C always start with index 0 while in Fortran they start by default
- with 1. Thus, an array declaration 'A(n,m)' in Fortran matches
- 'A[m][n]' in C and accessing the element 'A(i,j)' matches 'A[j-1][i-1]'.
- The element following 'A(i,j)' (C: 'A[j-1][i-1]'; assuming i < n) in
- memory is 'A(i+1,j)' (C: 'A[j-1][i]').
- File: gfortran.info, Node: Intrinsic Types, Next: Derived Types and struct, Up: Interoperability with C
- 7.1.1 Intrinsic Types
- ---------------------
- In order to ensure that exactly the same variable type and kind is used
- in C and Fortran, the named constants shall be used which are defined in
- the 'ISO_C_BINDING' intrinsic module. That module contains named
- constants for kind parameters and character named constants for the
- escape sequences in C. For a list of the constants, see *note
- ISO_C_BINDING::.
- For logical types, please note that the Fortran standard only
- guarantees interoperability between C99's '_Bool' and Fortran's
- 'C_Bool'-kind logicals and C99 defines that 'true' has the value 1 and
- 'false' the value 0. Using any other integer value with GNU Fortran's
- 'LOGICAL' (with any kind parameter) gives an undefined result. (Passing
- other integer values than 0 and 1 to GCC's '_Bool' is also undefined,
- unless the integer is explicitly or implicitly casted to '_Bool'.)
- File: gfortran.info, Node: Derived Types and struct, Next: Interoperable Global Variables, Prev: Intrinsic Types, Up: Interoperability with C
- 7.1.2 Derived Types and struct
- ------------------------------
- For compatibility of derived types with 'struct', one needs to use the
- 'BIND(C)' attribute in the type declaration. For instance, the
- following type declaration
- USE ISO_C_BINDING
- TYPE, BIND(C) :: myType
- INTEGER(C_INT) :: i1, i2
- INTEGER(C_SIGNED_CHAR) :: i3
- REAL(C_DOUBLE) :: d1
- COMPLEX(C_FLOAT_COMPLEX) :: c1
- CHARACTER(KIND=C_CHAR) :: str(5)
- END TYPE
- matches the following 'struct' declaration in C
- struct {
- int i1, i2;
- /* Note: "char" might be signed or unsigned. */
- signed char i3;
- double d1;
- float _Complex c1;
- char str[5];
- } myType;
- Derived types with the C binding attribute shall not have the
- 'sequence' attribute, type parameters, the 'extends' attribute, nor
- type-bound procedures. Every component must be of interoperable type
- and kind and may not have the 'pointer' or 'allocatable' attribute. The
- names of the components are irrelevant for interoperability.
- As there exist no direct Fortran equivalents, neither unions nor
- structs with bit field or variable-length array members are
- interoperable.
- File: gfortran.info, Node: Interoperable Global Variables, Next: Interoperable Subroutines and Functions, Prev: Derived Types and struct, Up: Interoperability with C
- 7.1.3 Interoperable Global Variables
- ------------------------------------
- Variables can be made accessible from C using the C binding attribute,
- optionally together with specifying a binding name. Those variables
- have to be declared in the declaration part of a 'MODULE', be of
- interoperable type, and have neither the 'pointer' nor the 'allocatable'
- attribute.
- MODULE m
- USE myType_module
- USE ISO_C_BINDING
- integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
- type(myType), bind(C) :: tp
- END MODULE
- Here, '_MyProject_flags' is the case-sensitive name of the variable
- as seen from C programs while 'global_flag' is the case-insensitive name
- as seen from Fortran. If no binding name is specified, as for TP, the C
- binding name is the (lowercase) Fortran binding name. If a binding name
- is specified, only a single variable may be after the double colon.
- Note of warning: You cannot use a global variable to access ERRNO of the
- C library as the C standard allows it to be a macro. Use the 'IERRNO'
- intrinsic (GNU extension) instead.
- File: gfortran.info, Node: Interoperable Subroutines and Functions, Next: Working with Pointers, Prev: Interoperable Global Variables, Up: Interoperability with C
- 7.1.4 Interoperable Subroutines and Functions
- ---------------------------------------------
- Subroutines and functions have to have the 'BIND(C)' attribute to be
- compatible with C. The dummy argument declaration is relatively
- straightforward. However, one needs to be careful because C uses
- call-by-value by default while Fortran behaves usually similar to
- call-by-reference. Furthermore, strings and pointers are handled
- differently. Note that in Fortran 2003 and 2008 only explicit size and
- assumed-size arrays are supported but not assumed-shape or
- deferred-shape (i.e. allocatable or pointer) arrays. However, those
- are allowed since the Technical Specification 29113, see *note Further
- Interoperability of Fortran with C::
- To pass a variable by value, use the 'VALUE' attribute. Thus, the
- following C prototype
- int func(int i, int *j)
- matches the Fortran declaration
- integer(c_int) function func(i,j)
- use iso_c_binding, only: c_int
- integer(c_int), VALUE :: i
- integer(c_int) :: j
- Note that pointer arguments also frequently need the 'VALUE'
- attribute, see *note Working with Pointers::.
- Strings are handled quite differently in C and Fortran. In C a
- string is a 'NUL'-terminated array of characters while in Fortran each
- string has a length associated with it and is thus not terminated (by
- e.g. 'NUL'). For example, if one wants to use the following C
- function,
- #include <stdio.h>
- void print_C(char *string) /* equivalent: char string[] */
- {
- printf("%s\n", string);
- }
- to print "Hello World" from Fortran, one can call it using
- use iso_c_binding, only: C_CHAR, C_NULL_CHAR
- interface
- subroutine print_c(string) bind(C, name="print_C")
- use iso_c_binding, only: c_char
- character(kind=c_char) :: string(*)
- end subroutine print_c
- end interface
- call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)
- As the example shows, one needs to ensure that the string is 'NUL'
- terminated. Additionally, the dummy argument STRING of 'print_C' is a
- length-one assumed-size array; using 'character(len=*)' is not allowed.
- The example above uses 'c_char_"Hello World"' to ensure the string
- literal has the right type; typically the default character kind and
- 'c_char' are the same and thus '"Hello World"' is equivalent. However,
- the standard does not guarantee this.
- The use of strings is now further illustrated using the C library
- function 'strncpy', whose prototype is
- char *strncpy(char *restrict s1, const char *restrict s2, size_t n);
- The function 'strncpy' copies at most N characters from string S2 to
- S1 and returns S1. In the following example, we ignore the return
- value:
- use iso_c_binding
- implicit none
- character(len=30) :: str,str2
- interface
- ! Ignore the return value of strncpy -> subroutine
- ! "restrict" is always assumed if we do not pass a pointer
- subroutine strncpy(dest, src, n) bind(C)
- import
- character(kind=c_char), intent(out) :: dest(*)
- character(kind=c_char), intent(in) :: src(*)
- integer(c_size_t), value, intent(in) :: n
- end subroutine strncpy
- end interface
- str = repeat('X',30) ! Initialize whole string with 'X'
- call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
- len(c_char_"Hello World",kind=c_size_t))
- print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
- end
- The intrinsic procedures are described in *note Intrinsic
- Procedures::.
- File: gfortran.info, Node: Working with Pointers, Next: Further Interoperability of Fortran with C, Prev: Interoperable Subroutines and Functions, Up: Interoperability with C
- 7.1.5 Working with Pointers
- ---------------------------
- C pointers are represented in Fortran via the special opaque derived
- type 'type(c_ptr)' (with private components). Thus one needs to use
- intrinsic conversion procedures to convert from or to C pointers.
- For some applications, using an assumed type ('TYPE(*)') can be an
- alternative to a C pointer; see *note Further Interoperability of
- Fortran with C::.
- For example,
- use iso_c_binding
- type(c_ptr) :: cptr1, cptr2
- integer, target :: array(7), scalar
- integer, pointer :: pa(:), ps
- cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
- ! array is contiguous if required by the C
- ! procedure
- cptr2 = c_loc(scalar)
- call c_f_pointer(cptr2, ps)
- call c_f_pointer(cptr2, pa, shape=[7])
- When converting C to Fortran arrays, the one-dimensional 'SHAPE'
- argument has to be passed.
- If a pointer is a dummy-argument of an interoperable procedure, it
- usually has to be declared using the 'VALUE' attribute. 'void*' matches
- 'TYPE(C_PTR), VALUE', while 'TYPE(C_PTR)' alone matches 'void**'.
- Procedure pointers are handled analogously to pointers; the C type is
- 'TYPE(C_FUNPTR)' and the intrinsic conversion procedures are
- 'C_F_PROCPOINTER' and 'C_FUNLOC'.
- Let us consider two examples of actually passing a procedure pointer
- from C to Fortran and vice versa. Note that these examples are also
- very similar to passing ordinary pointers between both languages.
- First, consider this code in C:
- /* Procedure implemented in Fortran. */
- void get_values (void (*)(double));
- /* Call-back routine we want called from Fortran. */
- void
- print_it (double x)
- {
- printf ("Number is %f.\n", x);
- }
- /* Call Fortran routine and pass call-back to it. */
- void
- foobar ()
- {
- get_values (&print_it);
- }
- A matching implementation for 'get_values' in Fortran, that correctly
- receives the procedure pointer from C and is able to call it, is given
- in the following 'MODULE':
- MODULE m
- IMPLICIT NONE
- ! Define interface of call-back routine.
- ABSTRACT INTERFACE
- SUBROUTINE callback (x)
- USE, INTRINSIC :: ISO_C_BINDING
- REAL(KIND=C_DOUBLE), INTENT(IN), VALUE :: x
- END SUBROUTINE callback
- END INTERFACE
- CONTAINS
- ! Define C-bound procedure.
- SUBROUTINE get_values (cproc) BIND(C)
- USE, INTRINSIC :: ISO_C_BINDING
- TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc
- PROCEDURE(callback), POINTER :: proc
- ! Convert C to Fortran procedure pointer.
- CALL C_F_PROCPOINTER (cproc, proc)
- ! Call it.
- CALL proc (1.0_C_DOUBLE)
- CALL proc (-42.0_C_DOUBLE)
- CALL proc (18.12_C_DOUBLE)
- END SUBROUTINE get_values
- END MODULE m
- Next, we want to call a C routine that expects a procedure pointer
- argument and pass it a Fortran procedure (which clearly must be
- interoperable!). Again, the C function may be:
- int
- call_it (int (*func)(int), int arg)
- {
- return func (arg);
- }
- It can be used as in the following Fortran code:
- MODULE m
- USE, INTRINSIC :: ISO_C_BINDING
- IMPLICIT NONE
- ! Define interface of C function.
- INTERFACE
- INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
- USE, INTRINSIC :: ISO_C_BINDING
- TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
- INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
- END FUNCTION call_it
- END INTERFACE
- CONTAINS
- ! Define procedure passed to C function.
- ! It must be interoperable!
- INTEGER(KIND=C_INT) FUNCTION double_it (arg) BIND(C)
- INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
- double_it = arg + arg
- END FUNCTION double_it
- ! Call C function.
- SUBROUTINE foobar ()
- TYPE(C_FUNPTR) :: cproc
- INTEGER(KIND=C_INT) :: i
- ! Get C procedure pointer.
- cproc = C_FUNLOC (double_it)
- ! Use it.
- DO i = 1_C_INT, 10_C_INT
- PRINT *, call_it (cproc, i)
- END DO
- END SUBROUTINE foobar
- END MODULE m
- File: gfortran.info, Node: Further Interoperability of Fortran with C, Prev: Working with Pointers, Up: Interoperability with C
- 7.1.6 Further Interoperability of Fortran with C
- ------------------------------------------------
- The Technical Specification ISO/IEC TS 29113:2012 on further
- interoperability of Fortran with C extends the interoperability support
- of Fortran 2003 and Fortran 2008. Besides removing some restrictions
- and constraints, it adds assumed-type ('TYPE(*)') and assumed-rank
- ('dimension') variables and allows for interoperability of
- assumed-shape, assumed-rank and deferred-shape arrays, including
- allocatables and pointers.
- Note: Currently, GNU Fortran does not use internally the array
- descriptor (dope vector) as specified in the Technical Specification,
- but uses an array descriptor with different fields. Assumed type and
- assumed rank formal arguments are converted in the library to the
- specified form. The ISO_Fortran_binding API functions (also Fortran
- 2018 18.4) are implemented in libgfortran. Alternatively, the Chasm
- Language Interoperability Tools,
- <http://chasm-interop.sourceforge.net/>, provide an interface to GNU
- Fortran's array descriptor.
- The Technical Specification adds the following new features, which
- are supported by GNU Fortran:
- * The 'ASYNCHRONOUS' attribute has been clarified and extended to
- allow its use with asynchronous communication in user-provided
- libraries such as in implementations of the Message Passing
- Interface specification.
- * Many constraints have been relaxed, in particular for the 'C_LOC'
- and 'C_F_POINTER' intrinsics.
- * The 'OPTIONAL' attribute is now allowed for dummy arguments; an
- absent argument matches a 'NULL' pointer.
- * Assumed types ('TYPE(*)') have been added, which may only be used
- for dummy arguments. They are unlimited polymorphic but contrary
- to 'CLASS(*)' they do not contain any type information, similar to
- C's 'void *' pointers. Expressions of any type and kind can be
- passed; thus, it can be used as replacement for 'TYPE(C_PTR)',
- avoiding the use of 'C_LOC' in the caller.
- Note, however, that 'TYPE(*)' only accepts scalar arguments, unless
- the 'DIMENSION' is explicitly specified. As 'DIMENSION(*)' only
- supports array (including array elements) but no scalars, it is not
- a full replacement for 'C_LOC'. On the other hand, assumed-type
- assumed-rank dummy arguments ('TYPE(*), DIMENSION(..)') allow for
- both scalars and arrays, but require special code on the callee
- side to handle the array descriptor.
- * Assumed-rank arrays ('DIMENSION(..)') as dummy argument allow that
- scalars and arrays of any rank can be passed as actual argument.
- As the Technical Specification does not provide for direct means to
- operate with them, they have to be used either from the C side or
- be converted using 'C_LOC' and 'C_F_POINTER' to scalars or arrays
- of a specific rank. The rank can be determined using the 'RANK'
- intrinisic.
- Currently unimplemented:
- * GNU Fortran always uses an array descriptor, which does not match
- the one of the Technical Specification. The
- 'ISO_Fortran_binding.h' header file and the C functions it
- specifies are not available.
- * Using assumed-shape, assumed-rank and deferred-shape arrays in
- 'BIND(C)' procedures is not fully supported. In particular, C
- interoperable strings of other length than one are not supported as
- this requires the new array descriptor.
- File: gfortran.info, Node: GNU Fortran Compiler Directives, Next: Non-Fortran Main Program, Prev: Interoperability with C, Up: Mixed-Language Programming
- 7.2 GNU Fortran Compiler Directives
- ===================================
- * Menu:
- * ATTRIBUTES directive::
- * UNROLL directive::
- * BUILTIN directive::
- * IVDEP directive::
- * VECTOR directive::
- * NOVECTOR directive::
- File: gfortran.info, Node: ATTRIBUTES directive, Next: UNROLL directive, Up: GNU Fortran Compiler Directives
- 7.2.1 ATTRIBUTES directive
- --------------------------
- The Fortran standard describes how a conforming program shall behave;
- however, the exact implementation is not standardized. In order to
- allow the user to choose specific implementation details, compiler
- directives can be used to set attributes of variables and procedures
- which are not part of the standard. Whether a given attribute is
- supported and its exact effects depend on both the operating system and
- on the processor; see *note C Extensions: (gcc)Top. for details.
- For procedures and procedure pointers, the following attributes can
- be used to change the calling convention:
- * 'CDECL' - standard C calling convention
- * 'STDCALL' - convention where the called procedure pops the stack
- * 'FASTCALL' - part of the arguments are passed via registers instead
- using the stack
- Besides changing the calling convention, the attributes also
- influence the decoration of the symbol name, e.g., by a leading
- underscore or by a trailing at-sign followed by the number of bytes on
- the stack. When assigning a procedure to a procedure pointer, both
- should use the same calling convention.
- On some systems, procedures and global variables (module variables
- and 'COMMON' blocks) need special handling to be accessible when they
- are in a shared library. The following attributes are available:
- * 'DLLEXPORT' - provide a global pointer to a pointer in the DLL
- * 'DLLIMPORT' - reference the function or variable using a global
- pointer
- For dummy arguments, the 'NO_ARG_CHECK' attribute can be used; in
- other compilers, it is also known as 'IGNORE_TKR'. For dummy arguments
- with this attribute actual arguments of any type and kind (similar to
- 'TYPE(*)'), scalars and arrays of any rank (no equivalent in Fortran
- standard) are accepted. As with 'TYPE(*)', the argument is unlimited
- polymorphic and no type information is available. Additionally, the
- argument may only be passed to dummy arguments with the 'NO_ARG_CHECK'
- attribute and as argument to the 'PRESENT' intrinsic function and to
- 'C_LOC' of the 'ISO_C_BINDING' module.
- Variables with 'NO_ARG_CHECK' attribute shall be of assumed-type
- ('TYPE(*)'; recommended) or of type 'INTEGER', 'LOGICAL', 'REAL' or
- 'COMPLEX'. They shall not have the 'ALLOCATE', 'CODIMENSION',
- 'INTENT(OUT)', 'POINTER' or 'VALUE' attribute; furthermore, they shall
- be either scalar or of assumed-size ('dimension(*)'). As 'TYPE(*)', the
- 'NO_ARG_CHECK' attribute requires an explicit interface.
- * 'NO_ARG_CHECK' - disable the type, kind and rank checking
- The attributes are specified using the syntax
- '!GCC$ ATTRIBUTES' ATTRIBUTE-LIST '::' VARIABLE-LIST
- where in free-form source code only whitespace is allowed before
- '!GCC$' and in fixed-form source code '!GCC$', 'cGCC$' or '*GCC$' shall
- start in the first column.
- For procedures, the compiler directives shall be placed into the body
- of the procedure; for variables and procedure pointers, they shall be in
- the same declaration part as the variable or procedure pointer.
- File: gfortran.info, Node: UNROLL directive, Next: BUILTIN directive, Prev: ATTRIBUTES directive, Up: GNU Fortran Compiler Directives
- 7.2.2 UNROLL directive
- ----------------------
- The syntax of the directive is
- '!GCC$ unroll N'
- You can use this directive to control how many times a loop should be
- unrolled. It must be placed immediately before a 'DO' loop and applies
- only to the loop that follows. N is an integer constant specifying the
- unrolling factor. The values of 0 and 1 block any unrolling of the
- loop.
- File: gfortran.info, Node: BUILTIN directive, Next: IVDEP directive, Prev: UNROLL directive, Up: GNU Fortran Compiler Directives
- 7.2.3 BUILTIN directive
- -----------------------
- The syntax of the directive is
- '!GCC$ BUILTIN (B) attributes simd FLAGS IF('target')'
- You can use this directive to define which middle-end built-ins
- provide vector implementations. 'B' is name of the middle-end built-in.
- 'FLAGS' are optional and must be either "(inbranch)" or "(notinbranch)".
- 'IF' statement is optional and is used to filter multilib ABIs for the
- built-in that should be vectorized. Example usage:
- !GCC$ builtin (sinf) attributes simd (notinbranch) if('x86_64')
- The purpose of the directive is to provide an API among the GCC
- compiler and the GNU C Library which would define vector implementations
- of math routines.
- File: gfortran.info, Node: IVDEP directive, Next: VECTOR directive, Prev: BUILTIN directive, Up: GNU Fortran Compiler Directives
- 7.2.4 IVDEP directive
- ---------------------
- The syntax of the directive is
- '!GCC$ ivdep'
- This directive tells the compiler to ignore vector dependencies in
- the following loop. It must be placed immediately before a 'DO' loop
- and applies only to the loop that follows.
- Sometimes the compiler may not have sufficient information to decide
- whether a particular loop is vectorizable due to potential dependencies
- between iterations. The purpose of the directive is to tell the
- compiler that vectorization is safe.
- This directive is intended for annotation of existing code. For new
- code it is recommended to consider OpenMP SIMD directives as potential
- alternative.
- File: gfortran.info, Node: VECTOR directive, Next: NOVECTOR directive, Prev: IVDEP directive, Up: GNU Fortran Compiler Directives
- 7.2.5 VECTOR directive
- ----------------------
- The syntax of the directive is
- '!GCC$ vector'
- This directive tells the compiler to vectorize the following loop.
- It must be placed immediately before a 'DO' loop and applies only to the
- loop that follows.
- File: gfortran.info, Node: NOVECTOR directive, Prev: VECTOR directive, Up: GNU Fortran Compiler Directives
- 7.2.6 NOVECTOR directive
- ------------------------
- The syntax of the directive is
- '!GCC$ novector'
- This directive tells the compiler to not vectorize the following
- loop. It must be placed immediately before a 'DO' loop and applies only
- to the loop that follows.
- File: gfortran.info, Node: Non-Fortran Main Program, Next: Naming and argument-passing conventions, Prev: GNU Fortran Compiler Directives, Up: Mixed-Language Programming
- 7.3 Non-Fortran Main Program
- ============================
- * Menu:
- * _gfortran_set_args:: Save command-line arguments
- * _gfortran_set_options:: Set library option flags
- * _gfortran_set_convert:: Set endian conversion
- * _gfortran_set_record_marker:: Set length of record markers
- * _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
- * _gfortran_set_max_subrecord_length:: Set subrecord length
- Even if you are doing mixed-language programming, it is very likely that
- you do not need to know or use the information in this section. Since
- it is about the internal structure of GNU Fortran, it may also change in
- GCC minor releases.
- When you compile a 'PROGRAM' with GNU Fortran, a function with the
- name 'main' (in the symbol table of the object file) is generated, which
- initializes the libgfortran library and then calls the actual program
- which uses the name 'MAIN__', for historic reasons. If you link GNU
- Fortran compiled procedures to, e.g., a C or C++ program or to a Fortran
- program compiled by a different compiler, the libgfortran library is not
- initialized and thus a few intrinsic procedures do not work properly,
- e.g. those for obtaining the command-line arguments.
- Therefore, if your 'PROGRAM' is not compiled with GNU Fortran and the
- GNU Fortran compiled procedures require intrinsics relying on the
- library initialization, you need to initialize the library yourself.
- Using the default options, gfortran calls '_gfortran_set_args' and
- '_gfortran_set_options'. The initialization of the former is needed if
- the called procedures access the command line (and for backtracing); the
- latter sets some flags based on the standard chosen or to enable
- backtracing. In typical programs, it is not necessary to call any
- initialization function.
- If your 'PROGRAM' is compiled with GNU Fortran, you shall not call
- any of the following functions. The libgfortran initialization
- functions are shown in C syntax but using C bindings they are also
- accessible from Fortran.
- File: gfortran.info, Node: _gfortran_set_args, Next: _gfortran_set_options, Up: Non-Fortran Main Program
- 7.3.1 '_gfortran_set_args' -- Save command-line arguments
- ---------------------------------------------------------
- _Description_:
- '_gfortran_set_args' saves the command-line arguments; this
- initialization is required if any of the command-line intrinsics is
- called. Additionally, it shall be called if backtracing is enabled
- (see '_gfortran_set_options').
- _Syntax_:
- 'void _gfortran_set_args (int argc, char *argv[])'
- _Arguments_:
- ARGC number of command line argument strings
- ARGV the command-line argument strings; argv[0] is
- the pathname of the executable itself.
- _Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- return 0;
- }
- File: gfortran.info, Node: _gfortran_set_options, Next: _gfortran_set_convert, Prev: _gfortran_set_args, Up: Non-Fortran Main Program
- 7.3.2 '_gfortran_set_options' -- Set library option flags
- ---------------------------------------------------------
- _Description_:
- '_gfortran_set_options' sets several flags related to the Fortran
- standard to be used, whether backtracing should be enabled and
- whether range checks should be performed. The syntax allows for
- upward compatibility since the number of passed flags is specified;
- for non-passed flags, the default value is used. See also *note
- Code Gen Options::. Please note that not all flags are actually
- used.
- _Syntax_:
- 'void _gfortran_set_options (int num, int options[])'
- _Arguments_:
- NUM number of options passed
- ARGV The list of flag values
- _option flag list_:
- OPTION[0] Allowed standard; can give run-time errors if
- e.g. an input-output edit descriptor is invalid
- in a given standard. Possible values are
- (bitwise or-ed) 'GFC_STD_F77' (1),
- 'GFC_STD_F95_OBS' (2), 'GFC_STD_F95_DEL' (4),
- 'GFC_STD_F95' (8), 'GFC_STD_F2003' (16),
- 'GFC_STD_GNU' (32), 'GFC_STD_LEGACY' (64),
- 'GFC_STD_F2008' (128), 'GFC_STD_F2008_OBS'
- (256), 'GFC_STD_F2008_TS' (512), 'GFC_STD_F2018'
- (1024), 'GFC_STD_F2018_OBS' (2048), and
- 'GFC_STD=F2018_DEL' (4096). Default:
- 'GFC_STD_F95_OBS | GFC_STD_F95_DEL | GFC_STD_F95
- | GFC_STD_F2003 | GFC_STD_F2008 |
- GFC_STD_F2008_TS | GFC_STD_F2008_OBS |
- GFC_STD_F77 | GFC_STD_F2018 | GFC_STD_F2018_OBS
- | GFC_STD_F2018_DEL | GFC_STD_GNU |
- GFC_STD_LEGACY'.
- OPTION[1] Standard-warning flag; prints a warning to
- standard error. Default: 'GFC_STD_F95_DEL |
- GFC_STD_LEGACY'.
- OPTION[2] If non zero, enable pedantic checking. Default:
- off.
- OPTION[3] Unused.
- OPTION[4] If non zero, enable backtracing on run-time
- errors. Default: off. (Default in the
- compiler: on.) Note: Installs a signal handler
- and requires command-line initialization using
- '_gfortran_set_args'.
- OPTION[5] If non zero, supports signed zeros. Default:
- enabled.
- OPTION[6] Enables run-time checking. Possible values are
- (bitwise or-ed): GFC_RTCHECK_BOUNDS (1),
- GFC_RTCHECK_ARRAY_TEMPS (2),
- GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16),
- GFC_RTCHECK_POINTER (32), GFC_RTCHECK_BITS (64).
- Default: disabled.
- OPTION[7] Unused.
- OPTION[8] Show a warning when invoking 'STOP' and 'ERROR
- STOP' if a floating-point exception occurred.
- Possible values are (bitwise or-ed)
- 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2),
- 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8),
- 'GFC_FPE_UNDERFLOW' (16), 'GFC_FPE_INEXACT'
- (32). Default: None (0). (Default in the
- compiler: 'GFC_FPE_INVALID | GFC_FPE_DENORMAL |
- GFC_FPE_ZERO | GFC_FPE_OVERFLOW |
- GFC_FPE_UNDERFLOW'.)
- _Example_:
- /* Use gfortran 4.9 default options. */
- static int options[] = {68, 511, 0, 0, 1, 1, 0, 0, 31};
- _gfortran_set_options (9, &options);
- File: gfortran.info, Node: _gfortran_set_convert, Next: _gfortran_set_record_marker, Prev: _gfortran_set_options, Up: Non-Fortran Main Program
- 7.3.3 '_gfortran_set_convert' -- Set endian conversion
- ------------------------------------------------------
- _Description_:
- '_gfortran_set_convert' set the representation of data for
- unformatted files.
- _Syntax_:
- 'void _gfortran_set_convert (int conv)'
- _Arguments_:
- CONV Endian conversion, possible values:
- GFC_CONVERT_NATIVE (0, default),
- GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG (2),
- GFC_CONVERT_LITTLE (3).
- _Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- _gfortran_set_convert (1);
- return 0;
- }
- File: gfortran.info, Node: _gfortran_set_record_marker, Next: _gfortran_set_fpe, Prev: _gfortran_set_convert, Up: Non-Fortran Main Program
- 7.3.4 '_gfortran_set_record_marker' -- Set length of record markers
- -------------------------------------------------------------------
- _Description_:
- '_gfortran_set_record_marker' sets the length of record markers for
- unformatted files.
- _Syntax_:
- 'void _gfortran_set_record_marker (int val)'
- _Arguments_:
- VAL Length of the record marker; valid values are 4
- and 8. Default is 4.
- _Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- _gfortran_set_record_marker (8);
- return 0;
- }
- File: gfortran.info, Node: _gfortran_set_fpe, Next: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_record_marker, Up: Non-Fortran Main Program
- 7.3.5 '_gfortran_set_fpe' -- Enable floating point exception traps
- ------------------------------------------------------------------
- _Description_:
- '_gfortran_set_fpe' enables floating point exception traps for the
- specified exceptions. On most systems, this will result in a
- SIGFPE signal being sent and the program being aborted.
- _Syntax_:
- 'void _gfortran_set_fpe (int val)'
- _Arguments_:
- OPTION[0] IEEE exceptions. Possible values are (bitwise
- or-ed) zero (0, default) no trapping,
- 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2),
- 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8),
- 'GFC_FPE_UNDERFLOW' (16), and 'GFC_FPE_INEXACT'
- (32).
- _Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- /* FPE for invalid operations such as SQRT(-1.0). */
- _gfortran_set_fpe (1);
- return 0;
- }
- File: gfortran.info, Node: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_fpe, Up: Non-Fortran Main Program
- 7.3.6 '_gfortran_set_max_subrecord_length' -- Set subrecord length
- ------------------------------------------------------------------
- _Description_:
- '_gfortran_set_max_subrecord_length' set the maximum length for a
- subrecord. This option only makes sense for testing and debugging
- of unformatted I/O.
- _Syntax_:
- 'void _gfortran_set_max_subrecord_length (int val)'
- _Arguments_:
- VAL the maximum length for a subrecord; the maximum
- permitted value is 2147483639, which is also the
- default.
- _Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- _gfortran_set_max_subrecord_length (8);
- return 0;
- }
- File: gfortran.info, Node: Naming and argument-passing conventions, Prev: Non-Fortran Main Program, Up: Mixed-Language Programming
- 7.4 Naming and argument-passing conventions
- ===========================================
- This section gives an overview about the naming convention of procedures
- and global variables and about the argument passing conventions used by
- GNU Fortran. If a C binding has been specified, the naming convention
- and some of the argument-passing conventions change. If possible,
- mixed-language and mixed-compiler projects should use the better defined
- C binding for interoperability. See *note Interoperability with C::.
- * Menu:
- * Naming conventions::
- * Argument passing conventions::
- File: gfortran.info, Node: Naming conventions, Next: Argument passing conventions, Up: Naming and argument-passing conventions
- 7.4.1 Naming conventions
- ------------------------
- According the Fortran standard, valid Fortran names consist of a letter
- between 'A' to 'Z', 'a' to 'z', digits '0', '1' to '9' and underscores
- ('_') with the restriction that names may only start with a letter. As
- vendor extension, the dollar sign ('$') is additionally permitted with
- the option '-fdollar-ok', but not as first character and only if the
- target system supports it.
- By default, the procedure name is the lower-cased Fortran name with
- an appended underscore ('_'); using '-fno-underscoring' no underscore is
- appended while '-fsecond-underscore' appends two underscores. Depending
- on the target system and the calling convention, the procedure might be
- additionally dressed; for instance, on 32bit Windows with 'stdcall', an
- at-sign '@' followed by an integer number is appended. For the changing
- the calling convention, see *note GNU Fortran Compiler Directives::.
- For common blocks, the same convention is used, i.e. by default an
- underscore is appended to the lower-cased Fortran name. Blank commons
- have the name '__BLNK__'.
- For procedures and variables declared in the specification space of a
- module, the name is formed by '__', followed by the lower-cased module
- name, '_MOD_', and the lower-cased Fortran name. Note that no
- underscore is appended.
- File: gfortran.info, Node: Argument passing conventions, Prev: Naming conventions, Up: Naming and argument-passing conventions
- 7.4.2 Argument passing conventions
- ----------------------------------
- Subroutines do not return a value (matching C99's 'void') while
- functions either return a value as specified in the platform ABI or the
- result variable is passed as hidden argument to the function and no
- result is returned. A hidden result variable is used when the result
- variable is an array or of type 'CHARACTER'.
- Arguments are passed according to the platform ABI. In particular,
- complex arguments might not be compatible to a struct with two real
- components for the real and imaginary part. The argument passing
- matches the one of C99's '_Complex'. Functions with scalar complex
- result variables return their value and do not use a by-reference
- argument. Note that with the '-ff2c' option, the argument passing is
- modified and no longer completely matches the platform ABI. Some other
- Fortran compilers use 'f2c' semantic by default; this might cause
- problems with interoperablility.
- GNU Fortran passes most arguments by reference, i.e. by passing a
- pointer to the data. Note that the compiler might use a temporary
- variable into which the actual argument has been copied, if required
- semantically (copy-in/copy-out).
- For arguments with 'ALLOCATABLE' and 'POINTER' attribute (including
- procedure pointers), a pointer to the pointer is passed such that the
- pointer address can be modified in the procedure.
- For dummy arguments with the 'VALUE' attribute: Scalar arguments of
- the type 'INTEGER', 'LOGICAL', 'REAL' and 'COMPLEX' are passed by value
- according to the platform ABI. (As vendor extension and not recommended,
- using '%VAL()' in the call to a procedure has the same effect.) For
- 'TYPE(C_PTR)' and procedure pointers, the pointer itself is passed such
- that it can be modified without affecting the caller.
- For Boolean ('LOGICAL') arguments, please note that GCC expects only
- the integer value 0 and 1. If a GNU Fortran 'LOGICAL' variable contains
- another integer value, the result is undefined. As some other Fortran
- compilers use -1 for '.TRUE.', extra care has to be taken - such as
- passing the value as 'INTEGER'. (The same value restriction also
- applies to other front ends of GCC, e.g. to GCC's C99 compiler for
- '_Bool' or GCC's Ada compiler for 'Boolean'.)
- For arguments of 'CHARACTER' type, the character length is passed as
- a hidden argument at the end of the argument list. For deferred-length
- strings, the value is passed by reference, otherwise by value. The
- character length has the C type 'size_t' (or 'INTEGER(kind=C_SIZE_T)' in
- Fortran). Note that this is different to older versions of the GNU
- Fortran compiler, where the type of the hidden character length argument
- was a C 'int'. In order to retain compatibility with older versions,
- one can e.g. for the following Fortran procedure
- subroutine fstrlen (s, a)
- character(len=*) :: s
- integer :: a
- print*, len(s)
- end subroutine fstrlen
- define the corresponding C prototype as follows:
- #if __GNUC__ > 7
- typedef size_t fortran_charlen_t;
- #else
- typedef int fortran_charlen_t;
- #endif
- void fstrlen_ (char*, int*, fortran_charlen_t);
- In order to avoid such compiler-specific details, for new code it is
- instead recommended to use the ISO_C_BINDING feature.
- Note with C binding, 'CHARACTER(len=1)' result variables are returned
- according to the platform ABI and no hidden length argument is used for
- dummy arguments; with 'VALUE', those variables are passed by value.
- For 'OPTIONAL' dummy arguments, an absent argument is denoted by a
- NULL pointer, except for scalar dummy arguments of type 'INTEGER',
- 'LOGICAL', 'REAL' and 'COMPLEX' which have the 'VALUE' attribute. For
- those, a hidden Boolean argument ('logical(kind=C_bool),value') is used
- to indicate whether the argument is present.
- Arguments which are assumed-shape, assumed-rank or deferred-rank
- arrays or, with '-fcoarray=lib', allocatable scalar coarrays use an
- array descriptor. All other arrays pass the address of the first
- element of the array. With '-fcoarray=lib', the token and the offset
- belonging to nonallocatable coarrays dummy arguments are passed as
- hidden argument along the character length hidden arguments. The token
- is an oparque pointer identifying the coarray and the offset is a
- passed-by-value integer of kind 'C_PTRDIFF_T', denoting the byte offset
- between the base address of the coarray and the passed scalar or first
- element of the passed array.
- The arguments are passed in the following order
- * Result variable, when the function result is passed by reference
- * Character length of the function result, if it is a of type
- 'CHARACTER' and no C binding is used
- * The arguments in the order in which they appear in the Fortran
- declaration
- * The the present status for optional arguments with value attribute,
- which are internally passed by value
- * The character length and/or coarray token and offset for the first
- argument which is a 'CHARACTER' or a nonallocatable coarray dummy
- argument, followed by the hidden arguments of the next dummy
- argument of such a type
- File: gfortran.info, Node: Coarray Programming, Next: Intrinsic Procedures, Prev: Mixed-Language Programming, Up: Top
- 8 Coarray Programming
- *********************
- * Menu:
- * Type and enum ABI Documentation::
- * Function ABI Documentation::
- File: gfortran.info, Node: Type and enum ABI Documentation, Next: Function ABI Documentation, Up: Coarray Programming
- 8.1 Type and enum ABI Documentation
- ===================================
- * Menu:
- * caf_token_t::
- * caf_register_t::
- * caf_deregister_t::
- * caf_reference_t::
- * caf_team_t::
- File: gfortran.info, Node: caf_token_t, Next: caf_register_t, Up: Type and enum ABI Documentation
- 8.1.1 'caf_token_t'
- -------------------
- Typedef of type 'void *' on the compiler side. Can be any data type on
- the library side.
- File: gfortran.info, Node: caf_register_t, Next: caf_deregister_t, Prev: caf_token_t, Up: Type and enum ABI Documentation
- 8.1.2 'caf_register_t'
- ----------------------
- Indicates which kind of coarray variable should be registered.
- typedef enum caf_register_t {
- CAF_REGTYPE_COARRAY_STATIC,
- CAF_REGTYPE_COARRAY_ALLOC,
- CAF_REGTYPE_LOCK_STATIC,
- CAF_REGTYPE_LOCK_ALLOC,
- CAF_REGTYPE_CRITICAL,
- CAF_REGTYPE_EVENT_STATIC,
- CAF_REGTYPE_EVENT_ALLOC,
- CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY,
- CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY
- }
- caf_register_t;
- The values 'CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY' and
- 'CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY' are for allocatable components
- in derived type coarrays only. The first one sets up the token without
- allocating memory for allocatable component. The latter one only
- allocates the memory for an allocatable component in a derived type
- coarray. The token needs to be setup previously by the REGISTER_ONLY.
- This allows to have allocatable components un-allocated on some images.
- The status whether an allocatable component is allocated on a remote
- image can be queried by '_caf_is_present' which used internally by the
- 'ALLOCATED' intrinsic.
- File: gfortran.info, Node: caf_deregister_t, Next: caf_reference_t, Prev: caf_register_t, Up: Type and enum ABI Documentation
- 8.1.3 'caf_deregister_t'
- ------------------------
- typedef enum caf_deregister_t {
- CAF_DEREGTYPE_COARRAY_DEREGISTER,
- CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY
- }
- caf_deregister_t;
- Allows to specifiy the type of deregistration of a coarray object.
- The 'CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY' flag is only allowed for
- allocatable components in derived type coarrays.
- File: gfortran.info, Node: caf_reference_t, Next: caf_team_t, Prev: caf_deregister_t, Up: Type and enum ABI Documentation
- 8.1.4 'caf_reference_t'
- -----------------------
- The structure used for implementing arbitrary reference chains. A
- 'CAF_REFERENCE_T' allows to specify a component reference or any kind of
- array reference of any rank supported by gfortran. For array references
- all kinds as known by the compiler/Fortran standard are supported
- indicated by a 'MODE'.
- typedef enum caf_ref_type_t {
- /* Reference a component of a derived type, either regular one or an
- allocatable or pointer type. For regular ones idx in caf_reference_t is
- set to -1. */
- CAF_REF_COMPONENT,
- /* Reference an allocatable array. */
- CAF_REF_ARRAY,
- /* Reference a non-allocatable/non-pointer array. I.e., the coarray object
- has no array descriptor associated and the addressing is done
- completely using the ref. */
- CAF_REF_STATIC_ARRAY
- } caf_ref_type_t;
- typedef enum caf_array_ref_t {
- /* No array ref. This terminates the array ref. */
- CAF_ARR_REF_NONE = 0,
- /* Reference array elements given by a vector. Only for this mode
- caf_reference_t.u.a.dim[i].v is valid. */
- CAF_ARR_REF_VECTOR,
- /* A full array ref (:). */
- CAF_ARR_REF_FULL,
- /* Reference a range on elements given by start, end and stride. */
- CAF_ARR_REF_RANGE,
- /* Only a single item is referenced given in the start member. */
- CAF_ARR_REF_SINGLE,
- /* An array ref of the kind (i:), where i is an arbitrary valid index in the
- array. The index i is given in the start member. */
- CAF_ARR_REF_OPEN_END,
- /* An array ref of the kind (:i), where the lower bound of the array ref
- is given by the remote side. The index i is given in the end member. */
- CAF_ARR_REF_OPEN_START
- } caf_array_ref_t;
- /* References to remote components of a derived type. */
- typedef struct caf_reference_t {
- /* A pointer to the next ref or NULL. */
- struct caf_reference_t *next;
- /* The type of the reference. */
- /* caf_ref_type_t, replaced by int to allow specification in fortran FE. */
- int type;
- /* The size of an item referenced in bytes. I.e. in an array ref this is
- the factor to advance the array pointer with to get to the next item.
- For component refs this gives just the size of the element referenced. */
- size_t item_size;
- union {
- struct {
- /* The offset (in bytes) of the component in the derived type.
- Unused for allocatable or pointer components. */
- ptrdiff_t offset;
- /* The offset (in bytes) to the caf_token associated with this
- component. NULL, when not allocatable/pointer ref. */
- ptrdiff_t caf_token_offset;
- } c;
- struct {
- /* The mode of the array ref. See CAF_ARR_REF_*. */
- /* caf_array_ref_t, replaced by unsigend char to allow specification in
- fortran FE. */
- unsigned char mode[GFC_MAX_DIMENSIONS];
- /* The type of a static array. Unset for array's with descriptors. */
- int static_array_type;
- /* Subscript refs (s) or vector refs (v). */
- union {
- struct {
- /* The start and end boundary of the ref and the stride. */
- index_type start, end, stride;
- } s;
- struct {
- /* nvec entries of kind giving the elements to reference. */
- void *vector;
- /* The number of entries in vector. */
- size_t nvec;
- /* The integer kind used for the elements in vector. */
- int kind;
- } v;
- } dim[GFC_MAX_DIMENSIONS];
- } a;
- } u;
- } caf_reference_t;
- The references make up a single linked list of reference operations.
- The 'NEXT' member links to the next reference or NULL to indicate the
- end of the chain. Component and array refs can be arbitrarly mixed as
- long as they comply to the Fortran standard.
- _NOTES_ The member 'STATIC_ARRAY_TYPE' is used only when the 'TYPE'
- is 'CAF_REF_STATIC_ARRAY'. The member gives the type of the data
- referenced. Because no array descriptor is available for a
- descriptor-less array and type conversion still needs to take place the
- type is transported here.
- At the moment 'CAF_ARR_REF_VECTOR' is not implemented in the front
- end for descriptor-less arrays. The library caf_single has untested
- support for it.
- File: gfortran.info, Node: caf_team_t, Prev: caf_reference_t, Up: Type and enum ABI Documentation
- 8.1.5 'caf_team_t'
- ------------------
- Opaque pointer to represent a team-handle. This type is a stand-in for
- the future implementation of teams. It is about to change without
- further notice.
- File: gfortran.info, Node: Function ABI Documentation, Prev: Type and enum ABI Documentation, Up: Coarray Programming
- 8.2 Function ABI Documentation
- ==============================
- * Menu:
- * _gfortran_caf_init:: Initialiation function
- * _gfortran_caf_finish:: Finalization function
- * _gfortran_caf_this_image:: Querying the image number
- * _gfortran_caf_num_images:: Querying the maximal number of images
- * _gfortran_caf_image_status :: Query the status of an image
- * _gfortran_caf_failed_images :: Get an array of the indexes of the failed images
- * _gfortran_caf_stopped_images :: Get an array of the indexes of the stopped images
- * _gfortran_caf_register:: Registering coarrays
- * _gfortran_caf_deregister:: Deregistering coarrays
- * _gfortran_caf_is_present:: Query whether an allocatable or pointer component in a derived type coarray is allocated
- * _gfortran_caf_send:: Sending data from a local image to a remote image
- * _gfortran_caf_get:: Getting data from a remote image
- * _gfortran_caf_sendget:: Sending data between remote images
- * _gfortran_caf_send_by_ref:: Sending data from a local image to a remote image using enhanced references
- * _gfortran_caf_get_by_ref:: Getting data from a remote image using enhanced references
- * _gfortran_caf_sendget_by_ref:: Sending data between remote images using enhanced references
- * _gfortran_caf_lock:: Locking a lock variable
- * _gfortran_caf_unlock:: Unlocking a lock variable
- * _gfortran_caf_event_post:: Post an event
- * _gfortran_caf_event_wait:: Wait that an event occurred
- * _gfortran_caf_event_query:: Query event count
- * _gfortran_caf_sync_all:: All-image barrier
- * _gfortran_caf_sync_images:: Barrier for selected images
- * _gfortran_caf_sync_memory:: Wait for completion of segment-memory operations
- * _gfortran_caf_error_stop:: Error termination with exit code
- * _gfortran_caf_error_stop_str:: Error termination with string
- * _gfortran_caf_fail_image :: Mark the image failed and end its execution
- * _gfortran_caf_atomic_define:: Atomic variable assignment
- * _gfortran_caf_atomic_ref:: Atomic variable reference
- * _gfortran_caf_atomic_cas:: Atomic compare and swap
- * _gfortran_caf_atomic_op:: Atomic operation
- * _gfortran_caf_co_broadcast:: Sending data to all images
- * _gfortran_caf_co_max:: Collective maximum reduction
- * _gfortran_caf_co_min:: Collective minimum reduction
- * _gfortran_caf_co_sum:: Collective summing reduction
- * _gfortran_caf_co_reduce:: Generic collective reduction
- File: gfortran.info, Node: _gfortran_caf_init, Next: _gfortran_caf_finish, Up: Function ABI Documentation
- 8.2.1 '_gfortran_caf_init' -- Initialiation function
- ----------------------------------------------------
- _Description_:
- This function is called at startup of the program before the
- Fortran main program, if the latter has been compiled with
- '-fcoarray=lib'. It takes as arguments the command-line arguments
- of the program. It is permitted to pass two 'NULL' pointers as
- argument; if non-'NULL', the library is permitted to modify the
- arguments.
- _Syntax_:
- 'void _gfortran_caf_init (int *argc, char ***argv)'
- _Arguments_:
- ARGC intent(inout) An integer pointer with the number
- of arguments passed to the program or 'NULL'.
- ARGV intent(inout) A pointer to an array of strings
- with the command-line arguments or 'NULL'.
- _NOTES_
- The function is modelled after the initialization function of the
- Message Passing Interface (MPI) specification. Due to the way
- coarray registration works, it might not be the first call to the
- library. If the main program is not written in Fortran and only a
- library uses coarrays, it can happen that this function is never
- called. Therefore, it is recommended that the library does not
- rely on the passed arguments and whether the call has been done.
- File: gfortran.info, Node: _gfortran_caf_finish, Next: _gfortran_caf_this_image, Prev: _gfortran_caf_init, Up: Function ABI Documentation
- 8.2.2 '_gfortran_caf_finish' -- Finalization function
- -----------------------------------------------------
- _Description_:
- This function is called at the end of the Fortran main program, if
- it has been compiled with the '-fcoarray=lib' option.
- _Syntax_:
- 'void _gfortran_caf_finish (void)'
- _NOTES_
- For non-Fortran programs, it is recommended to call the function at
- the end of the main program. To ensure that the shutdown is also
- performed for programs where this function is not explicitly
- invoked, for instance non-Fortran programs or calls to the system's
- exit() function, the library can use a destructor function. Note
- that programs can also be terminated using the STOP and ERROR STOP
- statements; those use different library calls.
- File: gfortran.info, Node: _gfortran_caf_this_image, Next: _gfortran_caf_num_images, Prev: _gfortran_caf_finish, Up: Function ABI Documentation
- 8.2.3 '_gfortran_caf_this_image' -- Querying the image number
- -------------------------------------------------------------
- _Description_:
- This function returns the current image number, which is a positive
- number.
- _Syntax_:
- 'int _gfortran_caf_this_image (int distance)'
- _Arguments_:
- DISTANCE As specified for the 'this_image' intrinsic in
- TS18508. Shall be a non-negative number.
- _NOTES_
- If the Fortran intrinsic 'this_image' is invoked without an
- argument, which is the only permitted form in Fortran 2008, GCC
- passes '0' as first argument.
- File: gfortran.info, Node: _gfortran_caf_num_images, Next: _gfortran_caf_image_status, Prev: _gfortran_caf_this_image, Up: Function ABI Documentation
- 8.2.4 '_gfortran_caf_num_images' -- Querying the maximal number of images
- -------------------------------------------------------------------------
- _Description_:
- This function returns the number of images in the current team, if
- DISTANCE is 0 or the number of images in the parent team at the
- specified distance. If failed is -1, the function returns the
- number of all images at the specified distance; if it is 0, the
- function returns the number of nonfailed images, and if it is 1, it
- returns the number of failed images.
- _Syntax_:
- 'int _gfortran_caf_num_images(int distance, int failed)'
- _Arguments_:
- DISTANCE the distance from this image to the ancestor.
- Shall be positive.
- FAILED shall be -1, 0, or 1
- _NOTES_
- This function follows TS18508. If the num_image intrinsic has no
- arguments, then the compiler passes 'distance=0' and 'failed=-1' to
- the function.
- File: gfortran.info, Node: _gfortran_caf_image_status, Next: _gfortran_caf_failed_images, Prev: _gfortran_caf_num_images, Up: Function ABI Documentation
- 8.2.5 '_gfortran_caf_image_status' -- Query the status of an image
- ------------------------------------------------------------------
- _Description_:
- Get the status of the image given by the id IMAGE of the team given
- by TEAM. Valid results are zero, for image is ok,
- 'STAT_STOPPED_IMAGE' from the ISO_FORTRAN_ENV module to indicate
- that the image has been stopped and 'STAT_FAILED_IMAGE' also from
- ISO_FORTRAN_ENV to indicate that the image has executed a 'FAIL
- IMAGE' statement.
- _Syntax_:
- 'int _gfortran_caf_image_status (int image, caf_team_t * team)'
- _Arguments_:
- IMAGE the positive scalar id of the image in the
- current TEAM.
- TEAM optional; team on the which the inquiry is to be
- performed.
- _NOTES_
- This function follows TS18508. Because team-functionality is not
- yet implemented a null-pointer is passed for the TEAM argument at
- the moment.
- File: gfortran.info, Node: _gfortran_caf_failed_images, Next: _gfortran_caf_stopped_images, Prev: _gfortran_caf_image_status, Up: Function ABI Documentation
- 8.2.6 '_gfortran_caf_failed_images' -- Get an array of the indexes of the failed images
- ---------------------------------------------------------------------------------------
- _Description_:
- Get an array of image indexes in the current TEAM that have failed.
- The array is sorted ascendingly. When TEAM is not provided the
- current team is to be used. When KIND is provided then the
- resulting array is of that integer kind else it is of default
- integer kind. The returns an unallocated size zero array when no
- images have failed.
- _Syntax_:
- 'int _gfortran_caf_failed_images (caf_team_t * team, int * kind)'
- _Arguments_:
- TEAM optional; team on the which the inquiry is to be
- performed.
- IMAGE optional; the kind of the resulting integer
- array.
- _NOTES_
- This function follows TS18508. Because team-functionality is not
- yet implemented a null-pointer is passed for the TEAM argument at
- the moment.
- File: gfortran.info, Node: _gfortran_caf_stopped_images, Next: _gfortran_caf_register, Prev: _gfortran_caf_failed_images, Up: Function ABI Documentation
- 8.2.7 '_gfortran_caf_stopped_images' -- Get an array of the indexes of the stopped images
- -----------------------------------------------------------------------------------------
- _Description_:
- Get an array of image indexes in the current TEAM that have
- stopped. The array is sorted ascendingly. When TEAM is not
- provided the current team is to be used. When KIND is provided
- then the resulting array is of that integer kind else it is of
- default integer kind. The returns an unallocated size zero array
- when no images have failed.
- _Syntax_:
- 'int _gfortran_caf_stopped_images (caf_team_t * team, int * kind)'
- _Arguments_:
- TEAM optional; team on the which the inquiry is to be
- performed.
- IMAGE optional; the kind of the resulting integer
- array.
- _NOTES_
- This function follows TS18508. Because team-functionality is not
- yet implemented a null-pointer is passed for the TEAM argument at
- the moment.
- File: gfortran.info, Node: _gfortran_caf_register, Next: _gfortran_caf_deregister, Prev: _gfortran_caf_stopped_images, Up: Function ABI Documentation
- 8.2.8 '_gfortran_caf_register' -- Registering coarrays
- ------------------------------------------------------
- _Description_:
- Registers memory for a coarray and creates a token to identify the
- coarray. The routine is called for both coarrays with 'SAVE'
- attribute and using an explicit 'ALLOCATE' statement. If an error
- occurs and STAT is a 'NULL' pointer, the function shall abort with
- printing an error message and starting the error termination. If
- no error occurs and STAT is present, it shall be set to zero.
- Otherwise, it shall be set to a positive value and, if not-'NULL',
- ERRMSG shall be set to a string describing the failure. The
- routine shall register the memory provided in the 'DATA'-component
- of the array descriptor DESC, when that component is non-'NULL',
- else it shall allocate sufficient memory and provide a pointer to
- it in the 'DATA'-component of DESC. The array descriptor has rank
- zero, when a scalar object is to be registered and the array
- descriptor may be invalid after the call to
- '_gfortran_caf_register'. When an array is to be allocated the
- descriptor persists.
- For 'CAF_REGTYPE_COARRAY_STATIC' and 'CAF_REGTYPE_COARRAY_ALLOC',
- the passed size is the byte size requested. For
- 'CAF_REGTYPE_LOCK_STATIC', 'CAF_REGTYPE_LOCK_ALLOC' and
- 'CAF_REGTYPE_CRITICAL' it is the array size or one for a scalar.
- When 'CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY' is used, then only a
- token for an allocatable or pointer component is created. The
- 'SIZE' parameter is not used then. On the contrary when
- 'CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY' is specified, then the
- TOKEN needs to be registered by a previous call with regtype
- 'CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY' and either the memory
- specified in the DESC's data-ptr is registered or allocate when the
- data-ptr is 'NULL'.
- _Syntax_:
- 'void caf_register (size_t size, caf_register_t type, caf_token_t
- *token, gfc_descriptor_t *desc, int *stat, char *errmsg, size_t
- errmsg_len)'
- _Arguments_:
- SIZE For normal coarrays, the byte size of the
- coarray to be allocated; for lock types and
- event types, the number of elements.
- TYPE one of the caf_register_t types.
- TOKEN intent(out) An opaque pointer identifying the
- coarray.
- DESC intent(inout) The (pseudo) array descriptor.
- STAT intent(out) For allocatable coarrays, stores the
- STAT=; may be 'NULL'
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be 'NULL'
- ERRMSG_LEN the buffer size of errmsg.
- _NOTES_
- Nonallocatable coarrays have to be registered prior use from remote
- images. In order to guarantee this, they have to be registered
- before the main program. This can be achieved by creating
- constructor functions. That is what GCC does such that also for
- nonallocatable coarrays the memory is allocated and no static
- memory is used. The token permits to identify the coarray; to the
- processor, the token is a nonaliasing pointer. The library can,
- for instance, store the base address of the coarray in the token,
- some handle or a more complicated struct. The library may also
- store the array descriptor DESC when its rank is non-zero.
- For lock types, the value shall only be used for checking the
- allocation status. Note that for critical blocks, the locking is
- only required on one image; in the locking statement, the processor
- shall always pass an image index of one for critical-block lock
- variables ('CAF_REGTYPE_CRITICAL'). For lock types and
- critical-block variables, the initial value shall be unlocked (or,
- respecitively, not in critical section) such as the value false;
- for event types, the initial state should be no event, e.g. zero.
- File: gfortran.info, Node: _gfortran_caf_deregister, Next: _gfortran_caf_is_present, Prev: _gfortran_caf_register, Up: Function ABI Documentation
- 8.2.9 '_gfortran_caf_deregister' -- Deregistering coarrays
- ----------------------------------------------------------
- _Description_:
- Called to free or deregister the memory of a coarray; the processor
- calls this function for automatic and explicit deallocation. In
- case of an error, this function shall fail with an error message,
- unless the STAT variable is not null. The library is only expected
- to free memory it allocated itself during a call to
- '_gfortran_caf_register'.
- _Syntax_:
- 'void caf_deregister (caf_token_t *token, caf_deregister_t type,
- int *stat, char *errmsg, size_t errmsg_len)'
- _Arguments_:
- TOKEN the token to free.
- TYPE the type of action to take for the coarray. A
- 'CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY' is
- allowed only for allocatable or pointer
- components of derived type coarrays. The action
- only deallocates the local memory without
- deleting the token.
- STAT intent(out) Stores the STAT=; may be NULL
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL
- ERRMSG_LEN the buffer size of errmsg.
- _NOTES_
- For nonalloatable coarrays this function is never called. If a
- cleanup is required, it has to be handled via the finish, stop and
- error stop functions, and via destructors.
- File: gfortran.info, Node: _gfortran_caf_is_present, Next: _gfortran_caf_send, Prev: _gfortran_caf_deregister, Up: Function ABI Documentation
- 8.2.10 '_gfortran_caf_is_present' -- Query whether an allocatable or pointer component in a derived type coarray is allocated
- -----------------------------------------------------------------------------------------------------------------------------
- _Description_:
- Used to query the coarray library whether an allocatable component
- in a derived type coarray is allocated on a remote image.
- _Syntax_:
- 'void _gfortran_caf_is_present (caf_token_t token, int image_index,
- gfc_reference_t *ref)'
- _Arguments_:
- TOKEN An opaque pointer identifying the coarray.
- IMAGE_INDEX The ID of the remote image; must be a positive
- number.
- REF A chain of references to address the allocatable
- or pointer component in the derived type
- coarray. The object reference needs to be a
- scalar or a full array reference, respectively.
- File: gfortran.info, Node: _gfortran_caf_send, Next: _gfortran_caf_get, Prev: _gfortran_caf_is_present, Up: Function ABI Documentation
- 8.2.11 '_gfortran_caf_send' -- Sending data from a local image to a remote image
- --------------------------------------------------------------------------------
- _Description_:
- Called to send a scalar, an array section or a whole array from a
- local to a remote image identified by the image_index.
- _Syntax_:
- 'void _gfortran_caf_send (caf_token_t token, size_t offset, int
- image_index, gfc_descriptor_t *dest, caf_vector_t *dst_vector,
- gfc_descriptor_t *src, int dst_kind, int src_kind, bool
- may_require_tmp, int *stat)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- DEST intent(in) Array descriptor for the remote image
- for the bounds and the size. The 'base_addr'
- shall not be accessed.
- DST_VECTOR intent(in) If not NULL, it contains the vector
- subscript of the destination array; the values
- are relative to the dimension triplet of the
- dest argument.
- SRC intent(in) Array descriptor of the local array
- to be transferred to the remote image
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- STAT intent(out) when non-NULL give the result of the
- operation, i.e., zero on success and non-zero on
- error. When NULL and an error occurs, then an
- error message is printed and the program is
- terminated.
- _NOTES_
- It is permitted to have IMAGE_INDEX equal the current image; the
- memory of the send-to and the send-from might (partially) overlap
- in that case. The implementation has to take care that it handles
- this case, e.g. using 'memmove' which handles (partially)
- overlapping memory. If MAY_REQUIRE_TMP is true, the library might
- additionally create a temporary variable, unless additional checks
- show that this is not required (e.g. because walking backward is
- possible or because both arrays are contiguous and 'memmove' takes
- care of overlap issues).
- Note that the assignment of a scalar to an array is permitted. In
- addition, the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- File: gfortran.info, Node: _gfortran_caf_get, Next: _gfortran_caf_sendget, Prev: _gfortran_caf_send, Up: Function ABI Documentation
- 8.2.12 '_gfortran_caf_get' -- Getting data from a remote image
- --------------------------------------------------------------
- _Description_:
- Called to get an array section or a whole array from a remote,
- image identified by the image_index.
- _Syntax_:
- 'void _gfortran_caf_get (caf_token_t token, size_t offset, int
- image_index, gfc_descriptor_t *src, caf_vector_t *src_vector,
- gfc_descriptor_t *dest, int src_kind, int dst_kind, bool
- may_require_tmp, int *stat)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- DEST intent(out) Array descriptor of the local array
- to store the data retrieved from the remote
- image
- SRC intent(in) Array descriptor for the remote image
- for the bounds and the size. The 'base_addr'
- shall not be accessed.
- SRC_VECTOR intent(in) If not NULL, it contains the vector
- subscript of the source array; the values are
- relative to the dimension triplet of the SRC
- argument.
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- STAT intent(out) When non-NULL give the result of the
- operation, i.e., zero on success and non-zero on
- error. When NULL and an error occurs, then an
- error message is printed and the program is
- terminated.
- _NOTES_
- It is permitted to have IMAGE_INDEX equal the current image; the
- memory of the send-to and the send-from might (partially) overlap
- in that case. The implementation has to take care that it handles
- this case, e.g. using 'memmove' which handles (partially)
- overlapping memory. If MAY_REQUIRE_TMP is true, the library might
- additionally create a temporary variable, unless additional checks
- show that this is not required (e.g. because walking backward is
- possible or because both arrays are contiguous and 'memmove' takes
- care of overlap issues).
- Note that the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- File: gfortran.info, Node: _gfortran_caf_sendget, Next: _gfortran_caf_send_by_ref, Prev: _gfortran_caf_get, Up: Function ABI Documentation
- 8.2.13 '_gfortran_caf_sendget' -- Sending data between remote images
- --------------------------------------------------------------------
- _Description_:
- Called to send a scalar, an array section or a whole array from a
- remote image identified by the SRC_IMAGE_INDEX to a remote image
- identified by the DST_IMAGE_INDEX.
- _Syntax_:
- 'void _gfortran_caf_sendget (caf_token_t dst_token, size_t
- dst_offset, int dst_image_index, gfc_descriptor_t *dest,
- caf_vector_t *dst_vector, caf_token_t src_token, size_t src_offset,
- int src_image_index, gfc_descriptor_t *src, caf_vector_t
- *src_vector, int dst_kind, int src_kind, bool may_require_tmp, int
- *stat)'
- _Arguments_:
- DST_TOKEN intent(in) An opaque pointer identifying the
- destination coarray.
- DST_OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the destination coarray.
- DST_IMAGE_INDEXintent(in) The ID of the destination remote
- image; must be a positive number.
- DEST intent(in) Array descriptor for the destination
- remote image for the bounds and the size. The
- 'base_addr' shall not be accessed.
- DST_VECTOR intent(int) If not NULL, it contains the vector
- subscript of the destination array; the values
- are relative to the dimension triplet of the
- DEST argument.
- SRC_TOKEN intent(in) An opaque pointer identifying the
- source coarray.
- SRC_OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the source coarray.
- SRC_IMAGE_INDEXintent(in) The ID of the source remote image;
- must be a positive number.
- SRC intent(in) Array descriptor of the local array
- to be transferred to the remote image.
- SRC_VECTOR intent(in) Array descriptor of the local array
- to be transferred to the remote image
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- STAT intent(out) when non-NULL give the result of the
- operation, i.e., zero on success and non-zero on
- error. When NULL and an error occurs, then an
- error message is printed and the program is
- terminated.
- _NOTES_
- It is permitted to have the same image index for both
- SRC_IMAGE_INDEX and DST_IMAGE_INDEX; the memory of the send-to and
- the send-from might (partially) overlap in that case. The
- implementation has to take care that it handles this case, e.g.
- using 'memmove' which handles (partially) overlapping memory. If
- MAY_REQUIRE_TMP is true, the library might additionally create a
- temporary variable, unless additional checks show that this is not
- required (e.g. because walking backward is possible or because
- both arrays are contiguous and 'memmove' takes care of overlap
- issues).
- Note that the assignment of a scalar to an array is permitted. In
- addition, the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- File: gfortran.info, Node: _gfortran_caf_send_by_ref, Next: _gfortran_caf_get_by_ref, Prev: _gfortran_caf_sendget, Up: Function ABI Documentation
- 8.2.14 '_gfortran_caf_send_by_ref' -- Sending data from a local image to a remote image with enhanced referencing options
- -------------------------------------------------------------------------------------------------------------------------
- _Description_:
- Called to send a scalar, an array section or a whole array from a
- local to a remote image identified by the IMAGE_INDEX.
- _Syntax_:
- 'void _gfortran_caf_send_by_ref (caf_token_t token, int
- image_index, gfc_descriptor_t *src, caf_reference_t *refs, int
- dst_kind, int src_kind, bool may_require_tmp, bool
- dst_reallocatable, int *stat, int dst_type)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- SRC intent(in) Array descriptor of the local array
- to be transferred to the remote image
- REFS intent(in) The references on the remote array to
- store the data given by src. Guaranteed to have
- at least one entry.
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- DST_REALLOCATABLEintent(in) Set when the destination is of
- allocatable or pointer type and the refs will
- allow reallocation, i.e., the ref is a full
- array or component ref.
- STAT intent(out) When non-'NULL' give the result of
- the operation, i.e., zero on success and
- non-zero on error. When 'NULL' and an error
- occurs, then an error message is printed and the
- program is terminated.
- DST_TYPE intent(in) Give the type of the destination.
- When the destination is not an array, than the
- precise type, e.g. of a component in a derived
- type, is not known, but provided here.
- _NOTES_
- It is permitted to have IMAGE_INDEX equal the current image; the
- memory of the send-to and the send-from might (partially) overlap
- in that case. The implementation has to take care that it handles
- this case, e.g. using 'memmove' which handles (partially)
- overlapping memory. If MAY_REQUIRE_TMP is true, the library might
- additionally create a temporary variable, unless additional checks
- show that this is not required (e.g. because walking backward is
- possible or because both arrays are contiguous and 'memmove' takes
- care of overlap issues).
- Note that the assignment of a scalar to an array is permitted. In
- addition, the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- Because of the more complicated references possible some operations
- may be unsupported by certain libraries. The library is expected
- to issue a precise error message why the operation is not
- permitted.
- File: gfortran.info, Node: _gfortran_caf_get_by_ref, Next: _gfortran_caf_sendget_by_ref, Prev: _gfortran_caf_send_by_ref, Up: Function ABI Documentation
- 8.2.15 '_gfortran_caf_get_by_ref' -- Getting data from a remote image using enhanced references
- -----------------------------------------------------------------------------------------------
- _Description_:
- Called to get a scalar, an array section or a whole array from a
- remote image identified by the IMAGE_INDEX.
- _Syntax_:
- 'void _gfortran_caf_get_by_ref (caf_token_t token, int image_index,
- caf_reference_t *refs, gfc_descriptor_t *dst, int dst_kind, int
- src_kind, bool may_require_tmp, bool dst_reallocatable, int *stat,
- int src_type)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- REFS intent(in) The references to apply to the remote
- structure to get the data.
- DST intent(in) Array descriptor of the local array
- to store the data transferred from the remote
- image. May be reallocated where needed and when
- DST_REALLOCATABLE allows it.
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- DST_REALLOCATABLEintent(in) Set when DST is of allocatable or
- pointer type and its refs allow reallocation,
- i.e., the full array or a component is
- referenced.
- STAT intent(out) When non-'NULL' give the result of
- the operation, i.e., zero on success and
- non-zero on error. When 'NULL' and an error
- occurs, then an error message is printed and the
- program is terminated.
- SRC_TYPE intent(in) Give the type of the source. When
- the source is not an array, than the precise
- type, e.g. of a component in a derived type, is
- not known, but provided here.
- _NOTES_
- It is permitted to have 'image_index' equal the current image; the
- memory of the send-to and the send-from might (partially) overlap
- in that case. The implementation has to take care that it handles
- this case, e.g. using 'memmove' which handles (partially)
- overlapping memory. If MAY_REQUIRE_TMP is true, the library might
- additionally create a temporary variable, unless additional checks
- show that this is not required (e.g. because walking backward is
- possible or because both arrays are contiguous and 'memmove' takes
- care of overlap issues).
- Note that the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- Because of the more complicated references possible some operations
- may be unsupported by certain libraries. The library is expected
- to issue a precise error message why the operation is not
- permitted.
- File: gfortran.info, Node: _gfortran_caf_sendget_by_ref, Next: _gfortran_caf_lock, Prev: _gfortran_caf_get_by_ref, Up: Function ABI Documentation
- 8.2.16 '_gfortran_caf_sendget_by_ref' -- Sending data between remote images using enhanced references on both sides
- -------------------------------------------------------------------------------------------------------------------
- _Description_:
- Called to send a scalar, an array section or a whole array from a
- remote image identified by the SRC_IMAGE_INDEX to a remote image
- identified by the DST_IMAGE_INDEX.
- _Syntax_:
- 'void _gfortran_caf_sendget_by_ref (caf_token_t dst_token, int
- dst_image_index, caf_reference_t *dst_refs, caf_token_t src_token,
- int src_image_index, caf_reference_t *src_refs, int dst_kind, int
- src_kind, bool may_require_tmp, int *dst_stat, int *src_stat, int
- dst_type, int src_type)'
- _Arguments_:
- DST_TOKEN intent(in) An opaque pointer identifying the
- destination coarray.
- DST_IMAGE_INDEXintent(in) The ID of the destination remote
- image; must be a positive number.
- DST_REFS intent(in) The references on the remote array to
- store the data given by the source. Guaranteed
- to have at least one entry.
- SRC_TOKEN intent(in) An opaque pointer identifying the
- source coarray.
- SRC_IMAGE_INDEXintent(in) The ID of the source remote image;
- must be a positive number.
- SRC_REFS intent(in) The references to apply to the remote
- structure to get the data.
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- DST_STAT intent(out) when non-'NULL' give the result of
- the send-operation, i.e., zero on success and
- non-zero on error. When 'NULL' and an error
- occurs, then an error message is printed and the
- program is terminated.
- SRC_STAT intent(out) When non-'NULL' give the result of
- the get-operation, i.e., zero on success and
- non-zero on error. When 'NULL' and an error
- occurs, then an error message is printed and the
- program is terminated.
- DST_TYPE intent(in) Give the type of the destination.
- When the destination is not an array, than the
- precise type, e.g. of a component in a derived
- type, is not known, but provided here.
- SRC_TYPE intent(in) Give the type of the source. When
- the source is not an array, than the precise
- type, e.g. of a component in a derived type, is
- not known, but provided here.
- _NOTES_
- It is permitted to have the same image index for both
- SRC_IMAGE_INDEX and DST_IMAGE_INDEX; the memory of the send-to and
- the send-from might (partially) overlap in that case. The
- implementation has to take care that it handles this case, e.g.
- using 'memmove' which handles (partially) overlapping memory. If
- MAY_REQUIRE_TMP is true, the library might additionally create a
- temporary variable, unless additional checks show that this is not
- required (e.g. because walking backward is possible or because
- both arrays are contiguous and 'memmove' takes care of overlap
- issues).
- Note that the assignment of a scalar to an array is permitted. In
- addition, the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- Because of the more complicated references possible some operations
- may be unsupported by certain libraries. The library is expected
- to issue a precise error message why the operation is not
- permitted.
- File: gfortran.info, Node: _gfortran_caf_lock, Next: _gfortran_caf_unlock, Prev: _gfortran_caf_sendget_by_ref, Up: Function ABI Documentation
- 8.2.17 '_gfortran_caf_lock' -- Locking a lock variable
- ------------------------------------------------------
- _Description_:
- Acquire a lock on the given image on a scalar locking variable or
- for the given array element for an array-valued variable. If the
- AQUIRED_LOCK is 'NULL', the function returns after having obtained
- the lock. If it is non-'NULL', then ACQUIRED_LOCK is assigned the
- value true (one) when the lock could be obtained and false (zero)
- otherwise. Locking a lock variable which has already been locked
- by the same image is an error.
- _Syntax_:
- 'void _gfortran_caf_lock (caf_token_t token, size_t index, int
- image_index, int *aquired_lock, int *stat, char *errmsg, size_t
- errmsg_len)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- INDEX intent(in) Array index; first array index is 0.
- For scalars, it is always 0.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- AQUIRED_LOCKintent(out) If not NULL, it returns whether lock
- could be obtained.
- STAT intent(out) Stores the STAT=; may be NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- This function is also called for critical blocks; for those, the
- array index is always zero and the image index is one. Libraries
- are permitted to use other images for critical-block locking
- variables.
- File: gfortran.info, Node: _gfortran_caf_unlock, Next: _gfortran_caf_event_post, Prev: _gfortran_caf_lock, Up: Function ABI Documentation
- 8.2.18 '_gfortran_caf_lock' -- Unlocking a lock variable
- --------------------------------------------------------
- _Description_:
- Release a lock on the given image on a scalar locking variable or
- for the given array element for an array-valued variable.
- Unlocking a lock variable which is unlocked or has been locked by a
- different image is an error.
- _Syntax_:
- 'void _gfortran_caf_unlock (caf_token_t token, size_t index, int
- image_index, int *stat, char *errmsg, size_t errmsg_len)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- INDEX intent(in) Array index; first array index is 0.
- For scalars, it is always 0.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- STAT intent(out) For allocatable coarrays, stores the
- STAT=; may be NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- This function is also called for critical block; for those, the
- array index is always zero and the image index is one. Libraries
- are permitted to use other images for critical-block locking
- variables.
- File: gfortran.info, Node: _gfortran_caf_event_post, Next: _gfortran_caf_event_wait, Prev: _gfortran_caf_unlock, Up: Function ABI Documentation
- 8.2.19 '_gfortran_caf_event_post' -- Post an event
- --------------------------------------------------
- _Description_:
- Increment the event count of the specified event variable.
- _Syntax_:
- 'void _gfortran_caf_event_post (caf_token_t token, size_t index,
- int image_index, int *stat, char *errmsg, size_t errmsg_len)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- INDEX intent(in) Array index; first array index is 0.
- For scalars, it is always 0.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image, when accessed noncoindexed.
- STAT intent(out) Stores the STAT=; may be NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- This acts like an atomic add of one to the remote image's event
- variable. The statement is an image-control statement but does not
- imply sync memory. Still, all preceeding push communications of
- this image to the specified remote image have to be completed
- before 'event_wait' on the remote image returns.
- File: gfortran.info, Node: _gfortran_caf_event_wait, Next: _gfortran_caf_event_query, Prev: _gfortran_caf_event_post, Up: Function ABI Documentation
- 8.2.20 '_gfortran_caf_event_wait' -- Wait that an event occurred
- ----------------------------------------------------------------
- _Description_:
- Wait until the event count has reached at least the specified
- UNTIL_COUNT; if so, atomically decrement the event variable by this
- amount and return.
- _Syntax_:
- 'void _gfortran_caf_event_wait (caf_token_t token, size_t index,
- int until_count, int *stat, char *errmsg, size_t errmsg_len)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- INDEX intent(in) Array index; first array index is 0.
- For scalars, it is always 0.
- UNTIL_COUNT intent(in) The number of events which have to be
- available before the function returns.
- STAT intent(out) Stores the STAT=; may be NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- This function only operates on a local coarray. It acts like a
- loop checking atomically the value of the event variable, breaking
- if the value is greater or equal the requested number of counts.
- Before the function returns, the event variable has to be
- decremented by the requested UNTIL_COUNT value. A possible
- implementation would be a busy loop for a certain number of spins
- (possibly depending on the number of threads relative to the number
- of available cores) followed by another waiting strategy such as a
- sleeping wait (possibly with an increasing number of sleep time)
- or, if possible, a futex wait.
- The statement is an image-control statement but does not imply sync
- memory. Still, all preceeding push communications of this image to
- the specified remote image have to be completed before 'event_wait'
- on the remote image returns.
- File: gfortran.info, Node: _gfortran_caf_event_query, Next: _gfortran_caf_sync_all, Prev: _gfortran_caf_event_wait, Up: Function ABI Documentation
- 8.2.21 '_gfortran_caf_event_query' -- Query event count
- -------------------------------------------------------
- _Description_:
- Return the event count of the specified event variable.
- _Syntax_:
- 'void _gfortran_caf_event_query (caf_token_t token, size_t index,
- int image_index, int *count, int *stat)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- INDEX intent(in) Array index; first array index is 0.
- For scalars, it is always 0.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image when accessed noncoindexed.
- COUNT intent(out) The number of events currently
- posted to the event variable.
- STAT intent(out) Stores the STAT=; may be NULL.
- _NOTES_
- The typical use is to check the local event variable to only call
- 'event_wait' when the data is available. However, a coindexed
- variable is permitted; there is no ordering or synchronization
- implied. It acts like an atomic fetch of the value of the event
- variable.
- File: gfortran.info, Node: _gfortran_caf_sync_all, Next: _gfortran_caf_sync_images, Prev: _gfortran_caf_event_query, Up: Function ABI Documentation
- 8.2.22 '_gfortran_caf_sync_all' -- All-image barrier
- ----------------------------------------------------
- _Description_:
- Synchronization of all images in the current team; the program only
- continues on a given image after this function has been called on
- all images of the current team. Additionally, it ensures that all
- pending data transfers of previous segment have completed.
- _Syntax_:
- 'void _gfortran_caf_sync_all (int *stat, char *errmsg, size_t
- errmsg_len)'
- _Arguments_:
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- File: gfortran.info, Node: _gfortran_caf_sync_images, Next: _gfortran_caf_sync_memory, Prev: _gfortran_caf_sync_all, Up: Function ABI Documentation
- 8.2.23 '_gfortran_caf_sync_images' -- Barrier for selected images
- -----------------------------------------------------------------
- _Description_:
- Synchronization between the specified images; the program only
- continues on a given image after this function has been called on
- all images specified for that image. Note that one image can wait
- for all other images in the current team (e.g. via 'sync
- images(*)') while those only wait for that specific image.
- Additionally, 'sync images' ensures that all pending data transfers
- of previous segments have completed.
- _Syntax_:
- 'void _gfortran_caf_sync_images (int count, int images[], int
- *stat, char *errmsg, size_t errmsg_len)'
- _Arguments_:
- COUNT intent(in) The number of images which are
- provided in the next argument. For a zero-sized
- array, the value is zero. For 'sync images
- (*)', the value is -1.
- IMAGES intent(in) An array with the images provided by
- the user. If COUNT is zero, a NULL pointer is
- passed.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- File: gfortran.info, Node: _gfortran_caf_sync_memory, Next: _gfortran_caf_error_stop, Prev: _gfortran_caf_sync_images, Up: Function ABI Documentation
- 8.2.24 '_gfortran_caf_sync_memory' -- Wait for completion of segment-memory operations
- --------------------------------------------------------------------------------------
- _Description_:
- Acts as optimization barrier between different segments. It also
- ensures that all pending memory operations of this image have been
- completed.
- _Syntax_:
- 'void _gfortran_caf_sync_memory (int *stat, char *errmsg, size_t
- errmsg_len)'
- _Arguments_:
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTE_ A simple implementation could be
- '__asm__ __volatile__ ("":::"memory")' to prevent code movements.
- File: gfortran.info, Node: _gfortran_caf_error_stop, Next: _gfortran_caf_error_stop_str, Prev: _gfortran_caf_sync_memory, Up: Function ABI Documentation
- 8.2.25 '_gfortran_caf_error_stop' -- Error termination with exit code
- ---------------------------------------------------------------------
- _Description_:
- Invoked for an 'ERROR STOP' statement which has an integer
- argument. The function should terminate the program with the
- specified exit code.
- _Syntax_:
- 'void _gfortran_caf_error_stop (int error)'
- _Arguments_:
- ERROR intent(in) The exit status to be used.
- File: gfortran.info, Node: _gfortran_caf_error_stop_str, Next: _gfortran_caf_fail_image, Prev: _gfortran_caf_error_stop, Up: Function ABI Documentation
- 8.2.26 '_gfortran_caf_error_stop_str' -- Error termination with string
- ----------------------------------------------------------------------
- _Description_:
- Invoked for an 'ERROR STOP' statement which has a string as
- argument. The function should terminate the program with a
- nonzero-exit code.
- _Syntax_:
- 'void _gfortran_caf_error_stop (const char *string, size_t len)'
- _Arguments_:
- STRING intent(in) the error message (not zero
- terminated)
- LEN intent(in) the length of the string
- File: gfortran.info, Node: _gfortran_caf_fail_image, Next: _gfortran_caf_atomic_define, Prev: _gfortran_caf_error_stop_str, Up: Function ABI Documentation
- 8.2.27 '_gfortran_caf_fail_image' -- Mark the image failed and end its execution
- --------------------------------------------------------------------------------
- _Description_:
- Invoked for an 'FAIL IMAGE' statement. The function should
- terminate the current image.
- _Syntax_:
- 'void _gfortran_caf_fail_image ()'
- _NOTES_
- This function follows TS18508.
- File: gfortran.info, Node: _gfortran_caf_atomic_define, Next: _gfortran_caf_atomic_ref, Prev: _gfortran_caf_fail_image, Up: Function ABI Documentation
- 8.2.28 '_gfortran_caf_atomic_define' -- Atomic variable assignment
- ------------------------------------------------------------------
- _Description_:
- Assign atomically a value to an integer or logical variable.
- _Syntax_:
- 'void _gfortran_caf_atomic_define (caf_token_t token, size_t
- offset, int image_index, void *value, int *stat, int type, int
- kind)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image when used noncoindexed.
- VALUE intent(in) the value to be assigned, passed by
- reference
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- TYPE intent(in) The data type, i.e. 'BT_INTEGER' (1)
- or 'BT_LOGICAL' (2).
- KIND intent(in) The kind value (only 4; always 'int')
- File: gfortran.info, Node: _gfortran_caf_atomic_ref, Next: _gfortran_caf_atomic_cas, Prev: _gfortran_caf_atomic_define, Up: Function ABI Documentation
- 8.2.29 '_gfortran_caf_atomic_ref' -- Atomic variable reference
- --------------------------------------------------------------
- _Description_:
- Reference atomically a value of a kind-4 integer or logical
- variable.
- _Syntax_:
- 'void _gfortran_caf_atomic_ref (caf_token_t token, size_t offset,
- int image_index, void *value, int *stat, int type, int kind)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image when used noncoindexed.
- VALUE intent(out) The variable assigned the atomically
- referenced variable.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- TYPE the data type, i.e. 'BT_INTEGER' (1) or
- 'BT_LOGICAL' (2).
- KIND The kind value (only 4; always 'int')
- File: gfortran.info, Node: _gfortran_caf_atomic_cas, Next: _gfortran_caf_atomic_op, Prev: _gfortran_caf_atomic_ref, Up: Function ABI Documentation
- 8.2.30 '_gfortran_caf_atomic_cas' -- Atomic compare and swap
- ------------------------------------------------------------
- _Description_:
- Atomic compare and swap of a kind-4 integer or logical variable.
- Assigns atomically the specified value to the atomic variable, if
- the latter has the value specified by the passed condition value.
- _Syntax_:
- 'void _gfortran_caf_atomic_cas (caf_token_t token, size_t offset,
- int image_index, void *old, void *compare, void *new_val, int
- *stat, int type, int kind)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image when used noncoindexed.
- OLD intent(out) The value which the atomic variable
- had just before the cas operation.
- COMPARE intent(in) The value used for comparision.
- NEW_VAL intent(in) The new value for the atomic
- variable, assigned to the atomic variable, if
- 'compare' equals the value of the atomic
- variable.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- TYPE intent(in) the data type, i.e. 'BT_INTEGER' (1)
- or 'BT_LOGICAL' (2).
- KIND intent(in) The kind value (only 4; always 'int')
- File: gfortran.info, Node: _gfortran_caf_atomic_op, Next: _gfortran_caf_co_broadcast, Prev: _gfortran_caf_atomic_cas, Up: Function ABI Documentation
- 8.2.31 '_gfortran_caf_atomic_op' -- Atomic operation
- ----------------------------------------------------
- _Description_:
- Apply an operation atomically to an atomic integer or logical
- variable. After the operation, OLD contains the value just before
- the operation, which, respectively, adds (GFC_CAF_ATOMIC_ADD)
- atomically the 'value' to the atomic integer variable or does a
- bitwise AND, OR or exclusive OR between the atomic variable and
- VALUE; the result is then stored in the atomic variable.
- _Syntax_:
- 'void _gfortran_caf_atomic_op (int op, caf_token_t token, size_t
- offset, int image_index, void *value, void *old, int *stat, int
- type, int kind)'
- _Arguments_:
- OP intent(in) the operation to be performed;
- possible values 'GFC_CAF_ATOMIC_ADD' (1),
- 'GFC_CAF_ATOMIC_AND' (2), 'GFC_CAF_ATOMIC_OR'
- (3), 'GFC_CAF_ATOMIC_XOR' (4).
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image when used noncoindexed.
- OLD intent(out) The value which the atomic variable
- had just before the atomic operation.
- VAL intent(in) The new value for the atomic
- variable, assigned to the atomic variable, if
- 'compare' equals the value of the atomic
- variable.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- TYPE intent(in) the data type, i.e. 'BT_INTEGER' (1)
- or 'BT_LOGICAL' (2)
- KIND intent(in) the kind value (only 4; always 'int')
- File: gfortran.info, Node: _gfortran_caf_co_broadcast, Next: _gfortran_caf_co_max, Prev: _gfortran_caf_atomic_op, Up: Function ABI Documentation
- 8.2.32 '_gfortran_caf_co_broadcast' -- Sending data to all images
- -----------------------------------------------------------------
- _Description_:
- Distribute a value from a given image to all other images in the
- team. Has to be called collectively.
- _Syntax_:
- 'void _gfortran_caf_co_broadcast (gfc_descriptor_t *a, int
- source_image, int *stat, char *errmsg, size_t errmsg_len)'
- _Arguments_:
- A intent(inout) An array descriptor with the data
- to be broadcasted (on SOURCE_IMAGE) or to be
- received (other images).
- SOURCE_IMAGEintent(in) The ID of the image from which the
- data should be broadcasted.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg.
- File: gfortran.info, Node: _gfortran_caf_co_max, Next: _gfortran_caf_co_min, Prev: _gfortran_caf_co_broadcast, Up: Function ABI Documentation
- 8.2.33 '_gfortran_caf_co_max' -- Collective maximum reduction
- -------------------------------------------------------------
- _Description_:
- Calculates for each array element of the variable A the maximum
- value for that element in the current team; if RESULT_IMAGE has the
- value 0, the result shall be stored on all images, otherwise, only
- on the specified image. This function operates on numeric values
- and character strings.
- _Syntax_:
- 'void _gfortran_caf_co_max (gfc_descriptor_t *a, int result_image,
- int *stat, char *errmsg, int a_len, size_t errmsg_len)'
- _Arguments_:
- A intent(inout) An array descriptor for the data
- to be processed. On the destination image(s)
- the result overwrites the old content.
- RESULT_IMAGEintent(in) The ID of the image to which the
- reduced value should be copied to; if zero, it
- has to be copied to all images.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- A_LEN intent(in) the string length of argument A
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- If RESULT_IMAGE is nonzero, the data in the array descriptor A on
- all images except of the specified one become undefined; hence, the
- library may make use of this.
- File: gfortran.info, Node: _gfortran_caf_co_min, Next: _gfortran_caf_co_sum, Prev: _gfortran_caf_co_max, Up: Function ABI Documentation
- 8.2.34 '_gfortran_caf_co_min' -- Collective minimum reduction
- -------------------------------------------------------------
- _Description_:
- Calculates for each array element of the variable A the minimum
- value for that element in the current team; if RESULT_IMAGE has the
- value 0, the result shall be stored on all images, otherwise, only
- on the specified image. This function operates on numeric values
- and character strings.
- _Syntax_:
- 'void _gfortran_caf_co_min (gfc_descriptor_t *a, int result_image,
- int *stat, char *errmsg, int a_len, size_t errmsg_len)'
- _Arguments_:
- A intent(inout) An array descriptor for the data
- to be processed. On the destination image(s)
- the result overwrites the old content.
- RESULT_IMAGEintent(in) The ID of the image to which the
- reduced value should be copied to; if zero, it
- has to be copied to all images.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- A_LEN intent(in) the string length of argument A
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- If RESULT_IMAGE is nonzero, the data in the array descriptor A on
- all images except of the specified one become undefined; hence, the
- library may make use of this.
- File: gfortran.info, Node: _gfortran_caf_co_sum, Next: _gfortran_caf_co_reduce, Prev: _gfortran_caf_co_min, Up: Function ABI Documentation
- 8.2.35 '_gfortran_caf_co_sum' -- Collective summing reduction
- -------------------------------------------------------------
- _Description_:
- Calculates for each array element of the variable A the sum of all
- values for that element in the current team; if RESULT_IMAGE has
- the value 0, the result shall be stored on all images, otherwise,
- only on the specified image. This function operates on numeric
- values only.
- _Syntax_:
- 'void _gfortran_caf_co_sum (gfc_descriptor_t *a, int result_image,
- int *stat, char *errmsg, size_t errmsg_len)'
- _Arguments_:
- A intent(inout) An array descriptor with the data
- to be processed. On the destination image(s)
- the result overwrites the old content.
- RESULT_IMAGEintent(in) The ID of the image to which the
- reduced value should be copied to; if zero, it
- has to be copied to all images.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- If RESULT_IMAGE is nonzero, the data in the array descriptor A on
- all images except of the specified one become undefined; hence, the
- library may make use of this.
- File: gfortran.info, Node: _gfortran_caf_co_reduce, Prev: _gfortran_caf_co_sum, Up: Function ABI Documentation
- 8.2.36 '_gfortran_caf_co_reduce' -- Generic collective reduction
- ----------------------------------------------------------------
- _Description_:
- Calculates for each array element of the variable A the reduction
- value for that element in the current team; if RESULT_IMAGE has the
- value 0, the result shall be stored on all images, otherwise, only
- on the specified image. The OPR is a pure function doing a
- mathematically commutative and associative operation.
- The OPR_FLAGS denote the following; the values are bitwise ored.
- 'GFC_CAF_BYREF' (1) if the result should be returned by reference;
- 'GFC_CAF_HIDDENLEN' (2) whether the result and argument string
- lengths shall be specified as hidden arguments; 'GFC_CAF_ARG_VALUE'
- (4) whether the arguments shall be passed by value,
- 'GFC_CAF_ARG_DESC' (8) whether the arguments shall be passed by
- descriptor.
- _Syntax_:
- 'void _gfortran_caf_co_reduce (gfc_descriptor_t *a, void * (*opr)
- (void *, void *), int opr_flags, int result_image, int *stat, char
- *errmsg, int a_len, size_t errmsg_len)'
- _Arguments_:
- A intent(inout) An array descriptor with the data
- to be processed. On the destination image(s)
- the result overwrites the old content.
- OPR intent(in) Function pointer to the reduction
- function
- OPR_FLAGS intent(in) Flags regarding the reduction
- function
- RESULT_IMAGEintent(in) The ID of the image to which the
- reduced value should be copied to; if zero, it
- has to be copied to all images.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- A_LEN intent(in) the string length of argument A
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- If RESULT_IMAGE is nonzero, the data in the array descriptor A on
- all images except of the specified one become undefined; hence, the
- library may make use of this.
- For character arguments, the result is passed as first argument,
- followed by the result string length, next come the two string
- arguments, followed by the two hidden string length arguments.
- With C binding, there are no hidden arguments and by-reference
- passing and either only a single character is passed or an array
- descriptor.
- File: gfortran.info, Node: Intrinsic Procedures, Next: Intrinsic Modules, Prev: Coarray Programming, Up: Top
- 9 Intrinsic Procedures
- **********************
- * Menu:
- * Introduction: Introduction to Intrinsics
- * 'ABORT': ABORT, Abort the program
- * 'ABS': ABS, Absolute value
- * 'ACCESS': ACCESS, Checks file access modes
- * 'ACHAR': ACHAR, Character in ASCII collating sequence
- * 'ACOS': ACOS, Arccosine function
- * 'ACOSD': ACOSD, Arccosine function, degrees
- * 'ACOSH': ACOSH, Inverse hyperbolic cosine function
- * 'ADJUSTL': ADJUSTL, Left adjust a string
- * 'ADJUSTR': ADJUSTR, Right adjust a string
- * 'AIMAG': AIMAG, Imaginary part of complex number
- * 'AINT': AINT, Truncate to a whole number
- * 'ALARM': ALARM, Set an alarm clock
- * 'ALL': ALL, Determine if all values are true
- * 'ALLOCATED': ALLOCATED, Status of allocatable entity
- * 'AND': AND, Bitwise logical AND
- * 'ANINT': ANINT, Nearest whole number
- * 'ANY': ANY, Determine if any values are true
- * 'ASIN': ASIN, Arcsine function
- * 'ASIND': ASIND, Arcsine function, degrees
- * 'ASINH': ASINH, Inverse hyperbolic sine function
- * 'ASSOCIATED': ASSOCIATED, Status of a pointer or pointer/target pair
- * 'ATAN': ATAN, Arctangent function
- * 'ATAND': ATAND, Arctangent function, degrees
- * 'ATAN2': ATAN2, Arctangent function
- * 'ATAN2D': ATAN2D, Arctangent function, degrees
- * 'ATANH': ATANH, Inverse hyperbolic tangent function
- * 'ATOMIC_ADD': ATOMIC_ADD, Atomic ADD operation
- * 'ATOMIC_AND': ATOMIC_AND, Atomic bitwise AND operation
- * 'ATOMIC_CAS': ATOMIC_CAS, Atomic compare and swap
- * 'ATOMIC_DEFINE': ATOMIC_DEFINE, Setting a variable atomically
- * 'ATOMIC_FETCH_ADD': ATOMIC_FETCH_ADD, Atomic ADD operation with prior fetch
- * 'ATOMIC_FETCH_AND': ATOMIC_FETCH_AND, Atomic bitwise AND operation with prior fetch
- * 'ATOMIC_FETCH_OR': ATOMIC_FETCH_OR, Atomic bitwise OR operation with prior fetch
- * 'ATOMIC_FETCH_XOR': ATOMIC_FETCH_XOR, Atomic bitwise XOR operation with prior fetch
- * 'ATOMIC_OR': ATOMIC_OR, Atomic bitwise OR operation
- * 'ATOMIC_REF': ATOMIC_REF, Obtaining the value of a variable atomically
- * 'ATOMIC_XOR': ATOMIC_XOR, Atomic bitwise OR operation
- * 'BACKTRACE': BACKTRACE, Show a backtrace
- * 'BESSEL_J0': BESSEL_J0, Bessel function of the first kind of order 0
- * 'BESSEL_J1': BESSEL_J1, Bessel function of the first kind of order 1
- * 'BESSEL_JN': BESSEL_JN, Bessel function of the first kind
- * 'BESSEL_Y0': BESSEL_Y0, Bessel function of the second kind of order 0
- * 'BESSEL_Y1': BESSEL_Y1, Bessel function of the second kind of order 1
- * 'BESSEL_YN': BESSEL_YN, Bessel function of the second kind
- * 'BGE': BGE, Bitwise greater than or equal to
- * 'BGT': BGT, Bitwise greater than
- * 'BIT_SIZE': BIT_SIZE, Bit size inquiry function
- * 'BLE': BLE, Bitwise less than or equal to
- * 'BLT': BLT, Bitwise less than
- * 'BTEST': BTEST, Bit test function
- * 'C_ASSOCIATED': C_ASSOCIATED, Status of a C pointer
- * 'C_F_POINTER': C_F_POINTER, Convert C into Fortran pointer
- * 'C_F_PROCPOINTER': C_F_PROCPOINTER, Convert C into Fortran procedure pointer
- * 'C_FUNLOC': C_FUNLOC, Obtain the C address of a procedure
- * 'C_LOC': C_LOC, Obtain the C address of an object
- * 'C_SIZEOF': C_SIZEOF, Size in bytes of an expression
- * 'CEILING': CEILING, Integer ceiling function
- * 'CHAR': CHAR, Integer-to-character conversion function
- * 'CHDIR': CHDIR, Change working directory
- * 'CHMOD': CHMOD, Change access permissions of files
- * 'CMPLX': CMPLX, Complex conversion function
- * 'CO_BROADCAST': CO_BROADCAST, Copy a value to all images the current set of images
- * 'CO_MAX': CO_MAX, Maximal value on the current set of images
- * 'CO_MIN': CO_MIN, Minimal value on the current set of images
- * 'CO_REDUCE': CO_REDUCE, Reduction of values on the current set of images
- * 'CO_SUM': CO_SUM, Sum of values on the current set of images
- * 'COMMAND_ARGUMENT_COUNT': COMMAND_ARGUMENT_COUNT, Get number of command line arguments
- * 'COMPILER_OPTIONS': COMPILER_OPTIONS, Options passed to the compiler
- * 'COMPILER_VERSION': COMPILER_VERSION, Compiler version string
- * 'COMPLEX': COMPLEX, Complex conversion function
- * 'CONJG': CONJG, Complex conjugate function
- * 'COS': COS, Cosine function
- * 'COSD': COSD, Cosine function, degrees
- * 'COSH': COSH, Hyperbolic cosine function
- * 'COTAN': COTAN, Cotangent function
- * 'COTAND': COTAND, Cotangent function, degrees
- * 'COUNT': COUNT, Count occurrences of TRUE in an array
- * 'CPU_TIME': CPU_TIME, CPU time subroutine
- * 'CSHIFT': CSHIFT, Circular shift elements of an array
- * 'CTIME': CTIME, Subroutine (or function) to convert a time into a string
- * 'DATE_AND_TIME': DATE_AND_TIME, Date and time subroutine
- * 'DBLE': DBLE, Double precision conversion function
- * 'DCMPLX': DCMPLX, Double complex conversion function
- * 'DIGITS': DIGITS, Significant digits function
- * 'DIM': DIM, Positive difference
- * 'DOT_PRODUCT': DOT_PRODUCT, Dot product function
- * 'DPROD': DPROD, Double product function
- * 'DREAL': DREAL, Double real part function
- * 'DSHIFTL': DSHIFTL, Combined left shift
- * 'DSHIFTR': DSHIFTR, Combined right shift
- * 'DTIME': DTIME, Execution time subroutine (or function)
- * 'EOSHIFT': EOSHIFT, End-off shift elements of an array
- * 'EPSILON': EPSILON, Epsilon function
- * 'ERF': ERF, Error function
- * 'ERFC': ERFC, Complementary error function
- * 'ERFC_SCALED': ERFC_SCALED, Exponentially-scaled complementary error function
- * 'ETIME': ETIME, Execution time subroutine (or function)
- * 'EVENT_QUERY': EVENT_QUERY, Query whether a coarray event has occurred
- * 'EXECUTE_COMMAND_LINE': EXECUTE_COMMAND_LINE, Execute a shell command
- * 'EXIT': EXIT, Exit the program with status.
- * 'EXP': EXP, Exponential function
- * 'EXPONENT': EXPONENT, Exponent function
- * 'EXTENDS_TYPE_OF': EXTENDS_TYPE_OF, Query dynamic type for extension
- * 'FDATE': FDATE, Subroutine (or function) to get the current time as a string
- * 'FGET': FGET, Read a single character in stream mode from stdin
- * 'FGETC': FGETC, Read a single character in stream mode
- * 'FINDLOC': FINDLOC, Search an array for a value
- * 'FLOOR': FLOOR, Integer floor function
- * 'FLUSH': FLUSH, Flush I/O unit(s)
- * 'FNUM': FNUM, File number function
- * 'FPUT': FPUT, Write a single character in stream mode to stdout
- * 'FPUTC': FPUTC, Write a single character in stream mode
- * 'FRACTION': FRACTION, Fractional part of the model representation
- * 'FREE': FREE, Memory de-allocation subroutine
- * 'FSEEK': FSEEK, Low level file positioning subroutine
- * 'FSTAT': FSTAT, Get file status
- * 'FTELL': FTELL, Current stream position
- * 'GAMMA': GAMMA, Gamma function
- * 'GERROR': GERROR, Get last system error message
- * 'GETARG': GETARG, Get command line arguments
- * 'GET_COMMAND': GET_COMMAND, Get the entire command line
- * 'GET_COMMAND_ARGUMENT': GET_COMMAND_ARGUMENT, Get command line arguments
- * 'GETCWD': GETCWD, Get current working directory
- * 'GETENV': GETENV, Get an environmental variable
- * 'GET_ENVIRONMENT_VARIABLE': GET_ENVIRONMENT_VARIABLE, Get an environmental variable
- * 'GETGID': GETGID, Group ID function
- * 'GETLOG': GETLOG, Get login name
- * 'GETPID': GETPID, Process ID function
- * 'GETUID': GETUID, User ID function
- * 'GMTIME': GMTIME, Convert time to GMT info
- * 'HOSTNM': HOSTNM, Get system host name
- * 'HUGE': HUGE, Largest number of a kind
- * 'HYPOT': HYPOT, Euclidean distance function
- * 'IACHAR': IACHAR, Code in ASCII collating sequence
- * 'IALL': IALL, Bitwise AND of array elements
- * 'IAND': IAND, Bitwise logical and
- * 'IANY': IANY, Bitwise OR of array elements
- * 'IARGC': IARGC, Get the number of command line arguments
- * 'IBCLR': IBCLR, Clear bit
- * 'IBITS': IBITS, Bit extraction
- * 'IBSET': IBSET, Set bit
- * 'ICHAR': ICHAR, Character-to-integer conversion function
- * 'IDATE': IDATE, Current local time (day/month/year)
- * 'IEOR': IEOR, Bitwise logical exclusive or
- * 'IERRNO': IERRNO, Function to get the last system error number
- * 'IMAGE_INDEX': IMAGE_INDEX, Cosubscript to image index conversion
- * 'INDEX': INDEX intrinsic, Position of a substring within a string
- * 'INT': INT, Convert to integer type
- * 'INT2': INT2, Convert to 16-bit integer type
- * 'INT8': INT8, Convert to 64-bit integer type
- * 'IOR': IOR, Bitwise logical or
- * 'IPARITY': IPARITY, Bitwise XOR of array elements
- * 'IRAND': IRAND, Integer pseudo-random number
- * 'IS_CONTIGUOUS': IS_CONTIGUOUS, Test whether an array is contiguous
- * 'IS_IOSTAT_END': IS_IOSTAT_END, Test for end-of-file value
- * 'IS_IOSTAT_EOR': IS_IOSTAT_EOR, Test for end-of-record value
- * 'ISATTY': ISATTY, Whether a unit is a terminal device
- * 'ISHFT': ISHFT, Shift bits
- * 'ISHFTC': ISHFTC, Shift bits circularly
- * 'ISNAN': ISNAN, Tests for a NaN
- * 'ITIME': ITIME, Current local time (hour/minutes/seconds)
- * 'KILL': KILL, Send a signal to a process
- * 'KIND': KIND, Kind of an entity
- * 'LBOUND': LBOUND, Lower dimension bounds of an array
- * 'LCOBOUND': LCOBOUND, Lower codimension bounds of an array
- * 'LEADZ': LEADZ, Number of leading zero bits of an integer
- * 'LEN': LEN, Length of a character entity
- * 'LEN_TRIM': LEN_TRIM, Length of a character entity without trailing blank characters
- * 'LGE': LGE, Lexical greater than or equal
- * 'LGT': LGT, Lexical greater than
- * 'LINK': LINK, Create a hard link
- * 'LLE': LLE, Lexical less than or equal
- * 'LLT': LLT, Lexical less than
- * 'LNBLNK': LNBLNK, Index of the last non-blank character in a string
- * 'LOC': LOC, Returns the address of a variable
- * 'LOG': LOG, Logarithm function
- * 'LOG10': LOG10, Base 10 logarithm function
- * 'LOG_GAMMA': LOG_GAMMA, Logarithm of the Gamma function
- * 'LOGICAL': LOGICAL, Convert to logical type
- * 'LONG': LONG, Convert to integer type
- * 'LSHIFT': LSHIFT, Left shift bits
- * 'LSTAT': LSTAT, Get file status
- * 'LTIME': LTIME, Convert time to local time info
- * 'MALLOC': MALLOC, Dynamic memory allocation function
- * 'MASKL': MASKL, Left justified mask
- * 'MASKR': MASKR, Right justified mask
- * 'MATMUL': MATMUL, matrix multiplication
- * 'MAX': MAX, Maximum value of an argument list
- * 'MAXEXPONENT': MAXEXPONENT, Maximum exponent of a real kind
- * 'MAXLOC': MAXLOC, Location of the maximum value within an array
- * 'MAXVAL': MAXVAL, Maximum value of an array
- * 'MCLOCK': MCLOCK, Time function
- * 'MCLOCK8': MCLOCK8, Time function (64-bit)
- * 'MERGE': MERGE, Merge arrays
- * 'MERGE_BITS': MERGE_BITS, Merge of bits under mask
- * 'MIN': MIN, Minimum value of an argument list
- * 'MINEXPONENT': MINEXPONENT, Minimum exponent of a real kind
- * 'MINLOC': MINLOC, Location of the minimum value within an array
- * 'MINVAL': MINVAL, Minimum value of an array
- * 'MOD': MOD, Remainder function
- * 'MODULO': MODULO, Modulo function
- * 'MOVE_ALLOC': MOVE_ALLOC, Move allocation from one object to another
- * 'MVBITS': MVBITS, Move bits from one integer to another
- * 'NEAREST': NEAREST, Nearest representable number
- * 'NEW_LINE': NEW_LINE, New line character
- * 'NINT': NINT, Nearest whole number
- * 'NORM2': NORM2, Euclidean vector norm
- * 'NOT': NOT, Logical negation
- * 'NULL': NULL, Function that returns an disassociated pointer
- * 'NUM_IMAGES': NUM_IMAGES, Number of images
- * 'OR': OR, Bitwise logical OR
- * 'PACK': PACK, Pack an array into an array of rank one
- * 'PARITY': PARITY, Reduction with exclusive OR
- * 'PERROR': PERROR, Print system error message
- * 'POPCNT': POPCNT, Number of bits set
- * 'POPPAR': POPPAR, Parity of the number of bits set
- * 'PRECISION': PRECISION, Decimal precision of a real kind
- * 'PRESENT': PRESENT, Determine whether an optional dummy argument is specified
- * 'PRODUCT': PRODUCT, Product of array elements
- * 'RADIX': RADIX, Base of a data model
- * 'RAN': RAN, Real pseudo-random number
- * 'RAND': RAND, Real pseudo-random number
- * 'RANDOM_INIT': RANDOM_INIT, Initialize pseudo-random number generator
- * 'RANDOM_NUMBER': RANDOM_NUMBER, Pseudo-random number
- * 'RANDOM_SEED': RANDOM_SEED, Initialize a pseudo-random number sequence
- * 'RANGE': RANGE, Decimal exponent range
- * 'RANK' : RANK, Rank of a data object
- * 'REAL': REAL, Convert to real type
- * 'RENAME': RENAME, Rename a file
- * 'REPEAT': REPEAT, Repeated string concatenation
- * 'RESHAPE': RESHAPE, Function to reshape an array
- * 'RRSPACING': RRSPACING, Reciprocal of the relative spacing
- * 'RSHIFT': RSHIFT, Right shift bits
- * 'SAME_TYPE_AS': SAME_TYPE_AS, Query dynamic types for equality
- * 'SCALE': SCALE, Scale a real value
- * 'SCAN': SCAN, Scan a string for the presence of a set of characters
- * 'SECNDS': SECNDS, Time function
- * 'SECOND': SECOND, CPU time function
- * 'SELECTED_CHAR_KIND': SELECTED_CHAR_KIND, Choose character kind
- * 'SELECTED_INT_KIND': SELECTED_INT_KIND, Choose integer kind
- * 'SELECTED_REAL_KIND': SELECTED_REAL_KIND, Choose real kind
- * 'SET_EXPONENT': SET_EXPONENT, Set the exponent of the model
- * 'SHAPE': SHAPE, Determine the shape of an array
- * 'SHIFTA': SHIFTA, Right shift with fill
- * 'SHIFTL': SHIFTL, Left shift
- * 'SHIFTR': SHIFTR, Right shift
- * 'SIGN': SIGN, Sign copying function
- * 'SIGNAL': SIGNAL, Signal handling subroutine (or function)
- * 'SIN': SIN, Sine function
- * 'SIND': SIND, Sine function, degrees
- * 'SINH': SINH, Hyperbolic sine function
- * 'SIZE': SIZE, Function to determine the size of an array
- * 'SIZEOF': SIZEOF, Determine the size in bytes of an expression
- * 'SLEEP': SLEEP, Sleep for the specified number of seconds
- * 'SPACING': SPACING, Smallest distance between two numbers of a given type
- * 'SPREAD': SPREAD, Add a dimension to an array
- * 'SQRT': SQRT, Square-root function
- * 'SRAND': SRAND, Reinitialize the random number generator
- * 'STAT': STAT, Get file status
- * 'STORAGE_SIZE': STORAGE_SIZE, Storage size in bits
- * 'SUM': SUM, Sum of array elements
- * 'SYMLNK': SYMLNK, Create a symbolic link
- * 'SYSTEM': SYSTEM, Execute a shell command
- * 'SYSTEM_CLOCK': SYSTEM_CLOCK, Time function
- * 'TAN': TAN, Tangent function
- * 'TAND': TAND, Tangent function, degrees
- * 'TANH': TANH, Hyperbolic tangent function
- * 'THIS_IMAGE': THIS_IMAGE, Cosubscript index of this image
- * 'TIME': TIME, Time function
- * 'TIME8': TIME8, Time function (64-bit)
- * 'TINY': TINY, Smallest positive number of a real kind
- * 'TRAILZ': TRAILZ, Number of trailing zero bits of an integer
- * 'TRANSFER': TRANSFER, Transfer bit patterns
- * 'TRANSPOSE': TRANSPOSE, Transpose an array of rank two
- * 'TRIM': TRIM, Remove trailing blank characters of a string
- * 'TTYNAM': TTYNAM, Get the name of a terminal device.
- * 'UBOUND': UBOUND, Upper dimension bounds of an array
- * 'UCOBOUND': UCOBOUND, Upper codimension bounds of an array
- * 'UMASK': UMASK, Set the file creation mask
- * 'UNLINK': UNLINK, Remove a file from the file system
- * 'UNPACK': UNPACK, Unpack an array of rank one into an array
- * 'VERIFY': VERIFY, Scan a string for the absence of a set of characters
- * 'XOR': XOR, Bitwise logical exclusive or
- File: gfortran.info, Node: Introduction to Intrinsics, Next: ABORT, Up: Intrinsic Procedures
- 9.1 Introduction to intrinsic procedures
- ========================================
- The intrinsic procedures provided by GNU Fortran include all of the
- intrinsic procedures required by the Fortran 95 standard, a set of
- intrinsic procedures for backwards compatibility with G77, and a
- selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
- standards. Any conflict between a description here and a description in
- either the Fortran 95 standard, the Fortran 2003 standard or the Fortran
- 2008 standard is unintentional, and the standard(s) should be considered
- authoritative.
- The enumeration of the 'KIND' type parameter is processor defined in
- the Fortran 95 standard. GNU Fortran defines the default integer type
- and default real type by 'INTEGER(KIND=4)' and 'REAL(KIND=4)',
- respectively. The standard mandates that both data types shall have
- another kind, which have more precision. On typical target
- architectures supported by 'gfortran', this kind type parameter is
- 'KIND=8'. Hence, 'REAL(KIND=8)' and 'DOUBLE PRECISION' are equivalent.
- In the description of generic intrinsic procedures, the kind type
- parameter will be specified by 'KIND=*', and in the description of
- specific names for an intrinsic procedure the kind type parameter will
- be explicitly given (e.g., 'REAL(KIND=4)' or 'REAL(KIND=8)'). Finally,
- for brevity the optional 'KIND=' syntax will be omitted.
- Many of the intrinsic procedures take one or more optional arguments.
- This document follows the convention used in the Fortran 95 standard,
- and denotes such arguments by square brackets.
- GNU Fortran offers the '-std=f95' and '-std=gnu' options, which can
- be used to restrict the set of intrinsic procedures to a given standard.
- By default, 'gfortran' sets the '-std=gnu' option, and so all intrinsic
- procedures described here are accepted. There is one caveat. For a
- select group of intrinsic procedures, 'g77' implemented both a function
- and a subroutine. Both classes have been implemented in 'gfortran' for
- backwards compatibility with 'g77'. It is noted here that these
- functions and subroutines cannot be intermixed in a given subprogram.
- In the descriptions that follow, the applicable standard for each
- intrinsic procedure is noted.
- File: gfortran.info, Node: ABORT, Next: ABS, Prev: Introduction to Intrinsics, Up: Intrinsic Procedures
- 9.2 'ABORT' -- Abort the program
- ================================
- _Description_:
- 'ABORT' causes immediate termination of the program. On operating
- systems that support a core dump, 'ABORT' will produce a core dump.
- It will also print a backtrace, unless '-fno-backtrace' is given.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL ABORT'
- _Return value_:
- Does not return.
- _Example_:
- program test_abort
- integer :: i = 1, j = 2
- if (i /= j) call abort
- end program test_abort
- _See also_:
- *note EXIT::, *note KILL::, *note BACKTRACE::
- File: gfortran.info, Node: ABS, Next: ACCESS, Prev: ABORT, Up: Intrinsic Procedures
- 9.3 'ABS' -- Absolute value
- ===========================
- _Description_:
- 'ABS(A)' computes the absolute value of 'A'.
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ABS(A)'
- _Arguments_:
- A The type of the argument shall be an 'INTEGER',
- 'REAL', or 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as the argument
- except the return value is 'REAL' for a 'COMPLEX' argument.
- _Example_:
- program test_abs
- integer :: i = -1
- real :: x = -1.e0
- complex :: z = (-1.e0,0.e0)
- i = abs(i)
- x = abs(x)
- x = abs(z)
- end program test_abs
- _Specific names_:
- Name Argument Return type Standard
- 'ABS(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and
- later
- 'CABS(A)' 'COMPLEX(4) 'REAL(4)' Fortran 77 and
- A' later
- 'DABS(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and
- later
- 'IABS(A)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- A' later
- 'BABS(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIABS(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIABS(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIABS(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- 'ZABS(A)' 'COMPLEX(8) 'REAL(8)' GNU extension
- A'
- 'CDABS(A)' 'COMPLEX(8) 'REAL(8)' GNU extension
- A'
- File: gfortran.info, Node: ACCESS, Next: ACHAR, Prev: ABS, Up: Intrinsic Procedures
- 9.4 'ACCESS' -- Checks file access modes
- ========================================
- _Description_:
- 'ACCESS(NAME, MODE)' checks whether the file NAME exists, is
- readable, writable or executable. Except for the executable check,
- 'ACCESS' can be replaced by Fortran 95's 'INQUIRE'.
- _Standard_:
- GNU extension
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = ACCESS(NAME, MODE)'
- _Arguments_:
- NAME Scalar 'CHARACTER' of default kind with the file
- name. Tailing blank are ignored unless the
- character 'achar(0)' is present, then all
- characters up to and excluding 'achar(0)' are
- used as file name.
- MODE Scalar 'CHARACTER' of default kind with the file
- access mode, may be any concatenation of '"r"'
- (readable), '"w"' (writable) and '"x"'
- (executable), or '" "' to check for existence.
- _Return value_:
- Returns a scalar 'INTEGER', which is '0' if the file is accessible
- in the given mode; otherwise or if an invalid argument has been
- given for 'MODE' the value '1' is returned.
- _Example_:
- program access_test
- implicit none
- character(len=*), parameter :: file = 'test.dat'
- character(len=*), parameter :: file2 = 'test.dat '//achar(0)
- if(access(file,' ') == 0) print *, trim(file),' is exists'
- if(access(file,'r') == 0) print *, trim(file),' is readable'
- if(access(file,'w') == 0) print *, trim(file),' is writable'
- if(access(file,'x') == 0) print *, trim(file),' is executable'
- if(access(file2,'rwx') == 0) &
- print *, trim(file2),' is readable, writable and executable'
- end program access_test
- File: gfortran.info, Node: ACHAR, Next: ACOS, Prev: ACCESS, Up: Intrinsic Procedures
- 9.5 'ACHAR' -- Character in ASCII collating sequence
- ====================================================
- _Description_:
- 'ACHAR(I)' returns the character located at position 'I' in the
- ASCII collating sequence.
- _Standard_:
- Fortran 77 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ACHAR(I [, KIND])'
- _Arguments_:
- I The type shall be 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'CHARACTER' with a length of one. If
- the KIND argument is present, the return value is of the specified
- kind and of the default kind otherwise.
- _Example_:
- program test_achar
- character c
- c = achar(32)
- end program test_achar
- _Note_:
- See *note ICHAR:: for a discussion of converting between numerical
- values and formatted string representations.
- _See also_:
- *note CHAR::, *note IACHAR::, *note ICHAR::
- File: gfortran.info, Node: ACOS, Next: ACOSD, Prev: ACHAR, Up: Intrinsic Procedures
- 9.6 'ACOS' -- Arccosine function
- ================================
- _Description_:
- 'ACOS(X)' computes the arccosine of X (inverse of 'COS(X)').
- _Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ACOS(X)'
- _Arguments_:
- X The type shall either be 'REAL' with a magnitude
- that is less than or equal to one - or the type
- shall be 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in radians and lies in the range 0 \leq \Re
- \acos(x) \leq \pi.
- _Example_:
- program test_acos
- real(8) :: x = 0.866_8
- x = acos(x)
- end program test_acos
- _Specific names_:
- Name Argument Return type Standard
- 'ACOS(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DACOS(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- Inverse function: *note COS:: Degrees function: *note ACOSD::
- File: gfortran.info, Node: ACOSD, Next: ACOSH, Prev: ACOS, Up: Intrinsic Procedures
- 9.7 'ACOSD' -- Arccosine function, degrees
- ==========================================
- _Description_:
- 'ACOSD(X)' computes the arccosine of X in degrees (inverse of
- 'COSD(X)').
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU extension, enabled with '-fdec-math'
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ACOSD(X)'
- _Arguments_:
- X The type shall either be 'REAL' with a magnitude
- that is less than or equal to one - or the type
- shall be 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in degrees and lies in the range 0 \leq \Re
- \acos(x) \leq 180.
- _Example_:
- program test_acosd
- real(8) :: x = 0.866_8
- x = acosd(x)
- end program test_acosd
- _Specific names_:
- Name Argument Return type Standard
- 'ACOSD(X)' 'REAL(4) X' 'REAL(4)' GNU extension
- 'DACOSD(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Inverse function: *note COSD:: Radians function: *note ACOS::
- File: gfortran.info, Node: ACOSH, Next: ADJUSTL, Prev: ACOSD, Up: Intrinsic Procedures
- 9.8 'ACOSH' -- Inverse hyperbolic cosine function
- =================================================
- _Description_:
- 'ACOSH(X)' computes the inverse hyperbolic cosine of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ACOSH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has the same type and kind as X. If X is complex,
- the imaginary part of the result is in radians and lies between 0
- \leq \Im \acosh(x) \leq \pi.
- _Example_:
- PROGRAM test_acosh
- REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
- WRITE (*,*) ACOSH(x)
- END PROGRAM
- _Specific names_:
- Name Argument Return type Standard
- 'DACOSH(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Inverse function: *note COSH::
- File: gfortran.info, Node: ADJUSTL, Next: ADJUSTR, Prev: ACOSH, Up: Intrinsic Procedures
- 9.9 'ADJUSTL' -- Left adjust a string
- =====================================
- _Description_:
- 'ADJUSTL(STRING)' will left adjust a string by removing leading
- spaces. Spaces are inserted at the end of the string as needed.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ADJUSTL(STRING)'
- _Arguments_:
- STRING The type shall be 'CHARACTER'.
- _Return value_:
- The return value is of type 'CHARACTER' and of the same kind as
- STRING where leading spaces are removed and the same number of
- spaces are inserted on the end of STRING.
- _Example_:
- program test_adjustl
- character(len=20) :: str = ' gfortran'
- str = adjustl(str)
- print *, str
- end program test_adjustl
- _See also_:
- *note ADJUSTR::, *note TRIM::
- File: gfortran.info, Node: ADJUSTR, Next: AIMAG, Prev: ADJUSTL, Up: Intrinsic Procedures
- 9.10 'ADJUSTR' -- Right adjust a string
- =======================================
- _Description_:
- 'ADJUSTR(STRING)' will right adjust a string by removing trailing
- spaces. Spaces are inserted at the start of the string as needed.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ADJUSTR(STRING)'
- _Arguments_:
- STR The type shall be 'CHARACTER'.
- _Return value_:
- The return value is of type 'CHARACTER' and of the same kind as
- STRING where trailing spaces are removed and the same number of
- spaces are inserted at the start of STRING.
- _Example_:
- program test_adjustr
- character(len=20) :: str = 'gfortran'
- str = adjustr(str)
- print *, str
- end program test_adjustr
- _See also_:
- *note ADJUSTL::, *note TRIM::
- File: gfortran.info, Node: AIMAG, Next: AINT, Prev: ADJUSTR, Up: Intrinsic Procedures
- 9.11 'AIMAG' -- Imaginary part of complex number
- ================================================
- _Description_:
- 'AIMAG(Z)' yields the imaginary part of complex argument 'Z'. The
- 'IMAG(Z)' and 'IMAGPART(Z)' intrinsic functions are provided for
- compatibility with 'g77', and their use in new code is strongly
- discouraged.
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = AIMAG(Z)'
- _Arguments_:
- Z The type of the argument shall be 'COMPLEX'.
- _Return value_:
- The return value is of type 'REAL' with the kind type parameter of
- the argument.
- _Example_:
- program test_aimag
- complex(4) z4
- complex(8) z8
- z4 = cmplx(1.e0_4, 0.e0_4)
- z8 = cmplx(0.e0_8, 1.e0_8)
- print *, aimag(z4), dimag(z8)
- end program test_aimag
- _Specific names_:
- Name Argument Return type Standard
- 'AIMAG(Z)' 'COMPLEX Z' 'REAL' Fortran 77 and
- later
- 'DIMAG(Z)' 'COMPLEX(8) 'REAL(8)' GNU extension
- Z'
- 'IMAG(Z)' 'COMPLEX Z' 'REAL' GNU extension
- 'IMAGPART(Z)' 'COMPLEX Z' 'REAL' GNU extension
- File: gfortran.info, Node: AINT, Next: ALARM, Prev: AIMAG, Up: Intrinsic Procedures
- 9.12 'AINT' -- Truncate to a whole number
- =========================================
- _Description_:
- 'AINT(A [, KIND])' truncates its argument to a whole number.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = AINT(A [, KIND])'
- _Arguments_:
- A The type of the argument shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'REAL' with the kind type parameter of
- the argument if the optional KIND is absent; otherwise, the kind
- type parameter will be given by KIND. If the magnitude of X is
- less than one, 'AINT(X)' returns zero. If the magnitude is equal
- to or greater than one then it returns the largest whole number
- that does not exceed its magnitude. The sign is the same as the
- sign of X.
- _Example_:
- program test_aint
- real(4) x4
- real(8) x8
- x4 = 1.234E0_4
- x8 = 4.321_8
- print *, aint(x4), dint(x8)
- x8 = aint(x4,8)
- end program test_aint
- _Specific names_:
- Name Argument Return type Standard
- 'AINT(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and
- later
- 'DINT(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and
- later
- File: gfortran.info, Node: ALARM, Next: ALL, Prev: AINT, Up: Intrinsic Procedures
- 9.13 'ALARM' -- Execute a routine after a given delay
- =====================================================
- _Description_:
- 'ALARM(SECONDS, HANDLER [, STATUS])' causes external subroutine
- HANDLER to be executed after a delay of SECONDS by using 'alarm(2)'
- to set up a signal and 'signal(2)' to catch it. If STATUS is
- supplied, it will be returned with the number of seconds remaining
- until any previously scheduled alarm was due to be delivered, or
- zero if there was no previously scheduled alarm.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL ALARM(SECONDS, HANDLER [, STATUS])'
- _Arguments_:
- SECONDS The type of the argument shall be a scalar
- 'INTEGER'. It is 'INTENT(IN)'.
- HANDLER Signal handler ('INTEGER FUNCTION' or
- 'SUBROUTINE') or dummy/global 'INTEGER' scalar.
- The scalar values may be either 'SIG_IGN=1' to
- ignore the alarm generated or 'SIG_DFL=0' to set
- the default action. It is 'INTENT(IN)'.
- STATUS (Optional) STATUS shall be a scalar variable of
- the default 'INTEGER' kind. It is
- 'INTENT(OUT)'.
- _Example_:
- program test_alarm
- external handler_print
- integer i
- call alarm (3, handler_print, i)
- print *, i
- call sleep(10)
- end program test_alarm
- This will cause the external routine HANDLER_PRINT to be called
- after 3 seconds.
- File: gfortran.info, Node: ALL, Next: ALLOCATED, Prev: ALARM, Up: Intrinsic Procedures
- 9.14 'ALL' -- All values in MASK along DIM are true
- ===================================================
- _Description_:
- 'ALL(MASK [, DIM])' determines if all the values are true in MASK
- in the array along dimension DIM.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = ALL(MASK [, DIM])'
- _Arguments_:
- MASK The type of the argument shall be 'LOGICAL' and
- it shall not be scalar.
- DIM (Optional) DIM shall be a scalar integer with a
- value that lies between one and the rank of
- MASK.
- _Return value_:
- 'ALL(MASK)' returns a scalar value of type 'LOGICAL' where the kind
- type parameter is the same as the kind type parameter of MASK. If
- DIM is present, then 'ALL(MASK, DIM)' returns an array with the
- rank of MASK minus 1. The shape is determined from the shape of
- MASK where the DIM dimension is elided.
- (A)
- 'ALL(MASK)' is true if all elements of MASK are true. It also
- is true if MASK has zero size; otherwise, it is false.
- (B)
- If the rank of MASK is one, then 'ALL(MASK,DIM)' is equivalent
- to 'ALL(MASK)'. If the rank is greater than one, then
- 'ALL(MASK,DIM)' is determined by applying 'ALL' to the array
- sections.
- _Example_:
- program test_all
- logical l
- l = all((/.true., .true., .true./))
- print *, l
- call section
- contains
- subroutine section
- integer a(2,3), b(2,3)
- a = 1
- b = 1
- b(2,2) = 2
- print *, all(a .eq. b, 1)
- print *, all(a .eq. b, 2)
- end subroutine section
- end program test_all
- File: gfortran.info, Node: ALLOCATED, Next: AND, Prev: ALL, Up: Intrinsic Procedures
- 9.15 'ALLOCATED' -- Status of an allocatable entity
- ===================================================
- _Description_:
- 'ALLOCATED(ARRAY)' and 'ALLOCATED(SCALAR)' check the allocation
- status of ARRAY and SCALAR, respectively.
- _Standard_:
- Fortran 90 and later. Note, the 'SCALAR=' keyword and allocatable
- scalar entities are available in Fortran 2003 and later.
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = ALLOCATED(ARRAY)'
- 'RESULT = ALLOCATED(SCALAR)'
- _Arguments_:
- ARRAY The argument shall be an 'ALLOCATABLE' array.
- SCALAR The argument shall be an 'ALLOCATABLE' scalar.
- _Return value_:
- The return value is a scalar 'LOGICAL' with the default logical
- kind type parameter. If the argument is allocated, then the result
- is '.TRUE.'; otherwise, it returns '.FALSE.'
- _Example_:
- program test_allocated
- integer :: i = 4
- real(4), allocatable :: x(:)
- if (.not. allocated(x)) allocate(x(i))
- end program test_allocated
- File: gfortran.info, Node: AND, Next: ANINT, Prev: ALLOCATED, Up: Intrinsic Procedures
- 9.16 'AND' -- Bitwise logical AND
- =================================
- _Description_:
- Bitwise logical 'AND'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. For integer arguments, programmers should consider
- the use of the *note IAND:: intrinsic defined by the Fortran
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = AND(I, J)'
- _Arguments_:
- I The type shall be either a scalar 'INTEGER' type
- or a scalar 'LOGICAL' type or a
- boz-literal-constant.
- J The type shall be the same as the type of I or a
- boz-literal-constant. I and J shall not both be
- boz-literal-constants. If either I or J is a
- boz-literal-constant, then the other argument
- must be a scalar 'INTEGER'.
- _Return value_:
- The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
- If the kind type parameters differ, then the smaller kind type is
- implicitly converted to larger kind, and the return has the larger
- kind. A boz-literal-constant is converted to an 'INTEGER' with the
- kind type parameter of the other argument as-if a call to *note
- INT:: occurred.
- _Example_:
- PROGRAM test_and
- LOGICAL :: T = .TRUE., F = .FALSE.
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
- WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
- WRITE (*,*) AND(a, b)
- END PROGRAM
- _See also_:
- Fortran 95 elemental function: *note IAND::
- File: gfortran.info, Node: ANINT, Next: ANY, Prev: AND, Up: Intrinsic Procedures
- 9.17 'ANINT' -- Nearest whole number
- ====================================
- _Description_:
- 'ANINT(A [, KIND])' rounds its argument to the nearest whole
- number.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ANINT(A [, KIND])'
- _Arguments_:
- A The type of the argument shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type real with the kind type parameter of
- the argument if the optional KIND is absent; otherwise, the kind
- type parameter will be given by KIND. If A is greater than zero,
- 'ANINT(A)' returns 'AINT(X+0.5)'. If A is less than or equal to
- zero then it returns 'AINT(X-0.5)'.
- _Example_:
- program test_anint
- real(4) x4
- real(8) x8
- x4 = 1.234E0_4
- x8 = 4.321_8
- print *, anint(x4), dnint(x8)
- x8 = anint(x4,8)
- end program test_anint
- _Specific names_:
- Name Argument Return type Standard
- 'AINT(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and
- later
- 'DNINT(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and
- later
- File: gfortran.info, Node: ANY, Next: ASIN, Prev: ANINT, Up: Intrinsic Procedures
- 9.18 'ANY' -- Any value in MASK along DIM is true
- =================================================
- _Description_:
- 'ANY(MASK [, DIM])' determines if any of the values in the logical
- array MASK along dimension DIM are '.TRUE.'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = ANY(MASK [, DIM])'
- _Arguments_:
- MASK The type of the argument shall be 'LOGICAL' and
- it shall not be scalar.
- DIM (Optional) DIM shall be a scalar integer with a
- value that lies between one and the rank of
- MASK.
- _Return value_:
- 'ANY(MASK)' returns a scalar value of type 'LOGICAL' where the kind
- type parameter is the same as the kind type parameter of MASK. If
- DIM is present, then 'ANY(MASK, DIM)' returns an array with the
- rank of MASK minus 1. The shape is determined from the shape of
- MASK where the DIM dimension is elided.
- (A)
- 'ANY(MASK)' is true if any element of MASK is true; otherwise,
- it is false. It also is false if MASK has zero size.
- (B)
- If the rank of MASK is one, then 'ANY(MASK,DIM)' is equivalent
- to 'ANY(MASK)'. If the rank is greater than one, then
- 'ANY(MASK,DIM)' is determined by applying 'ANY' to the array
- sections.
- _Example_:
- program test_any
- logical l
- l = any((/.true., .true., .true./))
- print *, l
- call section
- contains
- subroutine section
- integer a(2,3), b(2,3)
- a = 1
- b = 1
- b(2,2) = 2
- print *, any(a .eq. b, 1)
- print *, any(a .eq. b, 2)
- end subroutine section
- end program test_any
- File: gfortran.info, Node: ASIN, Next: ASIND, Prev: ANY, Up: Intrinsic Procedures
- 9.19 'ASIN' -- Arcsine function
- ===============================
- _Description_:
- 'ASIN(X)' computes the arcsine of its X (inverse of 'SIN(X)').
- _Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ASIN(X)'
- _Arguments_:
- X The type shall be either 'REAL' and a magnitude
- that is less than or equal to one - or be
- 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in radians and lies in the range -\pi/2 \leq \Re
- \asin(x) \leq \pi/2.
- _Example_:
- program test_asin
- real(8) :: x = 0.866_8
- x = asin(x)
- end program test_asin
- _Specific names_:
- Name Argument Return type Standard
- 'ASIN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DASIN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- Inverse function: *note SIN:: Degrees function: *note ASIND::
- File: gfortran.info, Node: ASIND, Next: ASINH, Prev: ASIN, Up: Intrinsic Procedures
- 9.20 'ASIND' -- Arcsine function, degrees
- =========================================
- _Description_:
- 'ASIND(X)' computes the arcsine of its X in degrees (inverse of
- 'SIND(X)').
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ASIND(X)'
- _Arguments_:
- X The type shall be either 'REAL' and a magnitude
- that is less than or equal to one - or be
- 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in degrees and lies in the range -90 \leq \Re
- \asin(x) \leq 90.
- _Example_:
- program test_asind
- real(8) :: x = 0.866_8
- x = asind(x)
- end program test_asind
- _Specific names_:
- Name Argument Return type Standard
- 'ASIND(X)' 'REAL(4) X' 'REAL(4)' GNU extension
- 'DASIND(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Inverse function: *note SIND:: Radians function: *note ASIN::
- File: gfortran.info, Node: ASINH, Next: ASSOCIATED, Prev: ASIND, Up: Intrinsic Procedures
- 9.21 'ASINH' -- Inverse hyperbolic sine function
- ================================================
- _Description_:
- 'ASINH(X)' computes the inverse hyperbolic sine of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ASINH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. If X is
- complex, the imaginary part of the result is in radians and lies
- between -\pi/2 \leq \Im \asinh(x) \leq \pi/2.
- _Example_:
- PROGRAM test_asinh
- REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
- WRITE (*,*) ASINH(x)
- END PROGRAM
- _Specific names_:
- Name Argument Return type Standard
- 'DASINH(X)' 'REAL(8) X' 'REAL(8)' GNU extension.
- _See also_:
- Inverse function: *note SINH::
- File: gfortran.info, Node: ASSOCIATED, Next: ATAN, Prev: ASINH, Up: Intrinsic Procedures
- 9.22 'ASSOCIATED' -- Status of a pointer or pointer/target pair
- ===============================================================
- _Description_:
- 'ASSOCIATED(POINTER [, TARGET])' determines the status of the
- pointer POINTER or if POINTER is associated with the target TARGET.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = ASSOCIATED(POINTER [, TARGET])'
- _Arguments_:
- POINTER POINTER shall have the 'POINTER' attribute and
- it can be of any type.
- TARGET (Optional) TARGET shall be a pointer or a
- target. It must have the same type, kind type
- parameter, and array rank as POINTER.
- The association status of neither POINTER nor TARGET shall be
- undefined.
- _Return value_:
- 'ASSOCIATED(POINTER)' returns a scalar value of type 'LOGICAL(4)'.
- There are several cases:
- (A) When the optional TARGET is not present then
- 'ASSOCIATED(POINTER)' is true if POINTER is associated with a
- target; otherwise, it returns false.
- (B) If TARGET is present and a scalar target, the result is true if
- TARGET is not a zero-sized storage sequence and the target
- associated with POINTER occupies the same storage units. If
- POINTER is disassociated, the result is false.
- (C) If TARGET is present and an array target, the result is true if
- TARGET and POINTER have the same shape, are not zero-sized
- arrays, are arrays whose elements are not zero-sized storage
- sequences, and TARGET and POINTER occupy the same storage
- units in array element order. As in case(B), the result is
- false, if POINTER is disassociated.
- (D) If TARGET is present and an scalar pointer, the result is true
- if TARGET is associated with POINTER, the target associated
- with TARGET are not zero-sized storage sequences and occupy
- the same storage units. The result is false, if either TARGET
- or POINTER is disassociated.
- (E) If TARGET is present and an array pointer, the result is true if
- target associated with POINTER and the target associated with
- TARGET have the same shape, are not zero-sized arrays, are
- arrays whose elements are not zero-sized storage sequences,
- and TARGET and POINTER occupy the same storage units in array
- element order. The result is false, if either TARGET or
- POINTER is disassociated.
- _Example_:
- program test_associated
- implicit none
- real, target :: tgt(2) = (/1., 2./)
- real, pointer :: ptr(:)
- ptr => tgt
- if (associated(ptr) .eqv. .false.) call abort
- if (associated(ptr,tgt) .eqv. .false.) call abort
- end program test_associated
- _See also_:
- *note NULL::
- File: gfortran.info, Node: ATAN, Next: ATAND, Prev: ASSOCIATED, Up: Intrinsic Procedures
- 9.23 'ATAN' -- Arctangent function
- ==================================
- _Description_:
- 'ATAN(X)' computes the arctangent of X.
- _Standard_:
- Fortran 77 and later, for a complex argument and for two arguments
- Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ATAN(X)'
- 'RESULT = ATAN(Y, X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'; if Y is
- present, X shall be REAL.
- Y The type and kind type parameter shall be the
- same as X.
- _Return value_:
- The return value is of the same type and kind as X. If Y is
- present, the result is identical to 'ATAN2(Y,X)'. Otherwise, it
- the arcus tangent of X, where the real part of the result is in
- radians and lies in the range -\pi/2 \leq \Re \atan(x) \leq \pi/2.
- _Example_:
- program test_atan
- real(8) :: x = 2.866_8
- x = atan(x)
- end program test_atan
- _Specific names_:
- Name Argument Return type Standard
- 'ATAN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DATAN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- Inverse function: *note TAN:: Degrees function: *note ATAND::
- File: gfortran.info, Node: ATAND, Next: ATAN2, Prev: ATAN, Up: Intrinsic Procedures
- 9.24 'ATAND' -- Arctangent function, degrees
- ============================================
- _Description_:
- 'ATAND(X)' computes the arctangent of X in degrees (inverse of
- *note TAND::).
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ATAND(X)'
- 'RESULT = ATAND(Y, X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'; if Y is
- present, X shall be REAL.
- Y The type and kind type parameter shall be the
- same as X.
- _Return value_:
- The return value is of the same type and kind as X. If Y is
- present, the result is identical to 'ATAND2(Y,X)'. Otherwise, it
- is the arcus tangent of X, where the real part of the result is in
- degrees and lies in the range -90 \leq \Re \atand(x) \leq 90.
- _Example_:
- program test_atand
- real(8) :: x = 2.866_8
- x = atand(x)
- end program test_atand
- _Specific names_:
- Name Argument Return type Standard
- 'ATAND(X)' 'REAL(4) X' 'REAL(4)' GNU extension
- 'DATAND(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Inverse function: *note TAND:: Radians function: *note ATAN::
- File: gfortran.info, Node: ATAN2, Next: ATAN2D, Prev: ATAND, Up: Intrinsic Procedures
- 9.25 'ATAN2' -- Arctangent function
- ===================================
- _Description_:
- 'ATAN2(Y, X)' computes the principal value of the argument function
- of the complex number X + i Y. This function can be used to
- transform from Cartesian into polar coordinates and allows to
- determine the angle in the correct quadrant.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ATAN2(Y, X)'
- _Arguments_:
- Y The type shall be 'REAL'.
- X The type and kind type parameter shall be the
- same as Y. If Y is zero, then X must be
- nonzero.
- _Return value_:
- The return value has the same type and kind type parameter as Y.
- It is the principal value of the complex number X + i Y. If X is
- nonzero, then it lies in the range -\pi \le \atan (x) \leq \pi.
- The sign is positive if Y is positive. If Y is zero, then the
- return value is zero if X is strictly positive, \pi if X is
- negative and Y is positive zero (or the processor does not handle
- signed zeros), and -\pi if X is negative and Y is negative zero.
- Finally, if X is zero, then the magnitude of the result is \pi/2.
- _Example_:
- program test_atan2
- real(4) :: x = 1.e0_4, y = 0.5e0_4
- x = atan2(y,x)
- end program test_atan2
- _Specific names_:
- Name Argument Return type Standard
- 'ATAN2(X, 'REAL(4) X, 'REAL(4)' Fortran 77 and
- Y)' Y' later
- 'DATAN2(X, 'REAL(8) X, 'REAL(8)' Fortran 77 and
- Y)' Y' later
- _See also_:
- Alias: *note ATAN:: Degrees function: *note ATAN2D::
- File: gfortran.info, Node: ATAN2D, Next: ATANH, Prev: ATAN2, Up: Intrinsic Procedures
- 9.26 'ATAN2D' -- Arctangent function, degrees
- =============================================
- _Description_:
- 'ATAN2D(Y, X)' computes the principal value of the argument
- function of the complex number X + i Y in degrees. This function
- can be used to transform from Cartesian into polar coordinates and
- allows to determine the angle in the correct quadrant.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ATAN2D(Y, X)'
- _Arguments_:
- Y The type shall be 'REAL'.
- X The type and kind type parameter shall be the
- same as Y. If Y is zero, then X must be
- nonzero.
- _Return value_:
- The return value has the same type and kind type parameter as Y.
- It is the principal value of the complex number X + i Y. If X is
- nonzero, then it lies in the range -180 \le \atan (x) \leq 180.
- The sign is positive if Y is positive. If Y is zero, then the
- return value is zero if X is strictly positive, 180 if X is
- negative and Y is positive zero (or the processor does not handle
- signed zeros), and -180 if X is negative and Y is negative zero.
- Finally, if X is zero, then the magnitude of the result is 90.
- _Example_:
- program test_atan2d
- real(4) :: x = 1.e0_4, y = 0.5e0_4
- x = atan2d(y,x)
- end program test_atan2d
- _Specific names_:
- Name Argument Return type Standard
- 'ATAN2D(X, 'REAL(4) X, 'REAL(4)' GNU extension
- Y)' Y'
- 'DATAN2D(X, 'REAL(8) X, 'REAL(8)' GNU extension
- Y)' Y'
- _See also_:
- Alias: *note ATAND:: Radians function: *note ATAN2::
- File: gfortran.info, Node: ATANH, Next: ATOMIC_ADD, Prev: ATAN2D, Up: Intrinsic Procedures
- 9.27 'ATANH' -- Inverse hyperbolic tangent function
- ===================================================
- _Description_:
- 'ATANH(X)' computes the inverse hyperbolic tangent of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ATANH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X. If X is complex, the
- imaginary part of the result is in radians and lies between -\pi/2
- \leq \Im \atanh(x) \leq \pi/2.
- _Example_:
- PROGRAM test_atanh
- REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
- WRITE (*,*) ATANH(x)
- END PROGRAM
- _Specific names_:
- Name Argument Return type Standard
- 'DATANH(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Inverse function: *note TANH::
- File: gfortran.info, Node: ATOMIC_ADD, Next: ATOMIC_AND, Prev: ATANH, Up: Intrinsic Procedures
- 9.28 'ATOMIC_ADD' -- Atomic ADD operation
- =========================================
- _Description_:
- 'ATOMIC_ADD(ATOM, VALUE)' atomically adds the value of VAR to the
- variable ATOM. When STAT is present and the invocation was
- successful, it is assigned the value 0. If it is present and the
- invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_ADD (ATOM, VALUE [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_add (atom[1], this_image())
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_ADD::, *note
- ISO_FORTRAN_ENV::, *note ATOMIC_AND::, *note ATOMIC_OR::, *note
- ATOMIC_XOR::
- File: gfortran.info, Node: ATOMIC_AND, Next: ATOMIC_CAS, Prev: ATOMIC_ADD, Up: Intrinsic Procedures
- 9.29 'ATOMIC_AND' -- Atomic bitwise AND operation
- =================================================
- _Description_:
- 'ATOMIC_AND(ATOM, VALUE)' atomically defines ATOM with the bitwise
- AND between the values of ATOM and VALUE. When STAT is present and
- the invocation was successful, it is assigned the value 0. If it
- is present and the invocation has failed, it is assigned a positive
- value; in particular, for a coindexed ATOM, if the remote image has
- stopped, it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_AND (ATOM, VALUE [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_and (atom[1], int(b'10100011101'))
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_AND::, *note
- ISO_FORTRAN_ENV::, *note ATOMIC_ADD::, *note ATOMIC_OR::, *note
- ATOMIC_XOR::
- File: gfortran.info, Node: ATOMIC_CAS, Next: ATOMIC_DEFINE, Prev: ATOMIC_AND, Up: Intrinsic Procedures
- 9.30 'ATOMIC_CAS' -- Atomic compare and swap
- ============================================
- _Description_:
- 'ATOMIC_CAS' compares the variable ATOM with the value of COMPARE;
- if the value is the same, ATOM is set to the value of NEW.
- Additionally, OLD is set to the value of ATOM that was used for the
- comparison. When STAT is present and the invocation was
- successful, it is assigned the value 0. If it is present and the
- invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of either
- integer type with 'ATOMIC_INT_KIND' kind or
- logical type with 'ATOMIC_LOGICAL_KIND' kind.
- OLD Scalar of the same type and kind as ATOM.
- COMPARE Scalar variable of the same type and kind as
- ATOM.
- NEW Scalar variable of the same type as ATOM. If
- kind is different, the value is converted to the
- kind of ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- logical(atomic_logical_kind) :: atom[*], prev
- call atomic_cas (atom[1], prev, .false., .true.))
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_REF::, *note ISO_FORTRAN_ENV::
- File: gfortran.info, Node: ATOMIC_DEFINE, Next: ATOMIC_FETCH_ADD, Prev: ATOMIC_CAS, Up: Intrinsic Procedures
- 9.31 'ATOMIC_DEFINE' -- Setting a variable atomically
- =====================================================
- _Description_:
- 'ATOMIC_DEFINE(ATOM, VALUE)' defines the variable ATOM with the
- value VALUE atomically. When STAT is present and the invocation
- was successful, it is assigned the value 0. If it is present and
- the invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- Fortran 2008 and later; with STAT, TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_DEFINE (ATOM, VALUE [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of either
- integer type with 'ATOMIC_INT_KIND' kind or
- logical type with 'ATOMIC_LOGICAL_KIND' kind.
-
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_define (atom[1], this_image())
- end program atomic
- _See also_:
- *note ATOMIC_REF::, *note ATOMIC_CAS::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_ADD::, *note ATOMIC_AND::, *note ATOMIC_OR::, *note
- ATOMIC_XOR::
- File: gfortran.info, Node: ATOMIC_FETCH_ADD, Next: ATOMIC_FETCH_AND, Prev: ATOMIC_DEFINE, Up: Intrinsic Procedures
- 9.32 'ATOMIC_FETCH_ADD' -- Atomic ADD operation with prior fetch
- ================================================================
- _Description_:
- 'ATOMIC_FETCH_ADD(ATOM, VALUE, OLD)' atomically stores the value of
- ATOM in OLD and adds the value of VAR to the variable ATOM. When
- STAT is present and the invocation was successful, it is assigned
- the value 0. If it is present and the invocation has failed, it is
- assigned a positive value; in particular, for a coindexed ATOM, if
- the remote image has stopped, it is assigned the value of
- 'ISO_FORTRAN_ENV''s 'STAT_STOPPED_IMAGE' and if the remote image
- has failed, the value 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_FETCH_ADD (ATOM, VALUE, old [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- 'ATOMIC_LOGICAL_KIND' kind.
-
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- OLD Scalar of the same type and kind as ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*], old
- call atomic_add (atom[1], this_image(), old)
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_ADD::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_FETCH_AND::, *note ATOMIC_FETCH_OR::, *note
- ATOMIC_FETCH_XOR::
- File: gfortran.info, Node: ATOMIC_FETCH_AND, Next: ATOMIC_FETCH_OR, Prev: ATOMIC_FETCH_ADD, Up: Intrinsic Procedures
- 9.33 'ATOMIC_FETCH_AND' -- Atomic bitwise AND operation with prior fetch
- ========================================================================
- _Description_:
- 'ATOMIC_AND(ATOM, VALUE)' atomically stores the value of ATOM in
- OLD and defines ATOM with the bitwise AND between the values of
- ATOM and VALUE. When STAT is present and the invocation was
- successful, it is assigned the value 0. If it is present and the
- invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- OLD Scalar of the same type and kind as ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*], old
- call atomic_fetch_and (atom[1], int(b'10100011101'), old)
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_AND::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_OR::, *note
- ATOMIC_FETCH_XOR::
- File: gfortran.info, Node: ATOMIC_FETCH_OR, Next: ATOMIC_FETCH_XOR, Prev: ATOMIC_FETCH_AND, Up: Intrinsic Procedures
- 9.34 'ATOMIC_FETCH_OR' -- Atomic bitwise OR operation with prior fetch
- ======================================================================
- _Description_:
- 'ATOMIC_OR(ATOM, VALUE)' atomically stores the value of ATOM in OLD
- and defines ATOM with the bitwise OR between the values of ATOM and
- VALUE. When STAT is present and the invocation was successful, it
- is assigned the value 0. If it is present and the invocation has
- failed, it is assigned a positive value; in particular, for a
- coindexed ATOM, if the remote image has stopped, it is assigned the
- value of 'ISO_FORTRAN_ENV''s 'STAT_STOPPED_IMAGE' and if the remote
- image has failed, the value 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- OLD Scalar of the same type and kind as ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*], old
- call atomic_fetch_or (atom[1], int(b'10100011101'), old)
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_OR::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_AND::, *note
- ATOMIC_FETCH_XOR::
- File: gfortran.info, Node: ATOMIC_FETCH_XOR, Next: ATOMIC_OR, Prev: ATOMIC_FETCH_OR, Up: Intrinsic Procedures
- 9.35 'ATOMIC_FETCH_XOR' -- Atomic bitwise XOR operation with prior fetch
- ========================================================================
- _Description_:
- 'ATOMIC_XOR(ATOM, VALUE)' atomically stores the value of ATOM in
- OLD and defines ATOM with the bitwise XOR between the values of
- ATOM and VALUE. When STAT is present and the invocation was
- successful, it is assigned the value 0. If it is present and the
- invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- OLD Scalar of the same type and kind as ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*], old
- call atomic_fetch_xor (atom[1], int(b'10100011101'), old)
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_XOR::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_AND::, *note
- ATOMIC_FETCH_OR::
- File: gfortran.info, Node: ATOMIC_OR, Next: ATOMIC_REF, Prev: ATOMIC_FETCH_XOR, Up: Intrinsic Procedures
- 9.36 'ATOMIC_OR' -- Atomic bitwise OR operation
- ===============================================
- _Description_:
- 'ATOMIC_OR(ATOM, VALUE)' atomically defines ATOM with the bitwise
- AND between the values of ATOM and VALUE. When STAT is present and
- the invocation was successful, it is assigned the value 0. If it
- is present and the invocation has failed, it is assigned a positive
- value; in particular, for a coindexed ATOM, if the remote image has
- stopped, it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_OR (ATOM, VALUE [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_or (atom[1], int(b'10100011101'))
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_OR::, *note
- ISO_FORTRAN_ENV::, *note ATOMIC_ADD::, *note ATOMIC_OR::, *note
- ATOMIC_XOR::
- File: gfortran.info, Node: ATOMIC_REF, Next: ATOMIC_XOR, Prev: ATOMIC_OR, Up: Intrinsic Procedures
- 9.37 'ATOMIC_REF' -- Obtaining the value of a variable atomically
- =================================================================
- _Description_:
- 'ATOMIC_DEFINE(ATOM, VALUE)' atomically assigns the value of the
- variable ATOM to VALUE. When STAT is present and the invocation
- was successful, it is assigned the value 0. If it is present and
- the invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- Fortran 2008 and later; with STAT, TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_REF(VALUE, ATOM [, STAT])'
- _Arguments_:
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- ATOM Scalar coarray or coindexed variable of either
- integer type with 'ATOMIC_INT_KIND' kind or
- logical type with 'ATOMIC_LOGICAL_KIND' kind.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- logical(atomic_logical_kind) :: atom[*]
- logical :: val
- call atomic_ref (atom, .false.)
- ! ...
- call atomic_ref (atom, val)
- if (val) then
- print *, "Obtained"
- end if
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_CAS::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_AND::, *note
- ATOMIC_FETCH_OR::, *note ATOMIC_FETCH_XOR::
- File: gfortran.info, Node: ATOMIC_XOR, Next: BACKTRACE, Prev: ATOMIC_REF, Up: Intrinsic Procedures
- 9.38 'ATOMIC_XOR' -- Atomic bitwise OR operation
- ================================================
- _Description_:
- 'ATOMIC_AND(ATOM, VALUE)' atomically defines ATOM with the bitwise
- XOR between the values of ATOM and VALUE. When STAT is present and
- the invocation was successful, it is assigned the value 0. If it
- is present and the invocation has failed, it is assigned a positive
- value; in particular, for a coindexed ATOM, if the remote image has
- stopped, it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_XOR (ATOM, VALUE [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_xor (atom[1], int(b'10100011101'))
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_XOR::, *note
- ISO_FORTRAN_ENV::, *note ATOMIC_ADD::, *note ATOMIC_OR::, *note
- ATOMIC_XOR::
- File: gfortran.info, Node: BACKTRACE, Next: BESSEL_J0, Prev: ATOMIC_XOR, Up: Intrinsic Procedures
- 9.39 'BACKTRACE' -- Show a backtrace
- ====================================
- _Description_:
- 'BACKTRACE' shows a backtrace at an arbitrary place in user code.
- Program execution continues normally afterwards. The backtrace
- information is printed to the unit corresponding to 'ERROR_UNIT' in
- 'ISO_FORTRAN_ENV'.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL BACKTRACE'
- _Arguments_:
- None
- _See also_:
- *note ABORT::
- File: gfortran.info, Node: BESSEL_J0, Next: BESSEL_J1, Prev: BACKTRACE, Up: Intrinsic Procedures
- 9.40 'BESSEL_J0' -- Bessel function of the first kind of order 0
- ================================================================
- _Description_:
- 'BESSEL_J0(X)' computes the Bessel function of the first kind of
- order 0 of X. This function is available under the name 'BESJ0' as
- a GNU extension.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BESSEL_J0(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL' and lies in the range -
- 0.4027... \leq Bessel (0,x) \leq 1. It has the same kind as X.
- _Example_:
- program test_besj0
- real(8) :: x = 0.0_8
- x = bessel_j0(x)
- end program test_besj0
- _Specific names_:
- Name Argument Return type Standard
- 'DBESJ0(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: BESSEL_J1, Next: BESSEL_JN, Prev: BESSEL_J0, Up: Intrinsic Procedures
- 9.41 'BESSEL_J1' -- Bessel function of the first kind of order 1
- ================================================================
- _Description_:
- 'BESSEL_J1(X)' computes the Bessel function of the first kind of
- order 1 of X. This function is available under the name 'BESJ1' as
- a GNU extension.
- _Standard_:
- Fortran 2008
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BESSEL_J1(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL' and lies in the range -
- 0.5818... \leq Bessel (0,x) \leq 0.5818 . It has the same kind as
- X.
- _Example_:
- program test_besj1
- real(8) :: x = 1.0_8
- x = bessel_j1(x)
- end program test_besj1
- _Specific names_:
- Name Argument Return type Standard
- 'DBESJ1(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: BESSEL_JN, Next: BESSEL_Y0, Prev: BESSEL_J1, Up: Intrinsic Procedures
- 9.42 'BESSEL_JN' -- Bessel function of the first kind
- =====================================================
- _Description_:
- 'BESSEL_JN(N, X)' computes the Bessel function of the first kind of
- order N of X. This function is available under the name 'BESJN' as
- a GNU extension. If N and X are arrays, their ranks and shapes
- shall conform.
- 'BESSEL_JN(N1, N2, X)' returns an array with the Bessel functions
- of the first kind of the orders N1 to N2.
- _Standard_:
- Fortran 2008 and later, negative N is allowed as GNU extension
- _Class_:
- Elemental function, except for the transformational function
- 'BESSEL_JN(N1, N2, X)'
- _Syntax_:
- 'RESULT = BESSEL_JN(N, X)'
- 'RESULT = BESSEL_JN(N1, N2, X)'
- _Arguments_:
- N Shall be a scalar or an array of type 'INTEGER'.
- N1 Shall be a non-negative scalar of type
- 'INTEGER'.
- N2 Shall be a non-negative scalar of type
- 'INTEGER'.
- X Shall be a scalar or an array of type 'REAL';
- for 'BESSEL_JN(N1, N2, X)' it shall be scalar.
- _Return value_:
- The return value is a scalar of type 'REAL'. It has the same kind
- as X.
- _Note_:
- The transformational function uses a recurrence algorithm which
- might, for some values of X, lead to different results than calls
- to the elemental function.
- _Example_:
- program test_besjn
- real(8) :: x = 1.0_8
- x = bessel_jn(5,x)
- end program test_besjn
- _Specific names_:
- Name Argument Return type Standard
- 'DBESJN(N, 'INTEGER N' 'REAL(8)' GNU extension
- X)'
- 'REAL(8) X'
- File: gfortran.info, Node: BESSEL_Y0, Next: BESSEL_Y1, Prev: BESSEL_JN, Up: Intrinsic Procedures
- 9.43 'BESSEL_Y0' -- Bessel function of the second kind of order 0
- =================================================================
- _Description_:
- 'BESSEL_Y0(X)' computes the Bessel function of the second kind of
- order 0 of X. This function is available under the name 'BESY0' as
- a GNU extension.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BESSEL_Y0(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL'. It has the same kind as X.
- _Example_:
- program test_besy0
- real(8) :: x = 0.0_8
- x = bessel_y0(x)
- end program test_besy0
- _Specific names_:
- Name Argument Return type Standard
- 'DBESY0(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: BESSEL_Y1, Next: BESSEL_YN, Prev: BESSEL_Y0, Up: Intrinsic Procedures
- 9.44 'BESSEL_Y1' -- Bessel function of the second kind of order 1
- =================================================================
- _Description_:
- 'BESSEL_Y1(X)' computes the Bessel function of the second kind of
- order 1 of X. This function is available under the name 'BESY1' as
- a GNU extension.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BESSEL_Y1(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL'. It has the same kind as X.
- _Example_:
- program test_besy1
- real(8) :: x = 1.0_8
- x = bessel_y1(x)
- end program test_besy1
- _Specific names_:
- Name Argument Return type Standard
- 'DBESY1(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: BESSEL_YN, Next: BGE, Prev: BESSEL_Y1, Up: Intrinsic Procedures
- 9.45 'BESSEL_YN' -- Bessel function of the second kind
- ======================================================
- _Description_:
- 'BESSEL_YN(N, X)' computes the Bessel function of the second kind
- of order N of X. This function is available under the name 'BESYN'
- as a GNU extension. If N and X are arrays, their ranks and shapes
- shall conform.
- 'BESSEL_YN(N1, N2, X)' returns an array with the Bessel functions
- of the first kind of the orders N1 to N2.
- _Standard_:
- Fortran 2008 and later, negative N is allowed as GNU extension
- _Class_:
- Elemental function, except for the transformational function
- 'BESSEL_YN(N1, N2, X)'
- _Syntax_:
- 'RESULT = BESSEL_YN(N, X)'
- 'RESULT = BESSEL_YN(N1, N2, X)'
- _Arguments_:
- N Shall be a scalar or an array of type 'INTEGER'
- .
- N1 Shall be a non-negative scalar of type
- 'INTEGER'.
- N2 Shall be a non-negative scalar of type
- 'INTEGER'.
- X Shall be a scalar or an array of type 'REAL';
- for 'BESSEL_YN(N1, N2, X)' it shall be scalar.
- _Return value_:
- The return value is a scalar of type 'REAL'. It has the same kind
- as X.
- _Note_:
- The transformational function uses a recurrence algorithm which
- might, for some values of X, lead to different results than calls
- to the elemental function.
- _Example_:
- program test_besyn
- real(8) :: x = 1.0_8
- x = bessel_yn(5,x)
- end program test_besyn
- _Specific names_:
- Name Argument Return type Standard
- 'DBESYN(N,X)' 'INTEGER N' 'REAL(8)' GNU extension
- 'REAL(8) X'
- File: gfortran.info, Node: BGE, Next: BGT, Prev: BESSEL_YN, Up: Intrinsic Procedures
- 9.46 'BGE' -- Bitwise greater than or equal to
- ==============================================
- _Description_:
- Determines whether an integral is a bitwise greater than or equal
- to another.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BGE(I, J)'
- _Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
- _Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
- _See also_:
- *note BGT::, *note BLE::, *note BLT::
- File: gfortran.info, Node: BGT, Next: BIT_SIZE, Prev: BGE, Up: Intrinsic Procedures
- 9.47 'BGT' -- Bitwise greater than
- ==================================
- _Description_:
- Determines whether an integral is a bitwise greater than another.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BGT(I, J)'
- _Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
- _Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
- _See also_:
- *note BGE::, *note BLE::, *note BLT::
- File: gfortran.info, Node: BIT_SIZE, Next: BLE, Prev: BGT, Up: Intrinsic Procedures
- 9.48 'BIT_SIZE' -- Bit size inquiry function
- ============================================
- _Description_:
- 'BIT_SIZE(I)' returns the number of bits (integer precision plus
- sign bit) represented by the type of I. The result of
- 'BIT_SIZE(I)' is independent of the actual value of I.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = BIT_SIZE(I)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER'
- _Example_:
- program test_bit_size
- integer :: i = 123
- integer :: size
- size = bit_size(i)
- print *, size
- end program test_bit_size
- File: gfortran.info, Node: BLE, Next: BLT, Prev: BIT_SIZE, Up: Intrinsic Procedures
- 9.49 'BLE' -- Bitwise less than or equal to
- ===========================================
- _Description_:
- Determines whether an integral is a bitwise less than or equal to
- another.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BLE(I, J)'
- _Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
- _Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
- _See also_:
- *note BGT::, *note BGE::, *note BLT::
- File: gfortran.info, Node: BLT, Next: BTEST, Prev: BLE, Up: Intrinsic Procedures
- 9.50 'BLT' -- Bitwise less than
- ===============================
- _Description_:
- Determines whether an integral is a bitwise less than another.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BLT(I, J)'
- _Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
- _Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
- _See also_:
- *note BGE::, *note BGT::, *note BLE::
- File: gfortran.info, Node: BTEST, Next: C_ASSOCIATED, Prev: BLT, Up: Intrinsic Procedures
- 9.51 'BTEST' -- Bit test function
- =================================
- _Description_:
- 'BTEST(I,POS)' returns logical '.TRUE.' if the bit at POS in I is
- set. The counting of the bits starts at 0.
- _Standard_:
- Fortran 90 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BTEST(I, POS)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'LOGICAL'
- _Example_:
- program test_btest
- integer :: i = 32768 + 1024 + 64
- integer :: pos
- logical :: bool
- do pos=0,16
- bool = btest(i, pos)
- print *, pos, bool
- end do
- end program test_btest
- _Specific names_:
- Name Argument Return type Standard
- 'BTEST(I,POS)' 'INTEGER 'LOGICAL' Fortran 95 and
- I,POS' later
- 'BBTEST(I,POS)''INTEGER(1) 'LOGICAL(1)' GNU extension
- I,POS'
- 'BITEST(I,POS)''INTEGER(2) 'LOGICAL(2)' GNU extension
- I,POS'
- 'BJTEST(I,POS)''INTEGER(4) 'LOGICAL(4)' GNU extension
- I,POS'
- 'BKTEST(I,POS)''INTEGER(8) 'LOGICAL(8)' GNU extension
- I,POS'
- File: gfortran.info, Node: C_ASSOCIATED, Next: C_F_POINTER, Prev: BTEST, Up: Intrinsic Procedures
- 9.52 'C_ASSOCIATED' -- Status of a C pointer
- ============================================
- _Description_:
- 'C_ASSOCIATED(c_ptr_1[, c_ptr_2])' determines the status of the C
- pointer C_PTR_1 or if C_PTR_1 is associated with the target
- C_PTR_2.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = C_ASSOCIATED(c_ptr_1[, c_ptr_2])'
- _Arguments_:
- C_PTR_1 Scalar of the type 'C_PTR' or 'C_FUNPTR'.
- C_PTR_2 (Optional) Scalar of the same type as C_PTR_1.
- _Return value_:
- The return value is of type 'LOGICAL'; it is '.false.' if either
- C_PTR_1 is a C NULL pointer or if C_PTR1 and C_PTR_2 point to
- different addresses.
- _Example_:
- subroutine association_test(a,b)
- use iso_c_binding, only: c_associated, c_loc, c_ptr
- implicit none
- real, pointer :: a
- type(c_ptr) :: b
- if(c_associated(b, c_loc(a))) &
- stop 'b and a do not point to same target'
- end subroutine association_test
- _See also_:
- *note C_LOC::, *note C_FUNLOC::
- File: gfortran.info, Node: C_F_POINTER, Next: C_F_PROCPOINTER, Prev: C_ASSOCIATED, Up: Intrinsic Procedures
- 9.53 'C_F_POINTER' -- Convert C into Fortran pointer
- ====================================================
- _Description_:
- 'C_F_POINTER(CPTR, FPTR[, SHAPE])' assigns the target of the C
- pointer CPTR to the Fortran pointer FPTR and specifies its shape.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL C_F_POINTER(CPTR, FPTR[, SHAPE])'
- _Arguments_:
- CPTR scalar of the type 'C_PTR'. It is 'INTENT(IN)'.
- FPTR pointer interoperable with CPTR. It is
- 'INTENT(OUT)'.
- SHAPE (Optional) Rank-one array of type 'INTEGER' with
- 'INTENT(IN)'. It shall be present if and only
- if FPTR is an array. The size must be equal to
- the rank of FPTR.
- _Example_:
- program main
- use iso_c_binding
- implicit none
- interface
- subroutine my_routine(p) bind(c,name='myC_func')
- import :: c_ptr
- type(c_ptr), intent(out) :: p
- end subroutine
- end interface
- type(c_ptr) :: cptr
- real,pointer :: a(:)
- call my_routine(cptr)
- call c_f_pointer(cptr, a, [12])
- end program main
- _See also_:
- *note C_LOC::, *note C_F_PROCPOINTER::
- File: gfortran.info, Node: C_F_PROCPOINTER, Next: C_FUNLOC, Prev: C_F_POINTER, Up: Intrinsic Procedures
- 9.54 'C_F_PROCPOINTER' -- Convert C into Fortran procedure pointer
- ==================================================================
- _Description_:
- 'C_F_PROCPOINTER(CPTR, FPTR)' Assign the target of the C function
- pointer CPTR to the Fortran procedure pointer FPTR.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL C_F_PROCPOINTER(cptr, fptr)'
- _Arguments_:
- CPTR scalar of the type 'C_FUNPTR'. It is
- 'INTENT(IN)'.
- FPTR procedure pointer interoperable with CPTR. It
- is 'INTENT(OUT)'.
- _Example_:
- program main
- use iso_c_binding
- implicit none
- abstract interface
- function func(a)
- import :: c_float
- real(c_float), intent(in) :: a
- real(c_float) :: func
- end function
- end interface
- interface
- function getIterFunc() bind(c,name="getIterFunc")
- import :: c_funptr
- type(c_funptr) :: getIterFunc
- end function
- end interface
- type(c_funptr) :: cfunptr
- procedure(func), pointer :: myFunc
- cfunptr = getIterFunc()
- call c_f_procpointer(cfunptr, myFunc)
- end program main
- _See also_:
- *note C_LOC::, *note C_F_POINTER::
- File: gfortran.info, Node: C_FUNLOC, Next: C_LOC, Prev: C_F_PROCPOINTER, Up: Intrinsic Procedures
- 9.55 'C_FUNLOC' -- Obtain the C address of a procedure
- ======================================================
- _Description_:
- 'C_FUNLOC(x)' determines the C address of the argument.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = C_FUNLOC(x)'
- _Arguments_:
- X Interoperable function or pointer to such
- function.
- _Return value_:
- The return value is of type 'C_FUNPTR' and contains the C address
- of the argument.
- _Example_:
- module x
- use iso_c_binding
- implicit none
- contains
- subroutine sub(a) bind(c)
- real(c_float) :: a
- a = sqrt(a)+5.0
- end subroutine sub
- end module x
- program main
- use iso_c_binding
- use x
- implicit none
- interface
- subroutine my_routine(p) bind(c,name='myC_func')
- import :: c_funptr
- type(c_funptr), intent(in) :: p
- end subroutine
- end interface
- call my_routine(c_funloc(sub))
- end program main
- _See also_:
- *note C_ASSOCIATED::, *note C_LOC::, *note C_F_POINTER::, *note
- C_F_PROCPOINTER::
- File: gfortran.info, Node: C_LOC, Next: C_SIZEOF, Prev: C_FUNLOC, Up: Intrinsic Procedures
- 9.56 'C_LOC' -- Obtain the C address of an object
- =================================================
- _Description_:
- 'C_LOC(X)' determines the C address of the argument.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = C_LOC(X)'
- _Arguments_:
- X Shall have either the POINTER or TARGET attribute.
- It shall not be a coindexed object. It shall either
- be a variable with interoperable type and kind type
- parameters, or be a scalar, nonpolymorphic variable
- with no length type parameters.
-
- _Return value_:
- The return value is of type 'C_PTR' and contains the C address of
- the argument.
- _Example_:
- subroutine association_test(a,b)
- use iso_c_binding, only: c_associated, c_loc, c_ptr
- implicit none
- real, pointer :: a
- type(c_ptr) :: b
- if(c_associated(b, c_loc(a))) &
- stop 'b and a do not point to same target'
- end subroutine association_test
- _See also_:
- *note C_ASSOCIATED::, *note C_FUNLOC::, *note C_F_POINTER::, *note
- C_F_PROCPOINTER::
- File: gfortran.info, Node: C_SIZEOF, Next: CEILING, Prev: C_LOC, Up: Intrinsic Procedures
- 9.57 'C_SIZEOF' -- Size in bytes of an expression
- =================================================
- _Description_:
- 'C_SIZEOF(X)' calculates the number of bytes of storage the
- expression 'X' occupies.
- _Standard_:
- Fortran 2008
- _Class_:
- Inquiry function of the module 'ISO_C_BINDING'
- _Syntax_:
- 'N = C_SIZEOF(X)'
- _Arguments_:
- X The argument shall be an interoperable data
- entity.
- _Return value_:
- The return value is of type integer and of the system-dependent
- kind 'C_SIZE_T' (from the 'ISO_C_BINDING' module). Its value is
- the number of bytes occupied by the argument. If the argument has
- the 'POINTER' attribute, the number of bytes of the storage area
- pointed to is returned. If the argument is of a derived type with
- 'POINTER' or 'ALLOCATABLE' components, the return value does not
- account for the sizes of the data pointed to by these components.
- _Example_:
- use iso_c_binding
- integer(c_int) :: i
- real(c_float) :: r, s(5)
- print *, (c_sizeof(s)/c_sizeof(r) == 5)
- end
- The example will print 'T' unless you are using a platform where
- default 'REAL' variables are unusually padded.
- _See also_:
- *note SIZEOF::, *note STORAGE_SIZE::
- File: gfortran.info, Node: CEILING, Next: CHAR, Prev: C_SIZEOF, Up: Intrinsic Procedures
- 9.58 'CEILING' -- Integer ceiling function
- ==========================================
- _Description_:
- 'CEILING(A)' returns the least integer greater than or equal to A.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = CEILING(A [, KIND])'
- _Arguments_:
- A The type shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER(KIND)' if KIND is present and
- a default-kind 'INTEGER' otherwise.
- _Example_:
- program test_ceiling
- real :: x = 63.29
- real :: y = -63.59
- print *, ceiling(x) ! returns 64
- print *, ceiling(y) ! returns -63
- end program test_ceiling
- _See also_:
- *note FLOOR::, *note NINT::
- File: gfortran.info, Node: CHAR, Next: CHDIR, Prev: CEILING, Up: Intrinsic Procedures
- 9.59 'CHAR' -- Character conversion function
- ============================================
- _Description_:
- 'CHAR(I [, KIND])' returns the character represented by the integer
- I.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = CHAR(I [, KIND])'
- _Arguments_:
- I The type shall be 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'CHARACTER(1)'
- _Example_:
- program test_char
- integer :: i = 74
- character(1) :: c
- c = char(i)
- print *, i, c ! returns 'J'
- end program test_char
- _Specific names_:
- Name Argument Return type Standard
- 'CHAR(I)' 'INTEGER I' 'CHARACTER(LEN=1)'Fortran 77 and
- later
- _Note_:
- See *note ICHAR:: for a discussion of converting between numerical
- values and formatted string representations.
- _See also_:
- *note ACHAR::, *note IACHAR::, *note ICHAR::
- File: gfortran.info, Node: CHDIR, Next: CHMOD, Prev: CHAR, Up: Intrinsic Procedures
- 9.60 'CHDIR' -- Change working directory
- ========================================
- _Description_:
- Change current working directory to a specified path.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL CHDIR(NAME [, STATUS])'
- 'STATUS = CHDIR(NAME)'
- _Arguments_:
- NAME The type shall be 'CHARACTER' of default kind
- and shall specify a valid path within the file
- system.
- STATUS (Optional) 'INTEGER' status flag of the default
- kind. Returns 0 on success, and a system
- specific and nonzero error code otherwise.
- _Example_:
- PROGRAM test_chdir
- CHARACTER(len=255) :: path
- CALL getcwd(path)
- WRITE(*,*) TRIM(path)
- CALL chdir("/tmp")
- CALL getcwd(path)
- WRITE(*,*) TRIM(path)
- END PROGRAM
- _See also_:
- *note GETCWD::
- File: gfortran.info, Node: CHMOD, Next: CMPLX, Prev: CHDIR, Up: Intrinsic Procedures
- 9.61 'CHMOD' -- Change access permissions of files
- ==================================================
- _Description_:
- 'CHMOD' changes the permissions of a file.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL CHMOD(NAME, MODE[, STATUS])'
- 'STATUS = CHMOD(NAME, MODE)'
- _Arguments_:
- NAME Scalar 'CHARACTER' of default kind with the file
- name. Trailing blanks are ignored unless the
- character 'achar(0)' is present, then all
- characters up to and excluding 'achar(0)' are
- used as the file name.
-
- MODE Scalar 'CHARACTER' of default kind giving the
- file permission. MODE uses the same syntax as
- the 'chmod' utility as defined by the POSIX
- standard. The argument shall either be a string
- of a nonnegative octal number or a symbolic
- mode.
-
- STATUS (optional) scalar 'INTEGER', which is '0' on
- success and nonzero otherwise.
- _Return value_:
- In either syntax, STATUS is set to '0' on success and nonzero
- otherwise.
- _Example_:
- 'CHMOD' as subroutine
- program chmod_test
- implicit none
- integer :: status
- call chmod('test.dat','u+x',status)
- print *, 'Status: ', status
- end program chmod_test
- 'CHMOD' as function:
- program chmod_test
- implicit none
- integer :: status
- status = chmod('test.dat','u+x')
- print *, 'Status: ', status
- end program chmod_test
- File: gfortran.info, Node: CMPLX, Next: CO_BROADCAST, Prev: CHMOD, Up: Intrinsic Procedures
- 9.62 'CMPLX' -- Complex conversion function
- ===========================================
- _Description_:
- 'CMPLX(X [, Y [, KIND]])' returns a complex number where X is
- converted to the real component. If Y is present it is converted
- to the imaginary component. If Y is not present then the imaginary
- component is set to 0.0. If X is complex then Y must not be
- present.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = CMPLX(X [, Y [, KIND]])'
- _Arguments_:
- X The type may be 'INTEGER', 'REAL', or 'COMPLEX'.
- Y (Optional; only allowed if X is not 'COMPLEX'.)
- May be 'INTEGER' or 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of 'COMPLEX' type, with a kind equal to KIND if
- it is specified. If KIND is not specified, the result is of the
- default 'COMPLEX' kind, regardless of the kinds of X and Y.
- _Example_:
- program test_cmplx
- integer :: i = 42
- real :: x = 3.14
- complex :: z
- z = cmplx(i, x)
- print *, z, cmplx(x)
- end program test_cmplx
- _See also_:
- *note COMPLEX::
- File: gfortran.info, Node: CO_BROADCAST, Next: CO_MAX, Prev: CMPLX, Up: Intrinsic Procedures
- 9.63 'CO_BROADCAST' -- Copy a value to all images the current set of images
- ===========================================================================
- _Description_:
- 'CO_BROADCAST' copies the value of argument A on the image with
- image index 'SOURCE_IMAGE' to all images in the current team. A
- becomes defined as if by intrinsic assignment. If the execution
- was successful and STAT is present, it is assigned the value zero.
- If the execution failed, STAT gets assigned a nonzero value and, if
- present, ERRMSG gets assigned a value describing the occurred
- error.
- _Standard_:
- Technical Specification (TS) 18508 or later
- _Class_:
- Collective subroutine
- _Syntax_:
- 'CALL CO_BROADCAST(A, SOURCE_IMAGE [, STAT, ERRMSG])'
- _Arguments_:
- A INTENT(INOUT) argument; shall have the same
- dynamic type and type parameters on all
- images of the current team. If it is an
- array, it shall have the same shape on all
- images.
- SOURCE_IMAGE a scalar integer expression. It shall have
- the same the same value on all images and
- refer to an image of the current team.
- STAT (optional) a scalar integer variable
- ERRMSG (optional) a scalar character variable
- _Example_:
- program test
- integer :: val(3)
- if (this_image() == 1) then
- val = [1, 5, 3]
- end if
- call co_broadcast (val, source_image=1)
- print *, this_image, ":", val
- end program test
- _See also_:
- *note CO_MAX::, *note CO_MIN::, *note CO_SUM::, *note CO_REDUCE::
- File: gfortran.info, Node: CO_MAX, Next: CO_MIN, Prev: CO_BROADCAST, Up: Intrinsic Procedures
- 9.64 'CO_MAX' -- Maximal value on the current set of images
- ===========================================================
- _Description_:
- 'CO_MAX' determines element-wise the maximal value of A on all
- images of the current team. If RESULT_IMAGE is present, the
- maximum values are returned in A on the specified image only and
- the value of A on the other images become undefined. If
- RESULT_IMAGE is not present, the value is returned on all images.
- If the execution was successful and STAT is present, it is assigned
- the value zero. If the execution failed, STAT gets assigned a
- nonzero value and, if present, ERRMSG gets assigned a value
- describing the occurred error.
- _Standard_:
- Technical Specification (TS) 18508 or later
- _Class_:
- Collective subroutine
- _Syntax_:
- 'CALL CO_MAX(A [, RESULT_IMAGE, STAT, ERRMSG])'
- _Arguments_:
- A shall be an integer, real or character
- variable, which has the same type and type
- parameters on all images of the team.
- RESULT_IMAGE (optional) a scalar integer expression; if
- present, it shall have the same the same
- value on all images and refer to an image of
- the current team.
- STAT (optional) a scalar integer variable
- ERRMSG (optional) a scalar character variable
- _Example_:
- program test
- integer :: val
- val = this_image ()
- call co_max (val, result_image=1)
- if (this_image() == 1) then
- write(*,*) "Maximal value", val ! prints num_images()
- end if
- end program test
- _See also_:
- *note CO_MIN::, *note CO_SUM::, *note CO_REDUCE::, *note
- CO_BROADCAST::
- File: gfortran.info, Node: CO_MIN, Next: CO_REDUCE, Prev: CO_MAX, Up: Intrinsic Procedures
- 9.65 'CO_MIN' -- Minimal value on the current set of images
- ===========================================================
- _Description_:
- 'CO_MIN' determines element-wise the minimal value of A on all
- images of the current team. If RESULT_IMAGE is present, the
- minimal values are returned in A on the specified image only and
- the value of A on the other images become undefined. If
- RESULT_IMAGE is not present, the value is returned on all images.
- If the execution was successful and STAT is present, it is assigned
- the value zero. If the execution failed, STAT gets assigned a
- nonzero value and, if present, ERRMSG gets assigned a value
- describing the occurred error.
- _Standard_:
- Technical Specification (TS) 18508 or later
- _Class_:
- Collective subroutine
- _Syntax_:
- 'CALL CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])'
- _Arguments_:
- A shall be an integer, real or character
- variable, which has the same type and type
- parameters on all images of the team.
- RESULT_IMAGE (optional) a scalar integer expression; if
- present, it shall have the same the same
- value on all images and refer to an image of
- the current team.
- STAT (optional) a scalar integer variable
- ERRMSG (optional) a scalar character variable
- _Example_:
- program test
- integer :: val
- val = this_image ()
- call co_min (val, result_image=1)
- if (this_image() == 1) then
- write(*,*) "Minimal value", val ! prints 1
- end if
- end program test
- _See also_:
- *note CO_MAX::, *note CO_SUM::, *note CO_REDUCE::, *note
- CO_BROADCAST::
- File: gfortran.info, Node: CO_REDUCE, Next: CO_SUM, Prev: CO_MIN, Up: Intrinsic Procedures
- 9.66 'CO_REDUCE' -- Reduction of values on the current set of images
- ====================================================================
- _Description_:
- 'CO_REDUCE' determines element-wise the reduction of the value of A
- on all images of the current team. The pure function passed as
- OPERATOR is used to pairwise reduce the values of A by passing
- either the value of A of different images or the result values of
- such a reduction as argument. If A is an array, the deduction is
- done element wise. If RESULT_IMAGE is present, the result values
- are returned in A on the specified image only and the value of A on
- the other images become undefined. If RESULT_IMAGE is not present,
- the value is returned on all images. If the execution was
- successful and STAT is present, it is assigned the value zero. If
- the execution failed, STAT gets assigned a nonzero value and, if
- present, ERRMSG gets assigned a value describing the occurred
- error.
- _Standard_:
- Technical Specification (TS) 18508 or later
- _Class_:
- Collective subroutine
- _Syntax_:
- 'CALL CO_REDUCE(A, OPERATOR, [, RESULT_IMAGE, STAT, ERRMSG])'
- _Arguments_:
- A is an 'INTENT(INOUT)' argument and shall be
- nonpolymorphic. If it is allocatable, it
- shall be allocated; if it is a pointer, it
- shall be associated. A shall have the same
- type and type parameters on all images of the
- team; if it is an array, it shall have the
- same shape on all images.
- OPERATOR pure function with two scalar nonallocatable
- arguments, which shall be nonpolymorphic and
- have the same type and type parameters as A.
- The function shall return a nonallocatable
- scalar of the same type and type parameters
- as A. The function shall be the same on all
- images and with regards to the arguments
- mathematically commutative and associative.
- Note that OPERATOR may not be an elemental
- function, unless it is an intrisic function.
- RESULT_IMAGE (optional) a scalar integer expression; if
- present, it shall have the same the same
- value on all images and refer to an image of
- the current team.
- STAT (optional) a scalar integer variable
- ERRMSG (optional) a scalar character variable
- _Example_:
- program test
- integer :: val
- val = this_image ()
- call co_reduce (val, result_image=1, operator=myprod)
- if (this_image() == 1) then
- write(*,*) "Product value", val ! prints num_images() factorial
- end if
- contains
- pure function myprod(a, b)
- integer, value :: a, b
- integer :: myprod
- myprod = a * b
- end function myprod
- end program test
- _Note_:
- While the rules permit in principle an intrinsic function, none of
- the intrinsics in the standard fulfill the criteria of having a
- specific function, which takes two arguments of the same type and
- returning that type as result.
- _See also_:
- *note CO_MIN::, *note CO_MAX::, *note CO_SUM::, *note
- CO_BROADCAST::
- File: gfortran.info, Node: CO_SUM, Next: COMMAND_ARGUMENT_COUNT, Prev: CO_REDUCE, Up: Intrinsic Procedures
- 9.67 'CO_SUM' -- Sum of values on the current set of images
- ===========================================================
- _Description_:
- 'CO_SUM' sums up the values of each element of A on all images of
- the current team. If RESULT_IMAGE is present, the summed-up values
- are returned in A on the specified image only and the value of A on
- the other images become undefined. If RESULT_IMAGE is not present,
- the value is returned on all images. If the execution was
- successful and STAT is present, it is assigned the value zero. If
- the execution failed, STAT gets assigned a nonzero value and, if
- present, ERRMSG gets assigned a value describing the occurred
- error.
- _Standard_:
- Technical Specification (TS) 18508 or later
- _Class_:
- Collective subroutine
- _Syntax_:
- 'CALL CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])'
- _Arguments_:
- A shall be an integer, real or complex
- variable, which has the same type and type
- parameters on all images of the team.
- RESULT_IMAGE (optional) a scalar integer expression; if
- present, it shall have the same the same
- value on all images and refer to an image of
- the current team.
- STAT (optional) a scalar integer variable
- ERRMSG (optional) a scalar character variable
- _Example_:
- program test
- integer :: val
- val = this_image ()
- call co_sum (val, result_image=1)
- if (this_image() == 1) then
- write(*,*) "The sum is ", val ! prints (n**2 + n)/2,
- ! with n = num_images()
- end if
- end program test
- _See also_:
- *note CO_MAX::, *note CO_MIN::, *note CO_REDUCE::, *note
- CO_BROADCAST::
- File: gfortran.info, Node: COMMAND_ARGUMENT_COUNT, Next: COMPILER_OPTIONS, Prev: CO_SUM, Up: Intrinsic Procedures
- 9.68 'COMMAND_ARGUMENT_COUNT' -- Get number of command line arguments
- =====================================================================
- _Description_:
- 'COMMAND_ARGUMENT_COUNT' returns the number of arguments passed on
- the command line when the containing program was invoked.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = COMMAND_ARGUMENT_COUNT()'
- _Arguments_:
- None
- _Return value_:
- The return value is an 'INTEGER' of default kind.
- _Example_:
- program test_command_argument_count
- integer :: count
- count = command_argument_count()
- print *, count
- end program test_command_argument_count
- _See also_:
- *note GET_COMMAND::, *note GET_COMMAND_ARGUMENT::
- File: gfortran.info, Node: COMPILER_OPTIONS, Next: COMPILER_VERSION, Prev: COMMAND_ARGUMENT_COUNT, Up: Intrinsic Procedures
- 9.69 'COMPILER_OPTIONS' -- Options passed to the compiler
- =========================================================
- _Description_:
- 'COMPILER_OPTIONS' returns a string with the options used for
- compiling.
- _Standard_:
- Fortran 2008
- _Class_:
- Inquiry function of the module 'ISO_FORTRAN_ENV'
- _Syntax_:
- 'STR = COMPILER_OPTIONS()'
- _Arguments_:
- None
- _Return value_:
- The return value is a default-kind string with system-dependent
- length. It contains the compiler flags used to compile the file,
- which called the 'COMPILER_OPTIONS' intrinsic.
- _Example_:
- use iso_fortran_env
- print '(4a)', 'This file was compiled by ', &
- compiler_version(), ' using the options ', &
- compiler_options()
- end
- _See also_:
- *note COMPILER_VERSION::, *note ISO_FORTRAN_ENV::
- File: gfortran.info, Node: COMPILER_VERSION, Next: COMPLEX, Prev: COMPILER_OPTIONS, Up: Intrinsic Procedures
- 9.70 'COMPILER_VERSION' -- Compiler version string
- ==================================================
- _Description_:
- 'COMPILER_VERSION' returns a string with the name and the version
- of the compiler.
- _Standard_:
- Fortran 2008
- _Class_:
- Inquiry function of the module 'ISO_FORTRAN_ENV'
- _Syntax_:
- 'STR = COMPILER_VERSION()'
- _Arguments_:
- None
- _Return value_:
- The return value is a default-kind string with system-dependent
- length. It contains the name of the compiler and its version
- number.
- _Example_:
- use iso_fortran_env
- print '(4a)', 'This file was compiled by ', &
- compiler_version(), ' using the options ', &
- compiler_options()
- end
- _See also_:
- *note COMPILER_OPTIONS::, *note ISO_FORTRAN_ENV::
- File: gfortran.info, Node: COMPLEX, Next: CONJG, Prev: COMPILER_VERSION, Up: Intrinsic Procedures
- 9.71 'COMPLEX' -- Complex conversion function
- =============================================
- _Description_:
- 'COMPLEX(X, Y)' returns a complex number where X is converted to
- the real component and Y is converted to the imaginary component.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = COMPLEX(X, Y)'
- _Arguments_:
- X The type may be 'INTEGER' or 'REAL'.
- Y The type may be 'INTEGER' or 'REAL'.
- _Return value_:
- If X and Y are both of 'INTEGER' type, then the return value is of
- default 'COMPLEX' type.
- If X and Y are of 'REAL' type, or one is of 'REAL' type and one is
- of 'INTEGER' type, then the return value is of 'COMPLEX' type with
- a kind equal to that of the 'REAL' argument with the highest
- precision.
- _Example_:
- program test_complex
- integer :: i = 42
- real :: x = 3.14
- print *, complex(i, x)
- end program test_complex
- _See also_:
- *note CMPLX::
- File: gfortran.info, Node: CONJG, Next: COS, Prev: COMPLEX, Up: Intrinsic Procedures
- 9.72 'CONJG' -- Complex conjugate function
- ==========================================
- _Description_:
- 'CONJG(Z)' returns the conjugate of Z. If Z is '(x, y)' then the
- result is '(x, -y)'
- _Standard_:
- Fortran 77 and later, has an overload that is a GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'Z = CONJG(Z)'
- _Arguments_:
- Z The type shall be 'COMPLEX'.
- _Return value_:
- The return value is of type 'COMPLEX'.
- _Example_:
- program test_conjg
- complex :: z = (2.0, 3.0)
- complex(8) :: dz = (2.71_8, -3.14_8)
- z= conjg(z)
- print *, z
- dz = dconjg(dz)
- print *, dz
- end program test_conjg
- _Specific names_:
- Name Argument Return type Standard
- 'DCONJG(Z)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- Z'
- File: gfortran.info, Node: COS, Next: COSD, Prev: CONJG, Up: Intrinsic Procedures
- 9.73 'COS' -- Cosine function
- =============================
- _Description_:
- 'COS(X)' computes the cosine of X.
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = COS(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in radians. If X is of the type 'REAL', the
- return value lies in the range -1 \leq \cos (x) \leq 1.
- _Example_:
- program test_cos
- real :: x = 0.0
- x = cos(x)
- end program test_cos
- _Specific names_:
- Name Argument Return type Standard
- 'COS(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DCOS(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- 'CCOS(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and
- X' later
- 'ZCOS(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDCOS(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- _See also_:
- Inverse function: *note ACOS:: Degrees function: *note COSD::
- File: gfortran.info, Node: COSD, Next: COSH, Prev: COS, Up: Intrinsic Procedures
- 9.74 'COSD' -- Cosine function, degrees
- =======================================
- _Description_:
- 'COSD(X)' computes the cosine of X in degrees.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = COSD(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in degrees. If X is of the type 'REAL', the
- return value lies in the range -1 \leq \cosd (x) \leq 1.
- _Example_:
- program test_cosd
- real :: x = 0.0
- x = cosd(x)
- end program test_cosd
- _Specific names_:
- Name Argument Return type Standard
- 'COSD(X)' 'REAL(4) X' 'REAL(4)' GNU extension
- 'DCOSD(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- 'CCOSD(X)' 'COMPLEX(4) 'COMPLEX(4)' GNU extension
- X'
- 'ZCOSD(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDCOSD(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- _See also_:
- Inverse function: *note ACOSD:: Radians function: *note COS::
- File: gfortran.info, Node: COSH, Next: COTAN, Prev: COSD, Up: Intrinsic Procedures
- 9.75 'COSH' -- Hyperbolic cosine function
- =========================================
- _Description_:
- 'COSH(X)' computes the hyperbolic cosine of X.
- _Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'X = COSH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X. If X is complex, the
- imaginary part of the result is in radians. If X is 'REAL', the
- return value has a lower bound of one, \cosh (x) \geq 1.
- _Example_:
- program test_cosh
- real(8) :: x = 1.0_8
- x = cosh(x)
- end program test_cosh
- _Specific names_:
- Name Argument Return type Standard
- 'COSH(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DCOSH(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- Inverse function: *note ACOSH::
- File: gfortran.info, Node: COTAN, Next: COTAND, Prev: COSH, Up: Intrinsic Procedures
- 9.76 'COTAN' -- Cotangent function
- ==================================
- _Description_:
- 'COTAN(X)' computes the cotangent of X. Equivalent to 'COS(x)'
- divided by 'SIN(x)', or '1 / TAN(x)'.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = COTAN(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X, and its value is in
- radians.
- _Example_:
- program test_cotan
- real(8) :: x = 0.165_8
- x = cotan(x)
- end program test_cotan
- _Specific names_:
- Name Argument Return type Standard
- 'COTAN(X)' 'REAL(4) X' 'REAL(4)' GNU extension
- 'DCOTAN(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Converse function: *note TAN:: Degrees function: *note COTAND::
- File: gfortran.info, Node: COTAND, Next: COUNT, Prev: COTAN, Up: Intrinsic Procedures
- 9.77 'COTAND' -- Cotangent function, degrees
- ============================================
- _Description_:
- 'COTAND(X)' computes the cotangent of X in degrees. Equivalent to
- 'COSD(x)' divided by 'SIND(x)', or '1 / TAND(x)'.
- _Standard_:
- GNU extension, enabled with '-fdec-math'.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = COTAND(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X, and its value is in
- degrees.
- _Example_:
- program test_cotand
- real(8) :: x = 0.165_8
- x = cotand(x)
- end program test_cotand
- _Specific names_:
- Name Argument Return type Standard
- 'COTAND(X)' 'REAL(4) X' 'REAL(4)' GNU extension
- 'DCOTAND(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Converse function: *note TAND:: Radians function: *note COTAN::
- File: gfortran.info, Node: COUNT, Next: CPU_TIME, Prev: COTAND, Up: Intrinsic Procedures
- 9.78 'COUNT' -- Count function
- ==============================
- _Description_:
- Counts the number of '.TRUE.' elements in a logical MASK, or, if
- the DIM argument is supplied, counts the number of elements along
- each row of the array in the DIM direction. If the array has zero
- size, or all of the elements of MASK are '.FALSE.', then the result
- is '0'.
- _Standard_:
- Fortran 90 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = COUNT(MASK [, DIM, KIND])'
- _Arguments_:
- MASK The type shall be 'LOGICAL'.
- DIM (Optional) The type shall be 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- present, the result is an array with a rank one less than the rank
- of ARRAY, and a size corresponding to the shape of ARRAY with the
- DIM dimension removed.
- _Example_:
- program test_count
- integer, dimension(2,3) :: a, b
- logical, dimension(2,3) :: mask
- a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))
- b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print *
- print '(3i3)', b(1,:)
- print '(3i3)', b(2,:)
- print *
- mask = a.ne.b
- print '(3l3)', mask(1,:)
- print '(3l3)', mask(2,:)
- print *
- print '(3i3)', count(mask)
- print *
- print '(3i3)', count(mask, 1)
- print *
- print '(3i3)', count(mask, 2)
- end program test_count
- File: gfortran.info, Node: CPU_TIME, Next: CSHIFT, Prev: COUNT, Up: Intrinsic Procedures
- 9.79 'CPU_TIME' -- CPU elapsed time in seconds
- ==============================================
- _Description_:
- Returns a 'REAL' value representing the elapsed CPU time in
- seconds. This is useful for testing segments of code to determine
- execution time.
- If a time source is available, time will be reported with
- microsecond resolution. If no time source is available, TIME is
- set to '-1.0'.
- Note that TIME may contain a, system dependent, arbitrary offset
- and may not start with '0.0'. For 'CPU_TIME', the absolute value
- is meaningless, only differences between subsequent calls to this
- subroutine, as shown in the example below, should be used.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL CPU_TIME(TIME)'
- _Arguments_:
- TIME The type shall be 'REAL' with 'INTENT(OUT)'.
- _Return value_:
- None
- _Example_:
- program test_cpu_time
- real :: start, finish
- call cpu_time(start)
- ! put code to test here
- call cpu_time(finish)
- print '("Time = ",f6.3," seconds.")',finish-start
- end program test_cpu_time
- _See also_:
- *note SYSTEM_CLOCK::, *note DATE_AND_TIME::
- File: gfortran.info, Node: CSHIFT, Next: CTIME, Prev: CPU_TIME, Up: Intrinsic Procedures
- 9.80 'CSHIFT' -- Circular shift elements of an array
- ====================================================
- _Description_:
- 'CSHIFT(ARRAY, SHIFT [, DIM])' performs a circular shift on
- elements of ARRAY along the dimension of DIM. If DIM is omitted it
- is taken to be '1'. DIM is a scalar of type 'INTEGER' in the range
- of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the rank of
- ARRAY is one, then all elements of ARRAY are shifted by SHIFT
- places. If rank is greater than one, then all complete rank one
- sections of ARRAY along the given dimension are shifted. Elements
- shifted out one end of each rank one section are shifted back in
- the other end.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = CSHIFT(ARRAY, SHIFT [, DIM])'
- _Arguments_:
- ARRAY Shall be an array of any type.
- SHIFT The type shall be 'INTEGER'.
- DIM The type shall be 'INTEGER'.
- _Return value_:
- Returns an array of same type and rank as the ARRAY argument.
- _Example_:
- program test_cshift
- integer, dimension(3,3) :: a
- a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
- print *
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- end program test_cshift
- File: gfortran.info, Node: CTIME, Next: DATE_AND_TIME, Prev: CSHIFT, Up: Intrinsic Procedures
- 9.81 'CTIME' -- Convert a time into a string
- ============================================
- _Description_:
- 'CTIME' converts a system time value, such as returned by *note
- TIME8::, to a string. The output will be of the form 'Sat Aug 19
- 18:13:14 1995'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL CTIME(TIME, RESULT)'.
- 'RESULT = CTIME(TIME)'.
- _Arguments_:
- TIME The type shall be of type 'INTEGER'.
- RESULT The type shall be of type 'CHARACTER' and of
- default kind. It is an 'INTENT(OUT)' argument.
- If the length of this variable is too short for
- the time and date string to fit completely, it
- will be blank on procedure return.
- _Return value_:
- The converted date and time as a string.
- _Example_:
- program test_ctime
- integer(8) :: i
- character(len=30) :: date
- i = time8()
- ! Do something, main part of the program
- call ctime(i,date)
- print *, 'Program was started on ', date
- end program test_ctime
- _See Also_:
- *note DATE_AND_TIME::, *note GMTIME::, *note LTIME::, *note TIME::,
- *note TIME8::
- File: gfortran.info, Node: DATE_AND_TIME, Next: DBLE, Prev: CTIME, Up: Intrinsic Procedures
- 9.82 'DATE_AND_TIME' -- Date and time subroutine
- ================================================
- _Description_:
- 'DATE_AND_TIME(DATE, TIME, ZONE, VALUES)' gets the corresponding
- date and time information from the real-time system clock. DATE is
- 'INTENT(OUT)' and has form ccyymmdd. TIME is 'INTENT(OUT)' and has
- form hhmmss.sss. ZONE is 'INTENT(OUT)' and has form (+-)hhmm,
- representing the difference with respect to Coordinated Universal
- Time (UTC). Unavailable time and date parameters return blanks.
- VALUES is 'INTENT(OUT)' and provides the following:
- 'VALUE(1)': The year
- 'VALUE(2)': The month
- 'VALUE(3)': The day of the month
- 'VALUE(4)': Time difference with UTC in
- minutes
- 'VALUE(5)': The hour of the day
- 'VALUE(6)': The minutes of the hour
- 'VALUE(7)': The seconds of the minute
- 'VALUE(8)': The milliseconds of the
- second
- _Standard_:
- Fortran 90 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])'
- _Arguments_:
- DATE (Optional) The type shall be 'CHARACTER(LEN=8)'
- or larger, and of default kind.
- TIME (Optional) The type shall be 'CHARACTER(LEN=10)'
- or larger, and of default kind.
- ZONE (Optional) The type shall be 'CHARACTER(LEN=5)'
- or larger, and of default kind.
- VALUES (Optional) The type shall be 'INTEGER(8)'.
- _Return value_:
- None
- _Example_:
- program test_time_and_date
- character(8) :: date
- character(10) :: time
- character(5) :: zone
- integer,dimension(8) :: values
- ! using keyword arguments
- call date_and_time(date,time,zone,values)
- call date_and_time(DATE=date,ZONE=zone)
- call date_and_time(TIME=time)
- call date_and_time(VALUES=values)
- print '(a,2x,a,2x,a)', date, time, zone
- print '(8i5)', values
- end program test_time_and_date
- _See also_:
- *note CPU_TIME::, *note SYSTEM_CLOCK::
- File: gfortran.info, Node: DBLE, Next: DCMPLX, Prev: DATE_AND_TIME, Up: Intrinsic Procedures
- 9.83 'DBLE' -- Double conversion function
- =========================================
- _Description_:
- 'DBLE(A)' Converts A to double precision real type.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DBLE(A)'
- _Arguments_:
- A The type shall be 'INTEGER', 'REAL', or
- 'COMPLEX'.
- _Return value_:
- The return value is of type double precision real.
- _Example_:
- program test_dble
- real :: x = 2.18
- integer :: i = 5
- complex :: z = (2.3,1.14)
- print *, dble(x), dble(i), dble(z)
- end program test_dble
- _See also_:
- *note REAL::
- File: gfortran.info, Node: DCMPLX, Next: DIGITS, Prev: DBLE, Up: Intrinsic Procedures
- 9.84 'DCMPLX' -- Double complex conversion function
- ===================================================
- _Description_:
- 'DCMPLX(X [,Y])' returns a double complex number where X is
- converted to the real component. If Y is present it is converted
- to the imaginary component. If Y is not present then the imaginary
- component is set to 0.0. If X is complex then Y must not be
- present.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DCMPLX(X [, Y])'
- _Arguments_:
- X The type may be 'INTEGER', 'REAL', or 'COMPLEX'.
- Y (Optional if X is not 'COMPLEX'.) May be
- 'INTEGER' or 'REAL'.
- _Return value_:
- The return value is of type 'COMPLEX(8)'
- _Example_:
- program test_dcmplx
- integer :: i = 42
- real :: x = 3.14
- complex :: z
- z = cmplx(i, x)
- print *, dcmplx(i)
- print *, dcmplx(x)
- print *, dcmplx(z)
- print *, dcmplx(x,i)
- end program test_dcmplx
- File: gfortran.info, Node: DIGITS, Next: DIM, Prev: DCMPLX, Up: Intrinsic Procedures
- 9.85 'DIGITS' -- Significant binary digits function
- ===================================================
- _Description_:
- 'DIGITS(X)' returns the number of significant binary digits of the
- internal model representation of X. For example, on a system using
- a 32-bit floating point representation, a default real number would
- likely return 24.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = DIGITS(X)'
- _Arguments_:
- X The type may be 'INTEGER' or 'REAL'.
- _Return value_:
- The return value is of type 'INTEGER'.
- _Example_:
- program test_digits
- integer :: i = 12345
- real :: x = 3.143
- real(8) :: y = 2.33
- print *, digits(i)
- print *, digits(x)
- print *, digits(y)
- end program test_digits
- File: gfortran.info, Node: DIM, Next: DOT_PRODUCT, Prev: DIGITS, Up: Intrinsic Procedures
- 9.86 'DIM' -- Positive difference
- =================================
- _Description_:
- 'DIM(X,Y)' returns the difference 'X-Y' if the result is positive;
- otherwise returns zero.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DIM(X, Y)'
- _Arguments_:
- X The type shall be 'INTEGER' or 'REAL'
- Y The type shall be the same type and kind as X.
- (As a GNU extension, arguments of different
- kinds are permitted.)
- _Return value_:
- The return value is of type 'INTEGER' or 'REAL'. (As a GNU
- extension, kind is the largest kind of the actual arguments.)
- _Example_:
- program test_dim
- integer :: i
- real(8) :: x
- i = dim(4, 15)
- x = dim(4.345_8, 2.111_8)
- print *, i
- print *, x
- end program test_dim
- _Specific names_:
- Name Argument Return type Standard
- 'DIM(X,Y)' 'REAL(4) X, 'REAL(4)' Fortran 77 and
- Y' later
- 'IDIM(X,Y)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- X, Y' later
- 'DDIM(X,Y)' 'REAL(8) X, 'REAL(8)' Fortran 77 and
- Y' later
- File: gfortran.info, Node: DOT_PRODUCT, Next: DPROD, Prev: DIM, Up: Intrinsic Procedures
- 9.87 'DOT_PRODUCT' -- Dot product function
- ==========================================
- _Description_:
- 'DOT_PRODUCT(VECTOR_A, VECTOR_B)' computes the dot product
- multiplication of two vectors VECTOR_A and VECTOR_B. The two
- vectors may be either numeric or logical and must be arrays of rank
- one and of equal size. If the vectors are 'INTEGER' or 'REAL', the
- result is 'SUM(VECTOR_A*VECTOR_B)'. If the vectors are 'COMPLEX',
- the result is 'SUM(CONJG(VECTOR_A)*VECTOR_B)'. If the vectors are
- 'LOGICAL', the result is 'ANY(VECTOR_A .AND. VECTOR_B)'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)'
- _Arguments_:
- VECTOR_A The type shall be numeric or 'LOGICAL', rank 1.
- VECTOR_B The type shall be numeric if VECTOR_A is of
- numeric type or 'LOGICAL' if VECTOR_A is of type
- 'LOGICAL'. VECTOR_B shall be a rank-one array.
- _Return value_:
- If the arguments are numeric, the return value is a scalar of
- numeric type, 'INTEGER', 'REAL', or 'COMPLEX'. If the arguments
- are 'LOGICAL', the return value is '.TRUE.' or '.FALSE.'.
- _Example_:
- program test_dot_prod
- integer, dimension(3) :: a, b
- a = (/ 1, 2, 3 /)
- b = (/ 4, 5, 6 /)
- print '(3i3)', a
- print *
- print '(3i3)', b
- print *
- print *, dot_product(a,b)
- end program test_dot_prod
- File: gfortran.info, Node: DPROD, Next: DREAL, Prev: DOT_PRODUCT, Up: Intrinsic Procedures
- 9.88 'DPROD' -- Double product function
- =======================================
- _Description_:
- 'DPROD(X,Y)' returns the product 'X*Y'.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DPROD(X, Y)'
- _Arguments_:
- X The type shall be 'REAL'.
- Y The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL(8)'.
- _Example_:
- program test_dprod
- real :: x = 5.2
- real :: y = 2.3
- real(8) :: d
- d = dprod(x,y)
- print *, d
- end program test_dprod
- _Specific names_:
- Name Argument Return type Standard
- 'DPROD(X,Y)' 'REAL(4) X, 'REAL(8)' Fortran 77 and
- Y' later
- File: gfortran.info, Node: DREAL, Next: DSHIFTL, Prev: DPROD, Up: Intrinsic Procedures
- 9.89 'DREAL' -- Double real part function
- =========================================
- _Description_:
- 'DREAL(Z)' returns the real part of complex variable Z.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DREAL(A)'
- _Arguments_:
- A The type shall be 'COMPLEX(8)'.
- _Return value_:
- The return value is of type 'REAL(8)'.
- _Example_:
- program test_dreal
- complex(8) :: z = (1.3_8,7.2_8)
- print *, dreal(z)
- end program test_dreal
- _See also_:
- *note AIMAG::
- File: gfortran.info, Node: DSHIFTL, Next: DSHIFTR, Prev: DREAL, Up: Intrinsic Procedures
- 9.90 'DSHIFTL' -- Combined left shift
- =====================================
- _Description_:
- 'DSHIFTL(I, J, SHIFT)' combines bits of I and J. The rightmost
- SHIFT bits of the result are the leftmost SHIFT bits of J, and the
- remaining bits are the rightmost bits of I.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DSHIFTL(I, J, SHIFT)'
- _Arguments_:
- I Shall be of type 'INTEGER' or a BOZ constant.
- J Shall be of type 'INTEGER' or a BOZ constant.
- If both I and J have integer type, then they
- shall have the same kind type parameter. I and
- J shall not both be BOZ constants.
- SHIFT Shall be of type 'INTEGER'. It shall be
- nonnegative. If I is not a BOZ constant, then
- SHIFT shall be less than or equal to
- 'BIT_SIZE(I)'; otherwise, SHIFT shall be less
- than or equal to 'BIT_SIZE(J)'.
- _Return value_:
- If either I or J is a BOZ constant, it is first converted as if by
- the intrinsic function 'INT' to an integer type with the kind type
- parameter of the other.
- _See also_:
- *note DSHIFTR::
- File: gfortran.info, Node: DSHIFTR, Next: DTIME, Prev: DSHIFTL, Up: Intrinsic Procedures
- 9.91 'DSHIFTR' -- Combined right shift
- ======================================
- _Description_:
- 'DSHIFTR(I, J, SHIFT)' combines bits of I and J. The leftmost
- SHIFT bits of the result are the rightmost SHIFT bits of I, and the
- remaining bits are the leftmost bits of J.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DSHIFTR(I, J, SHIFT)'
- _Arguments_:
- I Shall be of type 'INTEGER' or a BOZ constant.
- J Shall be of type 'INTEGER' or a BOZ constant.
- If both I and J have integer type, then they
- shall have the same kind type parameter. I and
- J shall not both be BOZ constants.
- SHIFT Shall be of type 'INTEGER'. It shall be
- nonnegative. If I is not a BOZ constant, then
- SHIFT shall be less than or equal to
- 'BIT_SIZE(I)'; otherwise, SHIFT shall be less
- than or equal to 'BIT_SIZE(J)'.
- _Return value_:
- If either I or J is a BOZ constant, it is first converted as if by
- the intrinsic function 'INT' to an integer type with the kind type
- parameter of the other.
- _See also_:
- *note DSHIFTL::
- File: gfortran.info, Node: DTIME, Next: EOSHIFT, Prev: DSHIFTR, Up: Intrinsic Procedures
- 9.92 'DTIME' -- Execution time subroutine (or function)
- =======================================================
- _Description_:
- 'DTIME(VALUES, TIME)' initially returns the number of seconds of
- runtime since the start of the process's execution in TIME. VALUES
- returns the user and system components of this time in 'VALUES(1)'
- and 'VALUES(2)' respectively. TIME is equal to 'VALUES(1) +
- VALUES(2)'.
- Subsequent invocations of 'DTIME' return values accumulated since
- the previous invocation.
- On some systems, the underlying timings are represented using types
- with sufficiently small limits that overflows (wrap around) are
- possible, such as 32-bit types. Therefore, the values returned by
- this intrinsic might be, or become, negative, or numerically less
- than previous values, during a single run of the compiled program.
- Please note, that this implementation is thread safe if used within
- OpenMP directives, i.e., its state will be consistent while called
- from multiple threads. However, if 'DTIME' is called from multiple
- threads, the result is still the time since the last invocation.
- This may not give the intended results. If possible, use
- 'CPU_TIME' instead.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- VALUES and TIME are 'INTENT(OUT)' and provide the following:
- 'VALUES(1)': User time in seconds.
- 'VALUES(2)': System time in seconds.
- 'TIME': Run time since start in
- seconds.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL DTIME(VALUES, TIME)'.
- 'TIME = DTIME(VALUES)', (not recommended).
- _Arguments_:
- VALUES The type shall be 'REAL(4), DIMENSION(2)'.
- TIME The type shall be 'REAL(4)'.
- _Return value_:
- Elapsed time in seconds since the last invocation or since the
- start of program execution if not called before.
- _Example_:
- program test_dtime
- integer(8) :: i, j
- real, dimension(2) :: tarray
- real :: result
- call dtime(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- do i=1,100000000 ! Just a delay
- j = i * i - i
- end do
- call dtime(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- end program test_dtime
- _See also_:
- *note CPU_TIME::
- File: gfortran.info, Node: EOSHIFT, Next: EPSILON, Prev: DTIME, Up: Intrinsic Procedures
- 9.93 'EOSHIFT' -- End-off shift elements of an array
- ====================================================
- _Description_:
- 'EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])' performs an end-off shift
- on elements of ARRAY along the dimension of DIM. If DIM is omitted
- it is taken to be '1'. DIM is a scalar of type 'INTEGER' in the
- range of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the
- rank of ARRAY is one, then all elements of ARRAY are shifted by
- SHIFT places. If rank is greater than one, then all complete rank
- one sections of ARRAY along the given dimension are shifted.
- Elements shifted out one end of each rank one section are dropped.
- If BOUNDARY is present then the corresponding value of from
- BOUNDARY is copied back in the other end. If BOUNDARY is not
- present then the following are copied in depending on the type of
- ARRAY.
- _Array _Boundary Value_
- Type_
- Numeric 0 of the type and kind of ARRAY.
- Logical '.FALSE.'.
- Character(LEN)LEN blanks.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])'
- _Arguments_:
- ARRAY May be any type, not scalar.
- SHIFT The type shall be 'INTEGER'.
- BOUNDARY Same type as ARRAY.
- DIM The type shall be 'INTEGER'.
- _Return value_:
- Returns an array of same type and rank as the ARRAY argument.
- _Example_:
- program test_eoshift
- integer, dimension(3,3) :: a
- a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
- print *
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- end program test_eoshift
- File: gfortran.info, Node: EPSILON, Next: ERF, Prev: EOSHIFT, Up: Intrinsic Procedures
- 9.94 'EPSILON' -- Epsilon function
- ==================================
- _Description_:
- 'EPSILON(X)' returns the smallest number E of the same kind as X
- such that 1 + E > 1.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = EPSILON(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of same type as the argument.
- _Example_:
- program test_epsilon
- real :: x = 3.143
- real(8) :: y = 2.33
- print *, EPSILON(x)
- print *, EPSILON(y)
- end program test_epsilon
- File: gfortran.info, Node: ERF, Next: ERFC, Prev: EPSILON, Up: Intrinsic Procedures
- 9.95 'ERF' -- Error function
- ============================
- _Description_:
- 'ERF(X)' computes the error function of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ERF(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL', of the same kind as X and lies
- in the range -1 \leq erf (x) \leq 1 .
- _Example_:
- program test_erf
- real(8) :: x = 0.17_8
- x = erf(x)
- end program test_erf
- _Specific names_:
- Name Argument Return type Standard
- 'DERF(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: ERFC, Next: ERFC_SCALED, Prev: ERF, Up: Intrinsic Procedures
- 9.96 'ERFC' -- Error function
- =============================
- _Description_:
- 'ERFC(X)' computes the complementary error function of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ERFC(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL' and of the same kind as X. It
- lies in the range 0 \leq erfc (x) \leq 2 .
- _Example_:
- program test_erfc
- real(8) :: x = 0.17_8
- x = erfc(x)
- end program test_erfc
- _Specific names_:
- Name Argument Return type Standard
- 'DERFC(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: ERFC_SCALED, Next: ETIME, Prev: ERFC, Up: Intrinsic Procedures
- 9.97 'ERFC_SCALED' -- Error function
- ====================================
- _Description_:
- 'ERFC_SCALED(X)' computes the exponentially-scaled complementary
- error function of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ERFC_SCALED(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL' and of the same kind as X.
- _Example_:
- program test_erfc_scaled
- real(8) :: x = 0.17_8
- x = erfc_scaled(x)
- end program test_erfc_scaled
- File: gfortran.info, Node: ETIME, Next: EVENT_QUERY, Prev: ERFC_SCALED, Up: Intrinsic Procedures
- 9.98 'ETIME' -- Execution time subroutine (or function)
- =======================================================
- _Description_:
- 'ETIME(VALUES, TIME)' returns the number of seconds of runtime
- since the start of the process's execution in TIME. VALUES returns
- the user and system components of this time in 'VALUES(1)' and
- 'VALUES(2)' respectively. TIME is equal to 'VALUES(1) +
- VALUES(2)'.
- On some systems, the underlying timings are represented using types
- with sufficiently small limits that overflows (wrap around) are
- possible, such as 32-bit types. Therefore, the values returned by
- this intrinsic might be, or become, negative, or numerically less
- than previous values, during a single run of the compiled program.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- VALUES and TIME are 'INTENT(OUT)' and provide the following:
- 'VALUES(1)': User time in seconds.
- 'VALUES(2)': System time in seconds.
- 'TIME': Run time since start in seconds.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL ETIME(VALUES, TIME)'.
- 'TIME = ETIME(VALUES)', (not recommended).
- _Arguments_:
- VALUES The type shall be 'REAL(4), DIMENSION(2)'.
- TIME The type shall be 'REAL(4)'.
- _Return value_:
- Elapsed time in seconds since the start of program execution.
- _Example_:
- program test_etime
- integer(8) :: i, j
- real, dimension(2) :: tarray
- real :: result
- call ETIME(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- do i=1,100000000 ! Just a delay
- j = i * i - i
- end do
- call ETIME(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- end program test_etime
- _See also_:
- *note CPU_TIME::
- File: gfortran.info, Node: EVENT_QUERY, Next: EXECUTE_COMMAND_LINE, Prev: ETIME, Up: Intrinsic Procedures
- 9.99 'EVENT_QUERY' -- Query whether a coarray event has occurred
- ================================================================
- _Description_:
- 'EVENT_QUERY' assignes the number of events to COUNT which have
- been posted to the EVENT variable and not yet been removed by
- calling 'EVENT WAIT'. When STAT is present and the invocation was
- successful, it is assigned the value 0. If it is present and the
- invocation has failed, it is assigned a positive value and COUNT is
- assigned the value -1.
- _Standard_:
- TS 18508 or later
- _Class_:
- subroutine
- _Syntax_:
- 'CALL EVENT_QUERY (EVENT, COUNT [, STAT])'
- _Arguments_:
- EVENT (intent(IN)) Scalar of type 'EVENT_TYPE',
- defined in 'ISO_FORTRAN_ENV'; shall not be
- coindexed.
- COUNT (intent(out))Scalar integer with at least the
- precision of default integer.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- implicit none
- type(event_type) :: event_value_has_been_set[*]
- integer :: cnt
- if (this_image() == 1) then
- call event_query (event_value_has_been_set, cnt)
- if (cnt > 0) write(*,*) "Value has been set"
- elseif (this_image() == 2) then
- event post (event_value_has_been_set[1])
- end if
- end program atomic
- File: gfortran.info, Node: EXECUTE_COMMAND_LINE, Next: EXIT, Prev: EVENT_QUERY, Up: Intrinsic Procedures
- 9.100 'EXECUTE_COMMAND_LINE' -- Execute a shell command
- =======================================================
- _Description_:
- 'EXECUTE_COMMAND_LINE' runs a shell command, synchronously or
- asynchronously.
- The 'COMMAND' argument is passed to the shell and executed (The
- shell is 'sh' on Unix systems, and 'cmd.exe' on Windows.). If
- 'WAIT' is present and has the value false, the execution of the
- command is asynchronous if the system supports it; otherwise, the
- command is executed synchronously using the C library's 'system'
- call.
- The three last arguments allow the user to get status information.
- After synchronous execution, 'EXITSTAT' contains the integer exit
- code of the command, as returned by 'system'. 'CMDSTAT' is set to
- zero if the command line was executed (whatever its exit status
- was). 'CMDMSG' is assigned an error message if an error has
- occurred.
- Note that the 'system' function need not be thread-safe. It is the
- responsibility of the user to ensure that 'system' is not called
- concurrently.
- For asynchronous execution on supported targets, the POSIX
- 'posix_spawn' or 'fork' functions are used. Also, a signal handler
- for the 'SIGCHLD' signal is installed.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT,
- CMDMSG ])'
- _Arguments_:
- COMMAND Shall be a default 'CHARACTER' scalar.
- WAIT (Optional) Shall be a default 'LOGICAL' scalar.
- EXITSTAT (Optional) Shall be an 'INTEGER' of the default
- kind.
- CMDSTAT (Optional) Shall be an 'INTEGER' of the default
- kind.
- CMDMSG (Optional) Shall be an 'CHARACTER' scalar of the
- default kind.
- _Example_:
- program test_exec
- integer :: i
- call execute_command_line ("external_prog.exe", exitstat=i)
- print *, "Exit status of external_prog.exe was ", i
- call execute_command_line ("reindex_files.exe", wait=.false.)
- print *, "Now reindexing files in the background"
- end program test_exec
- _Note_:
- Because this intrinsic is implemented in terms of the 'system'
- function call, its behavior with respect to signaling is processor
- dependent. In particular, on POSIX-compliant systems, the SIGINT
- and SIGQUIT signals will be ignored, and the SIGCHLD will be
- blocked. As such, if the parent process is terminated, the child
- process might not be terminated alongside.
- _See also_:
- *note SYSTEM::
- File: gfortran.info, Node: EXIT, Next: EXP, Prev: EXECUTE_COMMAND_LINE, Up: Intrinsic Procedures
- 9.101 'EXIT' -- Exit the program with status.
- =============================================
- _Description_:
- 'EXIT' causes immediate termination of the program with status. If
- status is omitted it returns the canonical _success_ for the
- system. All Fortran I/O units are closed.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL EXIT([STATUS])'
- _Arguments_:
- STATUS Shall be an 'INTEGER' of the default kind.
- _Return value_:
- 'STATUS' is passed to the parent process on exit.
- _Example_:
- program test_exit
- integer :: STATUS = 0
- print *, 'This program is going to exit.'
- call EXIT(STATUS)
- end program test_exit
- _See also_:
- *note ABORT::, *note KILL::
- File: gfortran.info, Node: EXP, Next: EXPONENT, Prev: EXIT, Up: Intrinsic Procedures
- 9.102 'EXP' -- Exponential function
- ===================================
- _Description_:
- 'EXP(X)' computes the base e exponential of X.
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = EXP(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X.
- _Example_:
- program test_exp
- real :: x = 1.0
- x = exp(x)
- end program test_exp
- _Specific names_:
- Name Argument Return type Standard
- 'EXP(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DEXP(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- 'CEXP(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and
- X' later
- 'ZEXP(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDEXP(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- File: gfortran.info, Node: EXPONENT, Next: EXTENDS_TYPE_OF, Prev: EXP, Up: Intrinsic Procedures
- 9.103 'EXPONENT' -- Exponent function
- =====================================
- _Description_:
- 'EXPONENT(X)' returns the value of the exponent part of X. If X is
- zero the value returned is zero.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = EXPONENT(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type default 'INTEGER'.
- _Example_:
- program test_exponent
- real :: x = 1.0
- integer :: i
- i = exponent(x)
- print *, i
- print *, exponent(0.0)
- end program test_exponent
- File: gfortran.info, Node: EXTENDS_TYPE_OF, Next: FDATE, Prev: EXPONENT, Up: Intrinsic Procedures
- 9.104 'EXTENDS_TYPE_OF' -- Query dynamic type for extension
- ===========================================================
- _Description_:
- Query dynamic type for extension.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = EXTENDS_TYPE_OF(A, MOLD)'
- _Arguments_:
- A Shall be an object of extensible declared type
- or unlimited polymorphic.
- MOLD Shall be an object of extensible declared type
- or unlimited polymorphic.
- _Return value_:
- The return value is a scalar of type default logical. It is true
- if and only if the dynamic type of A is an extension type of the
- dynamic type of MOLD.
- _See also_:
- *note SAME_TYPE_AS::
- File: gfortran.info, Node: FDATE, Next: FGET, Prev: EXTENDS_TYPE_OF, Up: Intrinsic Procedures
- 9.105 'FDATE' -- Get the current time as a string
- =================================================
- _Description_:
- 'FDATE(DATE)' returns the current date (using the same format as
- *note CTIME::) in DATE. It is equivalent to 'CALL CTIME(DATE,
- TIME())'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FDATE(DATE)'.
- 'DATE = FDATE()'.
- _Arguments_:
- DATE The type shall be of type 'CHARACTER' of the
- default kind. It is an 'INTENT(OUT)' argument.
- If the length of this variable is too short for
- the date and time string to fit completely, it
- will be blank on procedure return.
- _Return value_:
- The current date and time as a string.
- _Example_:
- program test_fdate
- integer(8) :: i, j
- character(len=30) :: date
- call fdate(date)
- print *, 'Program started on ', date
- do i = 1, 100000000 ! Just a delay
- j = i * i - i
- end do
- call fdate(date)
- print *, 'Program ended on ', date
- end program test_fdate
- _See also_:
- *note DATE_AND_TIME::, *note CTIME::
- File: gfortran.info, Node: FGET, Next: FGETC, Prev: FDATE, Up: Intrinsic Procedures
- 9.106 'FGET' -- Read a single character in stream mode from stdin
- =================================================================
- _Description_:
- Read a single character in stream mode from stdin by bypassing
- normal formatted output. Stream I/O should not be mixed with
- normal record-oriented (formatted or unformatted) I/O on the same
- unit; the results are unpredictable.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FGET(C [, STATUS])'
- 'STATUS = FGET(C)'
- _Arguments_:
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file, and a
- system specific positive error code otherwise.
- _Example_:
- PROGRAM test_fget
- INTEGER, PARAMETER :: strlen = 100
- INTEGER :: status, i = 1
- CHARACTER(len=strlen) :: str = ""
- WRITE (*,*) 'Enter text:'
- DO
- CALL fget(str(i:i), status)
- if (status /= 0 .OR. i > strlen) exit
- i = i + 1
- END DO
- WRITE (*,*) TRIM(str)
- END PROGRAM
- _See also_:
- *note FGETC::, *note FPUT::, *note FPUTC::
- File: gfortran.info, Node: FGETC, Next: FINDLOC, Prev: FGET, Up: Intrinsic Procedures
- 9.107 'FGETC' -- Read a single character in stream mode
- =======================================================
- _Description_:
- Read a single character in stream mode by bypassing normal
- formatted output. Stream I/O should not be mixed with normal
- record-oriented (formatted or unformatted) I/O on the same unit;
- the results are unpredictable.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FGETC(UNIT, C [, STATUS])'
- 'STATUS = FGETC(UNIT, C)'
- _Arguments_:
- UNIT The type shall be 'INTEGER'.
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file and a
- system specific positive error code otherwise.
- _Example_:
- PROGRAM test_fgetc
- INTEGER :: fd = 42, status
- CHARACTER :: c
- OPEN(UNIT=fd, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
- DO
- CALL fgetc(fd, c, status)
- IF (status /= 0) EXIT
- call fput(c)
- END DO
- CLOSE(UNIT=fd)
- END PROGRAM
- _See also_:
- *note FGET::, *note FPUT::, *note FPUTC::
- File: gfortran.info, Node: FINDLOC, Next: FLOOR, Prev: FGETC, Up: Intrinsic Procedures
- 9.108 'FINDLOC' -- Search an array for a value
- ==============================================
- _Description_:
- Determines the location of the element in the array with the value
- given in the VALUE argument, or, if the DIM argument is supplied,
- determines the locations of the elements equal to the VALUE
- argument element along each row of the array in the DIM direction.
- If MASK is present, only the elements for which MASK is '.TRUE.'
- are considered. If more than one element in the array has the
- value VALUE, the location returned is that of the first such
- element in array element order if the BACK is not present or if it
- is '.FALSE.'. If BACK is true, the location returned is that of
- the last such element. If the array has zero size, or all of the
- elements of MASK are '.FALSE.', then the result is an array of
- zeroes. Similarly, if DIM is supplied and all of the elements of
- MASK along a given row are zero, the result value for that row is
- zero.
- _Standard_:
- Fortran 2008 and later.
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = FINDLOC(ARRAY, VALUE, DIM [, MASK] [,KIND]
- [,BACK])'
- 'RESULT = FINDLOC(ARRAY, VALUE, [, MASK] [,KIND]
- [,BACK])'
- _Arguments_:
- ARRAY Shall be an array of intrinsic type.
- VALUE A scalar of intrinsic type which is in type
- conformance with ARRAY.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- BACK (Optional) A scalar of type 'LOGICAL'.
- _Return value_:
- If DIM is absent, the result is a rank-one array with a length
- equal to the rank of ARRAY. If DIM is present, the result is an
- array with a rank one less than the rank of ARRAY, and a size
- corresponding to the size of ARRAY with the DIM dimension removed.
- If DIM is present and ARRAY has a rank of one, the result is a
- scalar. If the optional argument KIND is present, the result is an
- integer of kind KIND, otherwise it is of default kind.
- _See also_:
- *note MAXLOC::, *note MINLOC::
- File: gfortran.info, Node: FLOOR, Next: FLUSH, Prev: FINDLOC, Up: Intrinsic Procedures
- 9.109 'FLOOR' -- Integer floor function
- =======================================
- _Description_:
- 'FLOOR(A)' returns the greatest integer less than or equal to X.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = FLOOR(A [, KIND])'
- _Arguments_:
- A The type shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER(KIND)' if KIND is present and
- of default-kind 'INTEGER' otherwise.
- _Example_:
- program test_floor
- real :: x = 63.29
- real :: y = -63.59
- print *, floor(x) ! returns 63
- print *, floor(y) ! returns -64
- end program test_floor
- _See also_:
- *note CEILING::, *note NINT::
- File: gfortran.info, Node: FLUSH, Next: FNUM, Prev: FLOOR, Up: Intrinsic Procedures
- 9.110 'FLUSH' -- Flush I/O unit(s)
- ==================================
- _Description_:
- Flushes Fortran unit(s) currently open for output. Without the
- optional argument, all units are flushed, otherwise just the unit
- specified.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL FLUSH(UNIT)'
- _Arguments_:
- UNIT (Optional) The type shall be 'INTEGER'.
- _Note_:
- Beginning with the Fortran 2003 standard, there is a 'FLUSH'
- statement that should be preferred over the 'FLUSH' intrinsic.
- The 'FLUSH' intrinsic and the Fortran 2003 'FLUSH' statement have
- identical effect: they flush the runtime library's I/O buffer so
- that the data becomes visible to other processes. This does not
- guarantee that the data is committed to disk.
- On POSIX systems, you can request that all data is transferred to
- the storage device by calling the 'fsync' function, with the POSIX
- file descriptor of the I/O unit as argument (retrieved with GNU
- intrinsic 'FNUM'). The following example shows how:
- ! Declare the interface for POSIX fsync function
- interface
- function fsync (fd) bind(c,name="fsync")
- use iso_c_binding, only: c_int
- integer(c_int), value :: fd
- integer(c_int) :: fsync
- end function fsync
- end interface
- ! Variable declaration
- integer :: ret
- ! Opening unit 10
- open (10,file="foo")
- ! ...
- ! Perform I/O on unit 10
- ! ...
- ! Flush and sync
- flush(10)
- ret = fsync(fnum(10))
- ! Handle possible error
- if (ret /= 0) stop "Error calling FSYNC"
- File: gfortran.info, Node: FNUM, Next: FPUT, Prev: FLUSH, Up: Intrinsic Procedures
- 9.111 'FNUM' -- File number function
- ====================================
- _Description_:
- 'FNUM(UNIT)' returns the POSIX file descriptor number corresponding
- to the open Fortran I/O unit 'UNIT'.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = FNUM(UNIT)'
- _Arguments_:
- UNIT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER'
- _Example_:
- program test_fnum
- integer :: i
- open (unit=10, status = "scratch")
- i = fnum(10)
- print *, i
- close (10)
- end program test_fnum
- File: gfortran.info, Node: FPUT, Next: FPUTC, Prev: FNUM, Up: Intrinsic Procedures
- 9.112 'FPUT' -- Write a single character in stream mode to stdout
- =================================================================
- _Description_:
- Write a single character in stream mode to stdout by bypassing
- normal formatted output. Stream I/O should not be mixed with
- normal record-oriented (formatted or unformatted) I/O on the same
- unit; the results are unpredictable.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FPUT(C [, STATUS])'
- 'STATUS = FPUT(C)'
- _Arguments_:
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file and a
- system specific positive error code otherwise.
- _Example_:
- PROGRAM test_fput
- CHARACTER(len=10) :: str = "gfortran"
- INTEGER :: i
- DO i = 1, len_trim(str)
- CALL fput(str(i:i))
- END DO
- END PROGRAM
- _See also_:
- *note FPUTC::, *note FGET::, *note FGETC::
- File: gfortran.info, Node: FPUTC, Next: FRACTION, Prev: FPUT, Up: Intrinsic Procedures
- 9.113 'FPUTC' -- Write a single character in stream mode
- ========================================================
- _Description_:
- Write a single character in stream mode by bypassing normal
- formatted output. Stream I/O should not be mixed with normal
- record-oriented (formatted or unformatted) I/O on the same unit;
- the results are unpredictable.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FPUTC(UNIT, C [, STATUS])'
- 'STATUS = FPUTC(UNIT, C)'
- _Arguments_:
- UNIT The type shall be 'INTEGER'.
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file and a
- system specific positive error code otherwise.
- _Example_:
- PROGRAM test_fputc
- CHARACTER(len=10) :: str = "gfortran"
- INTEGER :: fd = 42, i
- OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
- DO i = 1, len_trim(str)
- CALL fputc(fd, str(i:i))
- END DO
- CLOSE(fd)
- END PROGRAM
- _See also_:
- *note FPUT::, *note FGET::, *note FGETC::
- File: gfortran.info, Node: FRACTION, Next: FREE, Prev: FPUTC, Up: Intrinsic Procedures
- 9.114 'FRACTION' -- Fractional part of the model representation
- ===============================================================
- _Description_:
- 'FRACTION(X)' returns the fractional part of the model
- representation of 'X'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'Y = FRACTION(X)'
- _Arguments_:
- X The type of the argument shall be a 'REAL'.
- _Return value_:
- The return value is of the same type and kind as the argument. The
- fractional part of the model representation of 'X' is returned; it
- is 'X * RADIX(X)**(-EXPONENT(X))'.
- _Example_:
- program test_fraction
- real :: x
- x = 178.1387e-4
- print *, fraction(x), x * radix(x)**(-exponent(x))
- end program test_fraction
- File: gfortran.info, Node: FREE, Next: FSEEK, Prev: FRACTION, Up: Intrinsic Procedures
- 9.115 'FREE' -- Frees memory
- ============================
- _Description_:
- Frees memory previously allocated by 'MALLOC'. The 'FREE'
- intrinsic is an extension intended to be used with Cray pointers,
- and is provided in GNU Fortran to allow user to compile legacy
- code. For new code using Fortran 95 pointers, the memory
- de-allocation intrinsic is 'DEALLOCATE'.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL FREE(PTR)'
- _Arguments_:
- PTR The type shall be 'INTEGER'. It represents the
- location of the memory that should be
- de-allocated.
- _Return value_:
- None
- _Example_:
- See 'MALLOC' for an example.
- _See also_:
- *note MALLOC::
- File: gfortran.info, Node: FSEEK, Next: FSTAT, Prev: FREE, Up: Intrinsic Procedures
- 9.116 'FSEEK' -- Low level file positioning subroutine
- ======================================================
- _Description_:
- Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the
- OFFSET is taken as an absolute value 'SEEK_SET', if set to 1,
- OFFSET is taken to be relative to the current position 'SEEK_CUR',
- and if set to 2 relative to the end of the file 'SEEK_END'. On
- error, STATUS is set to a nonzero value. If STATUS the seek fails
- silently.
- This intrinsic routine is not fully backwards compatible with
- 'g77'. In 'g77', the 'FSEEK' takes a statement label instead of a
- STATUS variable. If FSEEK is used in old code, change
- CALL FSEEK(UNIT, OFFSET, WHENCE, *label)
- to
- INTEGER :: status
- CALL FSEEK(UNIT, OFFSET, WHENCE, status)
- IF (status /= 0) GOTO label
- Please note that GNU Fortran provides the Fortran 2003 Stream
- facility. Programmers should consider the use of new stream IO
- feature in new code for future portability. See also *note Fortran
- 2003 status::.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])'
- _Arguments_:
- UNIT Shall be a scalar of type 'INTEGER'.
- OFFSET Shall be a scalar of type 'INTEGER'.
- WHENCE Shall be a scalar of type 'INTEGER'. Its value
- shall be either 0, 1 or 2.
- STATUS (Optional) shall be a scalar of type
- 'INTEGER(4)'.
- _Example_:
- PROGRAM test_fseek
- INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
- INTEGER :: fd, offset, ierr
- ierr = 0
- offset = 5
- fd = 10
- OPEN(UNIT=fd, FILE="fseek.test")
- CALL FSEEK(fd, offset, SEEK_SET, ierr) ! move to OFFSET
- print *, FTELL(fd), ierr
- CALL FSEEK(fd, 0, SEEK_END, ierr) ! move to end
- print *, FTELL(fd), ierr
- CALL FSEEK(fd, 0, SEEK_SET, ierr) ! move to beginning
- print *, FTELL(fd), ierr
- CLOSE(UNIT=fd)
- END PROGRAM
- _See also_:
- *note FTELL::
- File: gfortran.info, Node: FSTAT, Next: FTELL, Prev: FSEEK, Up: Intrinsic Procedures
- 9.117 'FSTAT' -- Get file status
- ================================
- _Description_:
- 'FSTAT' is identical to *note STAT::, except that information about
- an already opened file is obtained.
- The elements in 'VALUES' are the same as described by *note STAT::.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FSTAT(UNIT, VALUES [, STATUS])'
- 'STATUS = FSTAT(UNIT, VALUES)'
- _Arguments_:
- UNIT An open I/O unit number of type 'INTEGER'.
- VALUES The type shall be 'INTEGER(4), DIMENSION(13)'.
- STATUS (Optional) status flag of type 'INTEGER(4)'.
- Returns 0 on success and a system specific error
- code otherwise.
- _Example_:
- See *note STAT:: for an example.
- _See also_:
- To stat a link: *note LSTAT:: To stat a file: *note STAT::
- File: gfortran.info, Node: FTELL, Next: GAMMA, Prev: FSTAT, Up: Intrinsic Procedures
- 9.118 'FTELL' -- Current stream position
- ========================================
- _Description_:
- Retrieves the current position within an open file.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FTELL(UNIT, OFFSET)'
- 'OFFSET = FTELL(UNIT)'
- _Arguments_:
- OFFSET Shall of type 'INTEGER'.
- UNIT Shall of type 'INTEGER'.
- _Return value_:
- In either syntax, OFFSET is set to the current offset of unit
- number UNIT, or to -1 if the unit is not currently open.
- _Example_:
- PROGRAM test_ftell
- INTEGER :: i
- OPEN(10, FILE="temp.dat")
- CALL ftell(10,i)
- WRITE(*,*) i
- END PROGRAM
- _See also_:
- *note FSEEK::
- File: gfortran.info, Node: GAMMA, Next: GERROR, Prev: FTELL, Up: Intrinsic Procedures
- 9.119 'GAMMA' -- Gamma function
- ===============================
- _Description_:
- 'GAMMA(X)' computes Gamma (\Gamma) of X. For positive, integer
- values of X the Gamma function simplifies to the factorial function
- \Gamma(x)=(x-1)!.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'X = GAMMA(X)'
- _Arguments_:
- X Shall be of type 'REAL' and neither zero nor a
- negative integer.
- _Return value_:
- The return value is of type 'REAL' of the same kind as X.
- _Example_:
- program test_gamma
- real :: x = 1.0
- x = gamma(x) ! returns 1.0
- end program test_gamma
- _Specific names_:
- Name Argument Return type Standard
- 'DGAMMA(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Logarithm of the Gamma function: *note LOG_GAMMA::
- File: gfortran.info, Node: GERROR, Next: GETARG, Prev: GAMMA, Up: Intrinsic Procedures
- 9.120 'GERROR' -- Get last system error message
- ===============================================
- _Description_:
- Returns the system error message corresponding to the last system
- error. This resembles the functionality of 'strerror(3)' in C.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GERROR(RESULT)'
- _Arguments_:
- RESULT Shall of type 'CHARACTER' and of default
- _Example_:
- PROGRAM test_gerror
- CHARACTER(len=100) :: msg
- CALL gerror(msg)
- WRITE(*,*) msg
- END PROGRAM
- _See also_:
- *note IERRNO::, *note PERROR::
- File: gfortran.info, Node: GETARG, Next: GET_COMMAND, Prev: GERROR, Up: Intrinsic Procedures
- 9.121 'GETARG' -- Get command line arguments
- ============================================
- _Description_:
- Retrieve the POS-th argument that was passed on the command line
- when the containing program was invoked.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note GET_COMMAND_ARGUMENT:: intrinsic defined by the
- Fortran 2003 standard.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GETARG(POS, VALUE)'
- _Arguments_:
- POS Shall be of type 'INTEGER' and not wider than
- the default integer kind; POS \geq 0
- VALUE Shall be of type 'CHARACTER' and of default
- kind.
- VALUE Shall be of type 'CHARACTER'.
- _Return value_:
- After 'GETARG' returns, the VALUE argument holds the POSth command
- line argument. If VALUE cannot hold the argument, it is truncated
- to fit the length of VALUE. If there are less than POS arguments
- specified at the command line, VALUE will be filled with blanks.
- If POS = 0, VALUE is set to the name of the program (on systems
- that support this feature).
- _Example_:
- PROGRAM test_getarg
- INTEGER :: i
- CHARACTER(len=32) :: arg
- DO i = 1, iargc()
- CALL getarg(i, arg)
- WRITE (*,*) arg
- END DO
- END PROGRAM
- _See also_:
- GNU Fortran 77 compatibility function: *note IARGC:: Fortran 2003
- functions and subroutines: *note GET_COMMAND::, *note
- GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
- File: gfortran.info, Node: GET_COMMAND, Next: GET_COMMAND_ARGUMENT, Prev: GETARG, Up: Intrinsic Procedures
- 9.122 'GET_COMMAND' -- Get the entire command line
- ==================================================
- _Description_:
- Retrieve the entire command line that was used to invoke the
- program.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GET_COMMAND([COMMAND, LENGTH, STATUS])'
- _Arguments_:
- COMMAND (Optional) shall be of type 'CHARACTER' and of
- default kind.
- LENGTH (Optional) Shall be of type 'INTEGER' and of
- default kind.
- STATUS (Optional) Shall be of type 'INTEGER' and of
- default kind.
- _Return value_:
- If COMMAND is present, stores the entire command line that was used
- to invoke the program in COMMAND. If LENGTH is present, it is
- assigned the length of the command line. If STATUS is present, it
- is assigned 0 upon success of the command, -1 if COMMAND is too
- short to store the command line, or a positive value in case of an
- error.
- _Example_:
- PROGRAM test_get_command
- CHARACTER(len=255) :: cmd
- CALL get_command(cmd)
- WRITE (*,*) TRIM(cmd)
- END PROGRAM
- _See also_:
- *note GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
- File: gfortran.info, Node: GET_COMMAND_ARGUMENT, Next: GETCWD, Prev: GET_COMMAND, Up: Intrinsic Procedures
- 9.123 'GET_COMMAND_ARGUMENT' -- Get command line arguments
- ==========================================================
- _Description_:
- Retrieve the NUMBER-th argument that was passed on the command line
- when the containing program was invoked.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])'
- _Arguments_:
- NUMBER Shall be a scalar of type 'INTEGER' and of
- default kind, NUMBER \geq 0
- VALUE (Optional) Shall be a scalar of type 'CHARACTER'
- and of default kind.
- LENGTH (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- STATUS (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- _Return value_:
- After 'GET_COMMAND_ARGUMENT' returns, the VALUE argument holds the
- NUMBER-th command line argument. If VALUE cannot hold the
- argument, it is truncated to fit the length of VALUE. If there are
- less than NUMBER arguments specified at the command line, VALUE
- will be filled with blanks. If NUMBER = 0, VALUE is set to the
- name of the program (on systems that support this feature). The
- LENGTH argument contains the length of the NUMBER-th command line
- argument. If the argument retrieval fails, STATUS is a positive
- number; if VALUE contains a truncated command line argument, STATUS
- is -1; and otherwise the STATUS is zero.
- _Example_:
- PROGRAM test_get_command_argument
- INTEGER :: i
- CHARACTER(len=32) :: arg
- i = 0
- DO
- CALL get_command_argument(i, arg)
- IF (LEN_TRIM(arg) == 0) EXIT
- WRITE (*,*) TRIM(arg)
- i = i+1
- END DO
- END PROGRAM
- _See also_:
- *note GET_COMMAND::, *note COMMAND_ARGUMENT_COUNT::
- File: gfortran.info, Node: GETCWD, Next: GETENV, Prev: GET_COMMAND_ARGUMENT, Up: Intrinsic Procedures
- 9.124 'GETCWD' -- Get current working directory
- ===============================================
- _Description_:
- Get current working directory.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL GETCWD(C [, STATUS])'
- 'STATUS = GETCWD(C)'
- _Arguments_:
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag. Returns 0 on success, a
- system specific and nonzero error code
- otherwise.
- _Example_:
- PROGRAM test_getcwd
- CHARACTER(len=255) :: cwd
- CALL getcwd(cwd)
- WRITE(*,*) TRIM(cwd)
- END PROGRAM
- _See also_:
- *note CHDIR::
- File: gfortran.info, Node: GETENV, Next: GET_ENVIRONMENT_VARIABLE, Prev: GETCWD, Up: Intrinsic Procedures
- 9.125 'GETENV' -- Get an environmental variable
- ===============================================
- _Description_:
- Get the VALUE of the environmental variable NAME.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note GET_ENVIRONMENT_VARIABLE:: intrinsic defined by the
- Fortran 2003 standard.
- Note that 'GETENV' need not be thread-safe. It is the
- responsibility of the user to ensure that the environment is not
- being updated concurrently with a call to the 'GETENV' intrinsic.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GETENV(NAME, VALUE)'
- _Arguments_:
- NAME Shall be of type 'CHARACTER' and of default
- kind.
- VALUE Shall be of type 'CHARACTER' and of default
- kind.
- _Return value_:
- Stores the value of NAME in VALUE. If VALUE is not large enough to
- hold the data, it is truncated. If NAME is not set, VALUE will be
- filled with blanks.
- _Example_:
- PROGRAM test_getenv
- CHARACTER(len=255) :: homedir
- CALL getenv("HOME", homedir)
- WRITE (*,*) TRIM(homedir)
- END PROGRAM
- _See also_:
- *note GET_ENVIRONMENT_VARIABLE::
- File: gfortran.info, Node: GET_ENVIRONMENT_VARIABLE, Next: GETGID, Prev: GETENV, Up: Intrinsic Procedures
- 9.126 'GET_ENVIRONMENT_VARIABLE' -- Get an environmental variable
- =================================================================
- _Description_:
- Get the VALUE of the environmental variable NAME.
- Note that 'GET_ENVIRONMENT_VARIABLE' need not be thread-safe. It
- is the responsibility of the user to ensure that the environment is
- not being updated concurrently with a call to the
- 'GET_ENVIRONMENT_VARIABLE' intrinsic.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS,
- TRIM_NAME)'
- _Arguments_:
- NAME Shall be a scalar of type 'CHARACTER' and of
- default kind.
- VALUE (Optional) Shall be a scalar of type 'CHARACTER'
- and of default kind.
- LENGTH (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- STATUS (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- TRIM_NAME (Optional) Shall be a scalar of type 'LOGICAL'
- and of default kind.
- _Return value_:
- Stores the value of NAME in VALUE. If VALUE is not large enough to
- hold the data, it is truncated. If NAME is not set, VALUE will be
- filled with blanks. Argument LENGTH contains the length needed for
- storing the environment variable NAME or zero if it is not present.
- STATUS is -1 if VALUE is present but too short for the environment
- variable; it is 1 if the environment variable does not exist and 2
- if the processor does not support environment variables; in all
- other cases STATUS is zero. If TRIM_NAME is present with the value
- '.FALSE.', the trailing blanks in NAME are significant; otherwise
- they are not part of the environment variable name.
- _Example_:
- PROGRAM test_getenv
- CHARACTER(len=255) :: homedir
- CALL get_environment_variable("HOME", homedir)
- WRITE (*,*) TRIM(homedir)
- END PROGRAM
- File: gfortran.info, Node: GETGID, Next: GETLOG, Prev: GET_ENVIRONMENT_VARIABLE, Up: Intrinsic Procedures
- 9.127 'GETGID' -- Group ID function
- ===================================
- _Description_:
- Returns the numerical group ID of the current process.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = GETGID()'
- _Return value_:
- The return value of 'GETGID' is an 'INTEGER' of the default kind.
- _Example_:
- See 'GETPID' for an example.
- _See also_:
- *note GETPID::, *note GETUID::
- File: gfortran.info, Node: GETLOG, Next: GETPID, Prev: GETGID, Up: Intrinsic Procedures
- 9.128 'GETLOG' -- Get login name
- ================================
- _Description_:
- Gets the username under which the program is running.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GETLOG(C)'
- _Arguments_:
- C Shall be of type 'CHARACTER' and of default
- kind.
- _Return value_:
- Stores the current user name in LOGIN. (On systems where POSIX
- functions 'geteuid' and 'getpwuid' are not available, and the
- 'getlogin' function is not implemented either, this will return a
- blank string.)
- _Example_:
- PROGRAM TEST_GETLOG
- CHARACTER(32) :: login
- CALL GETLOG(login)
- WRITE(*,*) login
- END PROGRAM
- _See also_:
- *note GETUID::
- File: gfortran.info, Node: GETPID, Next: GETUID, Prev: GETLOG, Up: Intrinsic Procedures
- 9.129 'GETPID' -- Process ID function
- =====================================
- _Description_:
- Returns the numerical process identifier of the current process.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = GETPID()'
- _Return value_:
- The return value of 'GETPID' is an 'INTEGER' of the default kind.
- _Example_:
- program info
- print *, "The current process ID is ", getpid()
- print *, "Your numerical user ID is ", getuid()
- print *, "Your numerical group ID is ", getgid()
- end program info
- _See also_:
- *note GETGID::, *note GETUID::
- File: gfortran.info, Node: GETUID, Next: GMTIME, Prev: GETPID, Up: Intrinsic Procedures
- 9.130 'GETUID' -- User ID function
- ==================================
- _Description_:
- Returns the numerical user ID of the current process.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = GETUID()'
- _Return value_:
- The return value of 'GETUID' is an 'INTEGER' of the default kind.
- _Example_:
- See 'GETPID' for an example.
- _See also_:
- *note GETPID::, *note GETLOG::
- File: gfortran.info, Node: GMTIME, Next: HOSTNM, Prev: GETUID, Up: Intrinsic Procedures
- 9.131 'GMTIME' -- Convert time to GMT info
- ==========================================
- _Description_:
- Given a system time value TIME (as provided by the *note TIME::
- intrinsic), fills VALUES with values extracted from it appropriate
- to the UTC time zone (Universal Coordinated Time, also known in
- some countries as GMT, Greenwich Mean Time), using 'gmtime(3)'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GMTIME(TIME, VALUES)'
- _Arguments_:
- TIME An 'INTEGER' scalar expression corresponding to
- a system time, with 'INTENT(IN)'.
- VALUES A default 'INTEGER' array with 9 elements, with
- 'INTENT(OUT)'.
- _Return value_:
- The elements of VALUES are assigned as follows:
- 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
- seconds
- 2. Minutes after the hour, range 0-59
- 3. Hours past midnight, range 0-23
- 4. Day of month, range 1-31
- 5. Number of months since January, range 0-11
- 6. Years since 1900
- 7. Number of days since Sunday, range 0-6
- 8. Days since January 1, range 0-365
- 9. Daylight savings indicator: positive if daylight savings is in
- effect, zero if not, and negative if the information is not
- available.
- _See also_:
- *note DATE_AND_TIME::, *note CTIME::, *note LTIME::, *note TIME::,
- *note TIME8::
- File: gfortran.info, Node: HOSTNM, Next: HUGE, Prev: GMTIME, Up: Intrinsic Procedures
- 9.132 'HOSTNM' -- Get system host name
- ======================================
- _Description_:
- Retrieves the host name of the system on which the program is
- running.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL HOSTNM(C [, STATUS])'
- 'STATUS = HOSTNM(NAME)'
- _Arguments_:
- C Shall of type 'CHARACTER' and of default kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, or a system specific error
- code otherwise.
- _Return value_:
- In either syntax, NAME is set to the current hostname if it can be
- obtained, or to a blank string otherwise.
- File: gfortran.info, Node: HUGE, Next: HYPOT, Prev: HOSTNM, Up: Intrinsic Procedures
- 9.133 'HUGE' -- Largest number of a kind
- ========================================
- _Description_:
- 'HUGE(X)' returns the largest number that is not an infinity in the
- model of the type of 'X'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = HUGE(X)'
- _Arguments_:
- X Shall be of type 'REAL' or 'INTEGER'.
- _Return value_:
- The return value is of the same type and kind as X
- _Example_:
- program test_huge_tiny
- print *, huge(0), huge(0.0), huge(0.0d0)
- print *, tiny(0.0), tiny(0.0d0)
- end program test_huge_tiny
- File: gfortran.info, Node: HYPOT, Next: IACHAR, Prev: HUGE, Up: Intrinsic Procedures
- 9.134 'HYPOT' -- Euclidean distance function
- ============================================
- _Description_:
- 'HYPOT(X,Y)' is the Euclidean distance function. It is equal to
- \sqrt{X^2 + Y^2}, without undue underflow or overflow.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = HYPOT(X, Y)'
- _Arguments_:
- X The type shall be 'REAL'.
- Y The type and kind type parameter shall be the
- same as X.
- _Return value_:
- The return value has the same type and kind type parameter as X.
- _Example_:
- program test_hypot
- real(4) :: x = 1.e0_4, y = 0.5e0_4
- x = hypot(x,y)
- end program test_hypot
- File: gfortran.info, Node: IACHAR, Next: IALL, Prev: HYPOT, Up: Intrinsic Procedures
- 9.135 'IACHAR' -- Code in ASCII collating sequence
- ==================================================
- _Description_:
- 'IACHAR(C)' returns the code for the ASCII character in the first
- character position of 'C'.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IACHAR(C [, KIND])'
- _Arguments_:
- C Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Example_:
- program test_iachar
- integer i
- i = iachar(' ')
- end program test_iachar
- _Note_:
- See *note ICHAR:: for a discussion of converting between numerical
- values and formatted string representations.
- _See also_:
- *note ACHAR::, *note CHAR::, *note ICHAR::
- File: gfortran.info, Node: IALL, Next: IAND, Prev: IACHAR, Up: Intrinsic Procedures
- 9.136 'IALL' -- Bitwise AND of array elements
- =============================================
- _Description_:
- Reduces with bitwise AND the elements of ARRAY along dimension DIM
- if the corresponding element in MASK is 'TRUE'.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = IALL(ARRAY[, MASK])'
- 'RESULT = IALL(ARRAY, DIM[, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the bitwise ALL of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_iall
- INTEGER(1) :: a(2)
- a(1) = b'00100100'
- a(2) = b'01101010'
- ! prints 00100000
- PRINT '(b8.8)', IALL(a)
- END PROGRAM
- _See also_:
- *note IANY::, *note IPARITY::, *note IAND::
- File: gfortran.info, Node: IAND, Next: IANY, Prev: IALL, Up: Intrinsic Procedures
- 9.137 'IAND' -- Bitwise logical and
- ===================================
- _Description_:
- Bitwise logical 'AND'.
- _Standard_:
- Fortran 90 and later, with boz-literal-constant Fortran 2008 and
- later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IAND(I, J)'
- _Arguments_:
- I The type shall be 'INTEGER' or a
- boz-literal-constant.
- J The type shall be 'INTEGER' with the same kind
- type parameter as I or a boz-literal-constant.
- I and J shall not both be boz-literal-constants.
- _Return value_:
- The return type is 'INTEGER' with the kind type parameter of the
- arguments. A boz-literal-constant is converted to an 'INTEGER'
- with the kind type parameter of the other argument as-if a call to
- *note INT:: occurred.
- _Example_:
- PROGRAM test_iand
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
- WRITE (*,*) IAND(a, b)
- END PROGRAM
- _Specific names_:
- Name Argument Return type Standard
- 'IAND(A)' 'INTEGER A' 'INTEGER' Fortran 90 and
- later
- 'BIAND(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIAND(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIAND(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIAND(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IOR::, *note IEOR::, *note IBITS::, *note IBSET::, *note
- IBCLR::, *note NOT::
- File: gfortran.info, Node: IANY, Next: IARGC, Prev: IAND, Up: Intrinsic Procedures
- 9.138 'IANY' -- Bitwise OR of array elements
- ============================================
- _Description_:
- Reduces with bitwise OR (inclusive or) the elements of ARRAY along
- dimension DIM if the corresponding element in MASK is 'TRUE'.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = IANY(ARRAY[, MASK])'
- 'RESULT = IANY(ARRAY, DIM[, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the bitwise OR of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_iany
- INTEGER(1) :: a(2)
- a(1) = b'00100100'
- a(2) = b'01101010'
- ! prints 01101110
- PRINT '(b8.8)', IANY(a)
- END PROGRAM
- _See also_:
- *note IPARITY::, *note IALL::, *note IOR::
- File: gfortran.info, Node: IARGC, Next: IBCLR, Prev: IANY, Up: Intrinsic Procedures
- 9.139 'IARGC' -- Get the number of command line arguments
- =========================================================
- _Description_:
- 'IARGC' returns the number of arguments passed on the command line
- when the containing program was invoked.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note COMMAND_ARGUMENT_COUNT:: intrinsic defined by the
- Fortran 2003 standard.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = IARGC()'
- _Arguments_:
- None
- _Return value_:
- The number of command line arguments, type 'INTEGER(4)'.
- _Example_:
- See *note GETARG::
- _See also_:
- GNU Fortran 77 compatibility subroutine: *note GETARG:: Fortran
- 2003 functions and subroutines: *note GET_COMMAND::, *note
- GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
- File: gfortran.info, Node: IBCLR, Next: IBITS, Prev: IARGC, Up: Intrinsic Procedures
- 9.140 'IBCLR' -- Clear bit
- ==========================
- _Description_:
- 'IBCLR' returns the value of I with the bit at position POS set to
- zero.
- _Standard_:
- Fortran 90 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IBCLR(I, POS)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _Specific names_:
- Name Argument Return type Standard
- 'IBCLR(A)' 'INTEGER A' 'INTEGER' Fortran 90 and
- later
- 'BBCLR(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIBCLR(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIBCLR(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIBCLR(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IBITS::, *note IBSET::, *note IAND::, *note IOR::, *note
- IEOR::, *note MVBITS::
- File: gfortran.info, Node: IBITS, Next: IBSET, Prev: IBCLR, Up: Intrinsic Procedures
- 9.141 'IBITS' -- Bit extraction
- ===============================
- _Description_:
- 'IBITS' extracts a field of length LEN from I, starting from bit
- position POS and extending left for LEN bits. The result is
- right-justified and the remaining bits are zeroed. The value of
- 'POS+LEN' must be less than or equal to the value 'BIT_SIZE(I)'.
- _Standard_:
- Fortran 90 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IBITS(I, POS, LEN)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
- LEN The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _Specific names_:
- Name Argument Return type Standard
- 'IBITS(A)' 'INTEGER A' 'INTEGER' Fortran 90 and
- later
- 'BBITS(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIBITS(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIBITS(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIBITS(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note BIT_SIZE::, *note IBCLR::, *note IBSET::, *note IAND::, *note
- IOR::, *note IEOR::
- File: gfortran.info, Node: IBSET, Next: ICHAR, Prev: IBITS, Up: Intrinsic Procedures
- 9.142 'IBSET' -- Set bit
- ========================
- _Description_:
- 'IBSET' returns the value of I with the bit at position POS set to
- one.
- _Standard_:
- Fortran 90 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IBSET(I, POS)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _Specific names_:
- Name Argument Return type Standard
- 'IBSET(A)' 'INTEGER A' 'INTEGER' Fortran 90 and
- later
- 'BBSET(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIBSET(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIBSET(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIBSET(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IBCLR::, *note IBITS::, *note IAND::, *note IOR::, *note
- IEOR::, *note MVBITS::
- File: gfortran.info, Node: ICHAR, Next: IDATE, Prev: IBSET, Up: Intrinsic Procedures
- 9.143 'ICHAR' -- Character-to-integer conversion function
- =========================================================
- _Description_:
- 'ICHAR(C)' returns the code for the character in the first
- character position of 'C' in the system's native character set.
- The correspondence between characters and their codes is not
- necessarily the same across different GNU Fortran implementations.
- _Standard_:
- Fortran 77 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ICHAR(C [, KIND])'
- _Arguments_:
- C Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Example_:
- program test_ichar
- integer i
- i = ichar(' ')
- end program test_ichar
- _Specific names_:
- Name Argument Return type Standard
- 'ICHAR(C)' 'CHARACTER 'INTEGER(4)' Fortran 77 and
- C' later
- _Note_:
- No intrinsic exists to convert between a numeric value and a
- formatted character string representation - for instance, given the
- 'CHARACTER' value ''154'', obtaining an 'INTEGER' or 'REAL' value
- with the value 154, or vice versa. Instead, this functionality is
- provided by internal-file I/O, as in the following example:
- program read_val
- integer value
- character(len=10) string, string2
- string = '154'
- ! Convert a string to a numeric value
- read (string,'(I10)') value
- print *, value
- ! Convert a value to a formatted string
- write (string2,'(I10)') value
- print *, string2
- end program read_val
- _See also_:
- *note ACHAR::, *note CHAR::, *note IACHAR::
- File: gfortran.info, Node: IDATE, Next: IEOR, Prev: ICHAR, Up: Intrinsic Procedures
- 9.144 'IDATE' -- Get current local time subroutine (day/month/year)
- ===================================================================
- _Description_:
- 'IDATE(VALUES)' Fills VALUES with the numerical values at the
- current local time. The day (in the range 1-31), month (in the
- range 1-12), and year appear in elements 1, 2, and 3 of VALUES,
- respectively. The year has four significant digits.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL IDATE(VALUES)'
- _Arguments_:
- VALUES The type shall be 'INTEGER, DIMENSION(3)' and
- the kind shall be the default integer kind.
- _Return value_:
- Does not return anything.
- _Example_:
- program test_idate
- integer, dimension(3) :: tarray
- call idate(tarray)
- print *, tarray(1)
- print *, tarray(2)
- print *, tarray(3)
- end program test_idate
- _See also_:
- *note DATE_AND_TIME::
- File: gfortran.info, Node: IEOR, Next: IERRNO, Prev: IDATE, Up: Intrinsic Procedures
- 9.145 'IEOR' -- Bitwise logical exclusive or
- ============================================
- _Description_:
- 'IEOR' returns the bitwise Boolean exclusive-OR of I and J.
- _Standard_:
- Fortran 90 and later, with boz-literal-constant Fortran 2008 and
- later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IEOR(I, J)'
- _Arguments_:
- I The type shall be 'INTEGER' or a
- boz-literal-constant.
- J The type shall be 'INTEGER' with the same kind
- type parameter as I or a boz-literal-constant.
- I and J shall not both be boz-literal-constants.
- _Return value_:
- The return type is 'INTEGER' with the kind type parameter of the
- arguments. A boz-literal-constant is converted to an 'INTEGER'
- with the kind type parameter of the other argument as-if a call to
- *note INT:: occurred.
- _Specific names_:
- Name Argument Return type Standard
- 'IEOR(A)' 'INTEGER A' 'INTEGER' Fortran 90 and
- later
- 'BIEOR(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIEOR(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIEOR(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIEOR(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
- IBCLR::, *note NOT::
- File: gfortran.info, Node: IERRNO, Next: IMAGE_INDEX, Prev: IEOR, Up: Intrinsic Procedures
- 9.146 'IERRNO' -- Get the last system error number
- ==================================================
- _Description_:
- Returns the last system error number, as given by the C 'errno'
- variable.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = IERRNO()'
- _Arguments_:
- None
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _See also_:
- *note PERROR::
- File: gfortran.info, Node: IMAGE_INDEX, Next: INDEX intrinsic, Prev: IERRNO, Up: Intrinsic Procedures
- 9.147 'IMAGE_INDEX' -- Function that converts a cosubscript to an image index
- =============================================================================
- _Description_:
- Returns the image index belonging to a cosubscript.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Inquiry function.
- _Syntax_:
- 'RESULT = IMAGE_INDEX(COARRAY, SUB)'
- _Arguments_:
- COARRAY Coarray of any type.
- SUB default integer rank-1 array of a size equal to
- the corank of COARRAY.
- _Return value_:
- Scalar default integer with the value of the image index which
- corresponds to the cosubscripts. For invalid cosubscripts the
- result is zero.
- _Example_:
- INTEGER :: array[2,-1:4,8,*]
- ! Writes 28 (or 0 if there are fewer than 28 images)
- WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1])
- _See also_:
- *note THIS_IMAGE::, *note NUM_IMAGES::
- File: gfortran.info, Node: INDEX intrinsic, Next: INT, Prev: IMAGE_INDEX, Up: Intrinsic Procedures
- 9.148 'INDEX' -- Position of a substring within a string
- ========================================================
- _Description_:
- Returns the position of the start of the first occurrence of string
- SUBSTRING as a substring in STRING, counting from one. If
- SUBSTRING is not present in STRING, zero is returned. If the BACK
- argument is present and true, the return value is the start of the
- last occurrence rather than the first.
- _Standard_:
- Fortran 77 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])'
- _Arguments_:
- STRING Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- SUBSTRING Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- BACK (Optional) Shall be a scalar 'LOGICAL', with
- 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Specific names_:
- Name Argument Return type Standard
- 'INDEX(STRING, 'CHARACTER' 'INTEGER(4)' Fortran 77 and
- SUBSTRING)' later
- _See also_:
- *note SCAN::, *note VERIFY::
- File: gfortran.info, Node: INT, Next: INT2, Prev: INDEX intrinsic, Up: Intrinsic Procedures
- 9.149 'INT' -- Convert to integer type
- ======================================
- _Description_:
- Convert to integer type
- _Standard_:
- Fortran 77 and later, with boz-literal-constant Fortran 2008 and
- later.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = INT(A [, KIND))'
- _Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or 'COMPLEX'
- or or a boz-literal-constant.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- These functions return a 'INTEGER' variable or array under the
- following rules:
- (A)
- If A is of type 'INTEGER', 'INT(A) = A'
- (B)
- If A is of type 'REAL' and |A| < 1, 'INT(A)' equals '0'. If
- |A| \geq 1, then 'INT(A)' is the integer whose magnitude is
- the largest integer that does not exceed the magnitude of A
- and whose sign is the same as the sign of A.
- (C)
- If A is of type 'COMPLEX', rule B is applied to the real part
- of A.
- _Example_:
- program test_int
- integer :: i = 42
- complex :: z = (-3.7, 1.0)
- print *, int(i)
- print *, int(z), int(z,8)
- end program
- _Specific names_:
- Name Argument Return type Standard
- 'INT(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and
- later
- 'IFIX(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and
- later
- 'IDINT(A)' 'REAL(8) A' 'INTEGER' Fortran 77 and
- later
- File: gfortran.info, Node: INT2, Next: INT8, Prev: INT, Up: Intrinsic Procedures
- 9.150 'INT2' -- Convert to 16-bit integer type
- ==============================================
- _Description_:
- Convert to a 'KIND=2' integer type. This is equivalent to the
- standard 'INT' intrinsic with an optional argument of 'KIND=2', and
- is only included for backwards compatibility.
- The 'SHORT' intrinsic is equivalent to 'INT2'.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = INT2(A)'
- _Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
- _Return value_:
- The return value is a 'INTEGER(2)' variable.
- _See also_:
- *note INT::, *note INT8::, *note LONG::
- File: gfortran.info, Node: INT8, Next: IOR, Prev: INT2, Up: Intrinsic Procedures
- 9.151 'INT8' -- Convert to 64-bit integer type
- ==============================================
- _Description_:
- Convert to a 'KIND=8' integer type. This is equivalent to the
- standard 'INT' intrinsic with an optional argument of 'KIND=8', and
- is only included for backwards compatibility.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = INT8(A)'
- _Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
- _Return value_:
- The return value is a 'INTEGER(8)' variable.
- _See also_:
- *note INT::, *note INT2::, *note LONG::
- File: gfortran.info, Node: IOR, Next: IPARITY, Prev: INT8, Up: Intrinsic Procedures
- 9.152 'IOR' -- Bitwise logical or
- =================================
- _Description_:
- 'IOR' returns the bitwise Boolean inclusive-OR of I and J.
- _Standard_:
- Fortran 90 and later, with boz-literal-constant Fortran 2008 and
- later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IOR(I, J)'
- _Arguments_:
- I The type shall be 'INTEGER' or a
- boz-literal-constant.
- J The type shall be 'INTEGER' with the same kind
- type parameter as I or a boz-literal-constant.
- I and J shall not both be boz-literal-constants.
- _Return value_:
- The return type is 'INTEGER' with the kind type parameter of the
- arguments. A boz-literal-constant is converted to an 'INTEGER'
- with the kind type parameter of the other argument as-if a call to
- *note INT:: occurred.
- _Specific names_:
- Name Argument Return type Standard
- 'IOR(A)' 'INTEGER A' 'INTEGER' Fortran 90 and
- later
- 'BIOR(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIOR(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIOR(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIOR(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IEOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
- IBCLR::, *note NOT::
- File: gfortran.info, Node: IPARITY, Next: IRAND, Prev: IOR, Up: Intrinsic Procedures
- 9.153 'IPARITY' -- Bitwise XOR of array elements
- ================================================
- _Description_:
- Reduces with bitwise XOR (exclusive or) the elements of ARRAY along
- dimension DIM if the corresponding element in MASK is 'TRUE'.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = IPARITY(ARRAY[, MASK])'
- 'RESULT = IPARITY(ARRAY, DIM[, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the bitwise XOR of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_iparity
- INTEGER(1) :: a(2)
- a(1) = int(b'00100100', 1)
- a(2) = int(b'01101010', 1)
- ! prints 01001110
- PRINT '(b8.8)', IPARITY(a)
- END PROGRAM
- _See also_:
- *note IANY::, *note IALL::, *note IEOR::, *note PARITY::
- File: gfortran.info, Node: IRAND, Next: IS_CONTIGUOUS, Prev: IPARITY, Up: Intrinsic Procedures
- 9.154 'IRAND' -- Integer pseudo-random number
- =============================================
- _Description_:
- 'IRAND(FLAG)' returns a pseudo-random number from a uniform
- distribution between 0 and a system-dependent limit (which is in
- most cases 2147483647). If FLAG is 0, the next number in the
- current sequence is returned; if FLAG is 1, the generator is
- restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is
- used as a new seed with 'SRAND'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. It implements a simple modulo generator as
- provided by 'g77'. For new code, one should consider the use of
- *note RANDOM_NUMBER:: as it implements a superior algorithm.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = IRAND(I)'
- _Arguments_:
- I Shall be a scalar 'INTEGER' of kind 4.
- _Return value_:
- The return value is of 'INTEGER(kind=4)' type.
- _Example_:
- program test_irand
- integer,parameter :: seed = 86456
- call srand(seed)
- print *, irand(), irand(), irand(), irand()
- print *, irand(seed), irand(), irand(), irand()
- end program test_irand
- File: gfortran.info, Node: IS_CONTIGUOUS, Next: IS_IOSTAT_END, Prev: IRAND, Up: Intrinsic Procedures
- 9.155 'IS_CONTIGUOUS' -- Test whether an array is contiguous
- ============================================================
- _Description_:
- 'IS_CONTIGUOUS' tests whether an array is contiguous.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = IS_CONTIGUOUS(ARRAY)'
- _Arguments_:
- ARRAY Shall be an array of any type.
- _Return value_:
- Returns a 'LOGICAL' of the default kind, which '.TRUE.' if ARRAY is
- contiguous and false otherwise.
- _Example_:
- program test
- integer :: a(10)
- a = [1,2,3,4,5,6,7,8,9,10]
- call sub (a) ! every element, is contiguous
- call sub (a(::2)) ! every other element, is noncontiguous
- contains
- subroutine sub (x)
- integer :: x(:)
- if (is_contiguous (x)) then
- write (*,*) 'X is contiguous'
- else
- write (*,*) 'X is not contiguous'
- end if
- end subroutine sub
- end program test
- File: gfortran.info, Node: IS_IOSTAT_END, Next: IS_IOSTAT_EOR, Prev: IS_CONTIGUOUS, Up: Intrinsic Procedures
- 9.156 'IS_IOSTAT_END' -- Test for end-of-file value
- ===================================================
- _Description_:
- 'IS_IOSTAT_END' tests whether an variable has the value of the I/O
- status "end of file". The function is equivalent to comparing the
- variable with the 'IOSTAT_END' parameter of the intrinsic module
- 'ISO_FORTRAN_ENV'.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IS_IOSTAT_END(I)'
- _Arguments_:
- I Shall be of the type 'INTEGER'.
- _Return value_:
- Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has
- the value which indicates an end of file condition for 'IOSTAT='
- specifiers, and is '.FALSE.' otherwise.
- _Example_:
- PROGRAM iostat
- IMPLICIT NONE
- INTEGER :: stat, i
- OPEN(88, FILE='test.dat')
- READ(88, *, IOSTAT=stat) i
- IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
- END PROGRAM
- File: gfortran.info, Node: IS_IOSTAT_EOR, Next: ISATTY, Prev: IS_IOSTAT_END, Up: Intrinsic Procedures
- 9.157 'IS_IOSTAT_EOR' -- Test for end-of-record value
- =====================================================
- _Description_:
- 'IS_IOSTAT_EOR' tests whether an variable has the value of the I/O
- status "end of record". The function is equivalent to comparing
- the variable with the 'IOSTAT_EOR' parameter of the intrinsic
- module 'ISO_FORTRAN_ENV'.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IS_IOSTAT_EOR(I)'
- _Arguments_:
- I Shall be of the type 'INTEGER'.
- _Return value_:
- Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has
- the value which indicates an end of file condition for 'IOSTAT='
- specifiers, and is '.FALSE.' otherwise.
- _Example_:
- PROGRAM iostat
- IMPLICIT NONE
- INTEGER :: stat, i(50)
- OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
- READ(88, IOSTAT=stat) i
- IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
- END PROGRAM
- File: gfortran.info, Node: ISATTY, Next: ISHFT, Prev: IS_IOSTAT_EOR, Up: Intrinsic Procedures
- 9.158 'ISATTY' -- Whether a unit is a terminal device.
- ======================================================
- _Description_:
- Determine whether a unit is connected to a terminal device.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = ISATTY(UNIT)'
- _Arguments_:
- UNIT Shall be a scalar 'INTEGER'.
- _Return value_:
- Returns '.TRUE.' if the UNIT is connected to a terminal device,
- '.FALSE.' otherwise.
- _Example_:
- PROGRAM test_isatty
- INTEGER(kind=1) :: unit
- DO unit = 1, 10
- write(*,*) isatty(unit=unit)
- END DO
- END PROGRAM
- _See also_:
- *note TTYNAM::
- File: gfortran.info, Node: ISHFT, Next: ISHFTC, Prev: ISATTY, Up: Intrinsic Procedures
- 9.159 'ISHFT' -- Shift bits
- ===========================
- _Description_:
- 'ISHFT' returns a value corresponding to I with all of the bits
- shifted SHIFT places. A value of SHIFT greater than zero
- corresponds to a left shift, a value of zero corresponds to no
- shift, and a value less than zero corresponds to a right shift. If
- the absolute value of SHIFT is greater than 'BIT_SIZE(I)', the
- value is undefined. Bits shifted out from the left end or right
- end are lost; zeros are shifted in from the opposite end.
- _Standard_:
- Fortran 90 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ISHFT(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _Specific names_:
- Name Argument Return type Standard
- 'ISHFT(A)' 'INTEGER A' 'INTEGER' Fortran 90 and
- later
- 'BSHFT(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IISHFT(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JISHFT(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KISHFT(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note ISHFTC::
- File: gfortran.info, Node: ISHFTC, Next: ISNAN, Prev: ISHFT, Up: Intrinsic Procedures
- 9.160 'ISHFTC' -- Shift bits circularly
- =======================================
- _Description_:
- 'ISHFTC' returns a value corresponding to I with the rightmost SIZE
- bits shifted circularly SHIFT places; that is, bits shifted out one
- end are shifted into the opposite end. A value of SHIFT greater
- than zero corresponds to a left shift, a value of zero corresponds
- to no shift, and a value less than zero corresponds to a right
- shift. The absolute value of SHIFT must be less than SIZE. If the
- SIZE argument is omitted, it is taken to be equivalent to
- 'BIT_SIZE(I)'.
- _Standard_:
- Fortran 90 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ISHFTC(I, SHIFT [, SIZE])'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- SIZE (Optional) The type shall be 'INTEGER'; the
- value must be greater than zero and less than or
- equal to 'BIT_SIZE(I)'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _Specific names_:
- Name Argument Return type Standard
- 'ISHFTC(A)' 'INTEGER A' 'INTEGER' Fortran 90 and
- later
- 'BSHFTC(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IISHFTC(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JISHFTC(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KISHFTC(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note ISHFT::
- File: gfortran.info, Node: ISNAN, Next: ITIME, Prev: ISHFTC, Up: Intrinsic Procedures
- 9.161 'ISNAN' -- Test for a NaN
- ===============================
- _Description_:
- 'ISNAN' tests whether a floating-point value is an IEEE
- Not-a-Number (NaN).
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'ISNAN(X)'
- _Arguments_:
- X Variable of the type 'REAL'.
-
- _Return value_:
- Returns a default-kind 'LOGICAL'. The returned value is 'TRUE' if
- X is a NaN and 'FALSE' otherwise.
- _Example_:
- program test_nan
- implicit none
- real :: x
- x = -1.0
- x = sqrt(x)
- if (isnan(x)) stop '"x" is a NaN'
- end program test_nan
- File: gfortran.info, Node: ITIME, Next: KILL, Prev: ISNAN, Up: Intrinsic Procedures
- 9.162 'ITIME' -- Get current local time subroutine (hour/minutes/seconds)
- =========================================================================
- _Description_:
- 'ITIME(VALUES)' Fills VALUES with the numerical values at the
- current local time. The hour (in the range 1-24), minute (in the
- range 1-60), and seconds (in the range 1-60) appear in elements 1,
- 2, and 3 of VALUES, respectively.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL ITIME(VALUES)'
- _Arguments_:
- VALUES The type shall be 'INTEGER, DIMENSION(3)' and
- the kind shall be the default integer kind.
- _Return value_:
- Does not return anything.
- _Example_:
- program test_itime
- integer, dimension(3) :: tarray
- call itime(tarray)
- print *, tarray(1)
- print *, tarray(2)
- print *, tarray(3)
- end program test_itime
- _See also_:
- *note DATE_AND_TIME::
- File: gfortran.info, Node: KILL, Next: KIND, Prev: ITIME, Up: Intrinsic Procedures
- 9.163 'KILL' -- Send a signal to a process
- ==========================================
- _Description_:
- Sends the signal specified by SIG to the process PID. See
- 'kill(2)'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL KILL(PID, SIG [, STATUS])'
- 'STATUS = KILL(PID, SIG)'
- _Arguments_:
- PID Shall be a scalar 'INTEGER' with 'INTENT(IN)'.
- SIG Shall be a scalar 'INTEGER' with 'INTENT(IN)'.
- STATUS [Subroutine](Optional) Shall be a scalar
- 'INTEGER'. Returns 0 on success; otherwise a
- system-specific error code is returned.
- STATUS [Function] The kind type parameter is that of
- 'pid'. Returns 0 on success; otherwise a
- system-specific error code is returned.
- _See also_:
- *note ABORT::, *note EXIT::
- File: gfortran.info, Node: KIND, Next: LBOUND, Prev: KILL, Up: Intrinsic Procedures
- 9.164 'KIND' -- Kind of an entity
- =================================
- _Description_:
- 'KIND(X)' returns the kind value of the entity X.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'K = KIND(X)'
- _Arguments_:
- X Shall be of type 'LOGICAL', 'INTEGER', 'REAL',
- 'COMPLEX' or 'CHARACTER'. It may be scalar or
- array valued.
- _Return value_:
- The return value is a scalar of type 'INTEGER' and of the default
- integer kind.
- _Example_:
- program test_kind
- integer,parameter :: kc = kind(' ')
- integer,parameter :: kl = kind(.true.)
- print *, "The default character kind is ", kc
- print *, "The default logical kind is ", kl
- end program test_kind
- File: gfortran.info, Node: LBOUND, Next: LCOBOUND, Prev: KIND, Up: Intrinsic Procedures
- 9.165 'LBOUND' -- Lower dimension bounds of an array
- ====================================================
- _Description_:
- Returns the lower bounds of an array, or a single lower bound along
- the DIM dimension.
- _Standard_:
- Fortran 90 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = LBOUND(ARRAY [, DIM [, KIND]])'
- _Arguments_:
- ARRAY Shall be an array, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the lower bounds of ARRAY. If
- DIM is present, the result is a scalar corresponding to the lower
- bound of the array along that dimension. If ARRAY is an expression
- rather than a whole array or array structure component, or if it
- has a zero extent along the relevant dimension, the lower bound is
- taken to be 1.
- _See also_:
- *note UBOUND::, *note LCOBOUND::
- File: gfortran.info, Node: LCOBOUND, Next: LEADZ, Prev: LBOUND, Up: Intrinsic Procedures
- 9.166 'LCOBOUND' -- Lower codimension bounds of an array
- ========================================================
- _Description_:
- Returns the lower bounds of a coarray, or a single lower cobound
- along the DIM codimension.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])'
- _Arguments_:
- ARRAY Shall be an coarray, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the lower cobounds of COARRAY.
- If DIM is present, the result is a scalar corresponding to the
- lower cobound of the array along that codimension.
- _See also_:
- *note UCOBOUND::, *note LBOUND::
- File: gfortran.info, Node: LEADZ, Next: LEN, Prev: LCOBOUND, Up: Intrinsic Procedures
- 9.167 'LEADZ' -- Number of leading zero bits of an integer
- ==========================================================
- _Description_:
- 'LEADZ' returns the number of leading zero bits of an integer.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LEADZ(I)'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- _Return value_:
- The type of the return value is the default 'INTEGER'. If all the
- bits of 'I' are zero, the result value is 'BIT_SIZE(I)'.
- _Example_:
- PROGRAM test_leadz
- WRITE (*,*) BIT_SIZE(1) ! prints 32
- WRITE (*,*) LEADZ(1) ! prints 31
- END PROGRAM
- _See also_:
- *note BIT_SIZE::, *note TRAILZ::, *note POPCNT::, *note POPPAR::
- File: gfortran.info, Node: LEN, Next: LEN_TRIM, Prev: LEADZ, Up: Intrinsic Procedures
- 9.168 'LEN' -- Length of a character entity
- ===========================================
- _Description_:
- Returns the length of a character string. If STRING is an array,
- the length of an element of STRING is returned. Note that STRING
- need not be defined when this intrinsic is invoked, since only the
- length, not the content, of STRING is needed.
- _Standard_:
- Fortran 77 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'L = LEN(STRING [, KIND])'
- _Arguments_:
- STRING Shall be a scalar or array of type 'CHARACTER',
- with 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Specific names_:
- Name Argument Return type Standard
- 'LEN(STRING)' 'CHARACTER' 'INTEGER' Fortran 77 and
- later
- _See also_:
- *note LEN_TRIM::, *note ADJUSTL::, *note ADJUSTR::
- File: gfortran.info, Node: LEN_TRIM, Next: LGE, Prev: LEN, Up: Intrinsic Procedures
- 9.169 'LEN_TRIM' -- Length of a character entity without trailing blank characters
- ==================================================================================
- _Description_:
- Returns the length of a character string, ignoring any trailing
- blanks.
- _Standard_:
- Fortran 90 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LEN_TRIM(STRING [, KIND])'
- _Arguments_:
- STRING Shall be a scalar of type 'CHARACTER', with
- 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _See also_:
- *note LEN::, *note ADJUSTL::, *note ADJUSTR::
- File: gfortran.info, Node: LGE, Next: LGT, Prev: LEN_TRIM, Up: Intrinsic Procedures
- 9.170 'LGE' -- Lexical greater than or equal
- ============================================
- _Description_:
- Determines whether one string is lexically greater than or equal to
- another string, where the two strings are interpreted as containing
- ASCII character codes. If the String A and String B are not the
- same length, the shorter is compared as if spaces were appended to
- it to form a value that has the same length as the longer.
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LGE(STRING_A, STRING_B)'
- _Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
- _Return value_:
- Returns '.TRUE.' if 'STRING_A >= STRING_B', and '.FALSE.'
- otherwise, based on the ASCII ordering.
- _Specific names_:
- Name Argument Return type Standard
- 'LGE(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
- _See also_:
- *note LGT::, *note LLE::, *note LLT::
- File: gfortran.info, Node: LGT, Next: LINK, Prev: LGE, Up: Intrinsic Procedures
- 9.171 'LGT' -- Lexical greater than
- ===================================
- _Description_:
- Determines whether one string is lexically greater than another
- string, where the two strings are interpreted as containing ASCII
- character codes. If the String A and String B are not the same
- length, the shorter is compared as if spaces were appended to it to
- form a value that has the same length as the longer.
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LGT(STRING_A, STRING_B)'
- _Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
- _Return value_:
- Returns '.TRUE.' if 'STRING_A > STRING_B', and '.FALSE.' otherwise,
- based on the ASCII ordering.
- _Specific names_:
- Name Argument Return type Standard
- 'LGT(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
- _See also_:
- *note LGE::, *note LLE::, *note LLT::
- File: gfortran.info, Node: LINK, Next: LLE, Prev: LGT, Up: Intrinsic Procedures
- 9.172 'LINK' -- Create a hard link
- ==================================
- _Description_:
- Makes a (hard) link from file PATH1 to PATH2. A null character
- ('CHAR(0)') can be used to mark the end of the names in PATH1 and
- PATH2; otherwise, trailing blanks in the file names are ignored.
- If the STATUS argument is supplied, it contains 0 on success or a
- nonzero error code upon return; see 'link(2)'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL LINK(PATH1, PATH2 [, STATUS])'
- 'STATUS = LINK(PATH1, PATH2)'
- _Arguments_:
- PATH1 Shall be of default 'CHARACTER' type.
- PATH2 Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
- _See also_:
- *note SYMLNK::, *note UNLINK::
- File: gfortran.info, Node: LLE, Next: LLT, Prev: LINK, Up: Intrinsic Procedures
- 9.173 'LLE' -- Lexical less than or equal
- =========================================
- _Description_:
- Determines whether one string is lexically less than or equal to
- another string, where the two strings are interpreted as containing
- ASCII character codes. If the String A and String B are not the
- same length, the shorter is compared as if spaces were appended to
- it to form a value that has the same length as the longer.
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LLE(STRING_A, STRING_B)'
- _Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
- _Return value_:
- Returns '.TRUE.' if 'STRING_A <= STRING_B', and '.FALSE.'
- otherwise, based on the ASCII ordering.
- _Specific names_:
- Name Argument Return type Standard
- 'LLE(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
- _See also_:
- *note LGE::, *note LGT::, *note LLT::
- File: gfortran.info, Node: LLT, Next: LNBLNK, Prev: LLE, Up: Intrinsic Procedures
- 9.174 'LLT' -- Lexical less than
- ================================
- _Description_:
- Determines whether one string is lexically less than another
- string, where the two strings are interpreted as containing ASCII
- character codes. If the String A and String B are not the same
- length, the shorter is compared as if spaces were appended to it to
- form a value that has the same length as the longer.
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LLT(STRING_A, STRING_B)'
- _Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
- _Return value_:
- Returns '.TRUE.' if 'STRING_A < STRING_B', and '.FALSE.' otherwise,
- based on the ASCII ordering.
- _Specific names_:
- Name Argument Return type Standard
- 'LLT(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
- _See also_:
- *note LGE::, *note LGT::, *note LLE::
- File: gfortran.info, Node: LNBLNK, Next: LOC, Prev: LLT, Up: Intrinsic Procedures
- 9.175 'LNBLNK' -- Index of the last non-blank character in a string
- ===================================================================
- _Description_:
- Returns the length of a character string, ignoring any trailing
- blanks. This is identical to the standard 'LEN_TRIM' intrinsic,
- and is only included for backwards compatibility.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LNBLNK(STRING)'
- _Arguments_:
- STRING Shall be a scalar of type 'CHARACTER', with
- 'INTENT(IN)'
- _Return value_:
- The return value is of 'INTEGER(kind=4)' type.
- _See also_:
- *note INDEX intrinsic::, *note LEN_TRIM::
- File: gfortran.info, Node: LOC, Next: LOG, Prev: LNBLNK, Up: Intrinsic Procedures
- 9.176 'LOC' -- Returns the address of a variable
- ================================================
- _Description_:
- 'LOC(X)' returns the address of X as an integer.
- _Standard_:
- GNU extension
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = LOC(X)'
- _Arguments_:
- X Variable of any type.
- _Return value_:
- The return value is of type 'INTEGER', with a 'KIND' corresponding
- to the size (in bytes) of a memory address on the target machine.
- _Example_:
- program test_loc
- integer :: i
- real :: r
- i = loc(r)
- print *, i
- end program test_loc
- File: gfortran.info, Node: LOG, Next: LOG10, Prev: LOC, Up: Intrinsic Procedures
- 9.177 'LOG' -- Natural logarithm function
- =========================================
- _Description_:
- 'LOG(X)' computes the natural logarithm of X, i.e. the logarithm
- to the base e.
- _Standard_:
- Fortran 77 and later, has GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LOG(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of type 'REAL' or 'COMPLEX'. The kind type
- parameter is the same as X. If X is 'COMPLEX', the imaginary part
- \omega is in the range -\pi < \omega \leq \pi.
- _Example_:
- program test_log
- real(8) :: x = 2.7182818284590451_8
- complex :: z = (1.0, 2.0)
- x = log(x) ! will yield (approximately) 1
- z = log(z)
- end program test_log
- _Specific names_:
- Name Argument Return type Standard
- 'ALOG(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 or
- later
- 'DLOG(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 or
- later
- 'CLOG(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 or
- X' later
- 'ZLOG(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDLOG(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- File: gfortran.info, Node: LOG10, Next: LOG_GAMMA, Prev: LOG, Up: Intrinsic Procedures
- 9.178 'LOG10' -- Base 10 logarithm function
- ===========================================
- _Description_:
- 'LOG10(X)' computes the base 10 logarithm of X.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LOG10(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL' or 'COMPLEX'. The kind type
- parameter is the same as X.
- _Example_:
- program test_log10
- real(8) :: x = 10.0_8
- x = log10(x)
- end program test_log10
- _Specific names_:
- Name Argument Return type Standard
- 'ALOG10(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DLOG10(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- File: gfortran.info, Node: LOG_GAMMA, Next: LOGICAL, Prev: LOG10, Up: Intrinsic Procedures
- 9.179 'LOG_GAMMA' -- Logarithm of the Gamma function
- ====================================================
- _Description_:
- 'LOG_GAMMA(X)' computes the natural logarithm of the absolute value
- of the Gamma (\Gamma) function.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'X = LOG_GAMMA(X)'
- _Arguments_:
- X Shall be of type 'REAL' and neither zero nor a
- negative integer.
- _Return value_:
- The return value is of type 'REAL' of the same kind as X.
- _Example_:
- program test_log_gamma
- real :: x = 1.0
- x = lgamma(x) ! returns 0.0
- end program test_log_gamma
- _Specific names_:
- Name Argument Return type Standard
- 'LGAMMA(X)' 'REAL(4) X' 'REAL(4)' GNU extension
- 'ALGAMA(X)' 'REAL(4) X' 'REAL(4)' GNU extension
- 'DLGAMA(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Gamma function: *note GAMMA::
- File: gfortran.info, Node: LOGICAL, Next: LONG, Prev: LOG_GAMMA, Up: Intrinsic Procedures
- 9.180 'LOGICAL' -- Convert to logical type
- ==========================================
- _Description_:
- Converts one kind of 'LOGICAL' variable to another.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LOGICAL(L [, KIND])'
- _Arguments_:
- L The type shall be 'LOGICAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is a 'LOGICAL' value equal to L, with a kind
- corresponding to KIND, or of the default logical kind if KIND is
- not given.
- _See also_:
- *note INT::, *note REAL::, *note CMPLX::
- File: gfortran.info, Node: LONG, Next: LSHIFT, Prev: LOGICAL, Up: Intrinsic Procedures
- 9.181 'LONG' -- Convert to integer type
- =======================================
- _Description_:
- Convert to a 'KIND=4' integer type, which is the same size as a C
- 'long' integer. This is equivalent to the standard 'INT' intrinsic
- with an optional argument of 'KIND=4', and is only included for
- backwards compatibility.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LONG(A)'
- _Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
- _Return value_:
- The return value is a 'INTEGER(4)' variable.
- _See also_:
- *note INT::, *note INT2::, *note INT8::
- File: gfortran.info, Node: LSHIFT, Next: LSTAT, Prev: LONG, Up: Intrinsic Procedures
- 9.182 'LSHIFT' -- Left shift bits
- =================================
- _Description_:
- 'LSHIFT' returns a value corresponding to I with all of the bits
- shifted left by SHIFT places. SHIFT shall be nonnegative and less
- than or equal to 'BIT_SIZE(I)', otherwise the result value is
- undefined. Bits shifted out from the left end are lost; zeros are
- shifted in from the opposite end.
- This function has been superseded by the 'ISHFT' intrinsic, which
- is standard in Fortran 95 and later, and the 'SHIFTL' intrinsic,
- which is standard in Fortran 2008 and later.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LSHIFT(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _See also_:
- *note ISHFT::, *note ISHFTC::, *note RSHIFT::, *note SHIFTA::,
- *note SHIFTL::, *note SHIFTR::
- File: gfortran.info, Node: LSTAT, Next: LTIME, Prev: LSHIFT, Up: Intrinsic Procedures
- 9.183 'LSTAT' -- Get file status
- ================================
- _Description_:
- 'LSTAT' is identical to *note STAT::, except that if path is a
- symbolic link, then the link itself is statted, not the file that
- it refers to.
- The elements in 'VALUES' are the same as described by *note STAT::.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL LSTAT(NAME, VALUES [, STATUS])'
- 'STATUS = LSTAT(NAME, VALUES)'
- _Arguments_:
- NAME The type shall be 'CHARACTER' of the default
- kind, a valid path within the file system.
- VALUES The type shall be 'INTEGER(4), DIMENSION(13)'.
- STATUS (Optional) status flag of type 'INTEGER(4)'.
- Returns 0 on success and a system specific error
- code otherwise.
- _Example_:
- See *note STAT:: for an example.
- _See also_:
- To stat an open file: *note FSTAT:: To stat a file: *note STAT::
- File: gfortran.info, Node: LTIME, Next: MALLOC, Prev: LSTAT, Up: Intrinsic Procedures
- 9.184 'LTIME' -- Convert time to local time info
- ================================================
- _Description_:
- Given a system time value TIME (as provided by the *note TIME::
- intrinsic), fills VALUES with values extracted from it appropriate
- to the local time zone using 'localtime(3)'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL LTIME(TIME, VALUES)'
- _Arguments_:
- TIME An 'INTEGER' scalar expression corresponding to
- a system time, with 'INTENT(IN)'.
- VALUES A default 'INTEGER' array with 9 elements, with
- 'INTENT(OUT)'.
- _Return value_:
- The elements of VALUES are assigned as follows:
- 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
- seconds
- 2. Minutes after the hour, range 0-59
- 3. Hours past midnight, range 0-23
- 4. Day of month, range 1-31
- 5. Number of months since January, range 0-11
- 6. Years since 1900
- 7. Number of days since Sunday, range 0-6
- 8. Days since January 1, range 0-365
- 9. Daylight savings indicator: positive if daylight savings is in
- effect, zero if not, and negative if the information is not
- available.
- _See also_:
- *note DATE_AND_TIME::, *note CTIME::, *note GMTIME::, *note TIME::,
- *note TIME8::
- File: gfortran.info, Node: MALLOC, Next: MASKL, Prev: LTIME, Up: Intrinsic Procedures
- 9.185 'MALLOC' -- Allocate dynamic memory
- =========================================
- _Description_:
- 'MALLOC(SIZE)' allocates SIZE bytes of dynamic memory and returns
- the address of the allocated memory. The 'MALLOC' intrinsic is an
- extension intended to be used with Cray pointers, and is provided
- in GNU Fortran to allow the user to compile legacy code. For new
- code using Fortran 95 pointers, the memory allocation intrinsic is
- 'ALLOCATE'.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'PTR = MALLOC(SIZE)'
- _Arguments_:
- SIZE The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER(K)', with K such that
- variables of type 'INTEGER(K)' have the same size as C pointers
- ('sizeof(void *)').
- _Example_:
- The following example demonstrates the use of 'MALLOC' and 'FREE'
- with Cray pointers.
- program test_malloc
- implicit none
- integer i
- real*8 x(*), z
- pointer(ptr_x,x)
- ptr_x = malloc(20*8)
- do i = 1, 20
- x(i) = sqrt(1.0d0 / i)
- end do
- z = 0
- do i = 1, 20
- z = z + x(i)
- print *, z
- end do
- call free(ptr_x)
- end program test_malloc
- _See also_:
- *note FREE::
- File: gfortran.info, Node: MASKL, Next: MASKR, Prev: MALLOC, Up: Intrinsic Procedures
- 9.186 'MASKL' -- Left justified mask
- ====================================
- _Description_:
- 'MASKL(I[, KIND])' has its leftmost I bits set to 1, and the
- remaining bits set to 0.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MASKL(I[, KIND])'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- KIND Shall be a scalar constant expression of type
- 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER'. If KIND is present, it
- specifies the kind value of the return type; otherwise, it is of
- the default integer kind.
- _See also_:
- *note MASKR::
- File: gfortran.info, Node: MASKR, Next: MATMUL, Prev: MASKL, Up: Intrinsic Procedures
- 9.187 'MASKR' -- Right justified mask
- =====================================
- _Description_:
- 'MASKL(I[, KIND])' has its rightmost I bits set to 1, and the
- remaining bits set to 0.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MASKR(I[, KIND])'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- KIND Shall be a scalar constant expression of type
- 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER'. If KIND is present, it
- specifies the kind value of the return type; otherwise, it is of
- the default integer kind.
- _See also_:
- *note MASKL::
- File: gfortran.info, Node: MATMUL, Next: MAX, Prev: MASKR, Up: Intrinsic Procedures
- 9.188 'MATMUL' -- matrix multiplication
- =======================================
- _Description_:
- Performs a matrix multiplication on numeric or logical arguments.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = MATMUL(MATRIX_A, MATRIX_B)'
- _Arguments_:
- MATRIX_A An array of 'INTEGER', 'REAL', 'COMPLEX', or
- 'LOGICAL' type, with a rank of one or two.
- MATRIX_B An array of 'INTEGER', 'REAL', or 'COMPLEX' type
- if MATRIX_A is of a numeric type; otherwise, an
- array of 'LOGICAL' type. The rank shall be one
- or two, and the first (or only) dimension of
- MATRIX_B shall be equal to the last (or only)
- dimension of MATRIX_A. MATRIX_A and MATRIX_B
- shall not both be rank one arrays.
- _Return value_:
- The matrix product of MATRIX_A and MATRIX_B. The type and kind of
- the result follow the usual type and kind promotion rules, as for
- the '*' or '.AND.' operators.
- File: gfortran.info, Node: MAX, Next: MAXEXPONENT, Prev: MATMUL, Up: Intrinsic Procedures
- 9.189 'MAX' -- Maximum value of an argument list
- ================================================
- _Description_:
- Returns the argument with the largest (most positive) value.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MAX(A1, A2 [, A3 [, ...]])'
- _Arguments_:
- A1 The type shall be 'INTEGER' or 'REAL'.
- A2, A3, An expression of the same type and kind as A1.
- ... (As a GNU extension, arguments of different
- kinds are permitted.)
- _Return value_:
- The return value corresponds to the maximum value among the
- arguments, and has the same type and kind as the first argument.
- _Specific names_:
- Name Argument Return type Standard
- 'MAX0(A1)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- A1' later
- 'AMAX0(A1)' 'INTEGER(4) 'REAL(MAX(X))' Fortran 77 and
- A1' later
- 'MAX1(A1)' 'REAL A1' 'INT(MAX(X))' Fortran 77 and
- later
- 'AMAX1(A1)' 'REAL(4) A1' 'REAL(4)' Fortran 77 and
- later
- 'DMAX1(A1)' 'REAL(8) A1' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- *note MAXLOC:: *note MAXVAL::, *note MIN::
- File: gfortran.info, Node: MAXEXPONENT, Next: MAXLOC, Prev: MAX, Up: Intrinsic Procedures
- 9.190 'MAXEXPONENT' -- Maximum exponent of a real kind
- ======================================================
- _Description_:
- 'MAXEXPONENT(X)' returns the maximum exponent in the model of the
- type of 'X'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = MAXEXPONENT(X)'
- _Arguments_:
- X Shall be of type 'REAL'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _Example_:
- program exponents
- real(kind=4) :: x
- real(kind=8) :: y
- print *, minexponent(x), maxexponent(x)
- print *, minexponent(y), maxexponent(y)
- end program exponents
- File: gfortran.info, Node: MAXLOC, Next: MAXVAL, Prev: MAXEXPONENT, Up: Intrinsic Procedures
- 9.191 'MAXLOC' -- Location of the maximum value within an array
- ===============================================================
- _Description_:
- Determines the location of the element in the array with the
- maximum value, or, if the DIM argument is supplied, determines the
- locations of the maximum element along each row of the array in the
- DIM direction. If MASK is present, only the elements for which
- MASK is '.TRUE.' are considered. If more than one element in the
- array has the maximum value, the location returned is that of the
- first such element in array element order if the BACK is not
- present, or is false; if BACK is true, the location returned is
- that of the last such element. If the array has zero size, or all
- of the elements of MASK are '.FALSE.', then the result is an array
- of zeroes. Similarly, if DIM is supplied and all of the elements
- of MASK along a given row are zero, the result value for that row
- is zero.
- _Standard_:
- Fortran 95 and later; ARRAY of 'CHARACTER' and the KIND argument
- are available in Fortran 2003 and later. The BACK argument is
- available in Fortran 2008 and later.
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = MAXLOC(ARRAY, DIM [, MASK] [,KIND] [,BACK])'
- 'RESULT = MAXLOC(ARRAY [, MASK] [,KIND] [,BACK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- BACK (Optional) A scalar of type 'LOGICAL'.
- _Return value_:
- If DIM is absent, the result is a rank-one array with a length
- equal to the rank of ARRAY. If DIM is present, the result is an
- array with a rank one less than the rank of ARRAY, and a size
- corresponding to the size of ARRAY with the DIM dimension removed.
- If DIM is present and ARRAY has a rank of one, the result is a
- scalar. If the optional argument KIND is present, the result is an
- integer of kind KIND, otherwise it is of default kind.
- _See also_:
- *note FINDLOC::, *note MAX::, *note MAXVAL::
- File: gfortran.info, Node: MAXVAL, Next: MCLOCK, Prev: MAXLOC, Up: Intrinsic Procedures
- 9.192 'MAXVAL' -- Maximum value of an array
- ===========================================
- _Description_:
- Determines the maximum value of the elements in an array value, or,
- if the DIM argument is supplied, determines the maximum value along
- each row of the array in the DIM direction. If MASK is present,
- only the elements for which MASK is '.TRUE.' are considered. If
- the array has zero size, or all of the elements of MASK are
- '.FALSE.', then the result is '-HUGE(ARRAY)' if ARRAY is numeric,
- or a string of nulls if ARRAY is of character type.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = MAXVAL(ARRAY, DIM [, MASK])'
- 'RESULT = MAXVAL(ARRAY [, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK (Opional) Shall be an array of type 'LOGICAL',
- and conformable with ARRAY.
- _Return value_:
- If DIM is absent, or if ARRAY has a rank of one, the result is a
- scalar. If DIM is present, the result is an array with a rank one
- less than the rank of ARRAY, and a size corresponding to the size
- of ARRAY with the DIM dimension removed. In all cases, the result
- is of the same type and kind as ARRAY.
- _See also_:
- *note MAX::, *note MAXLOC::
- File: gfortran.info, Node: MCLOCK, Next: MCLOCK8, Prev: MAXVAL, Up: Intrinsic Procedures
- 9.193 'MCLOCK' -- Time function
- ===============================
- _Description_:
- Returns the number of clock ticks since the start of the process,
- based on the function 'clock(3)' in the C standard library.
- This intrinsic is not fully portable, such as to systems with
- 32-bit 'INTEGER' types but supporting times wider than 32 bits.
- Therefore, the values returned by this intrinsic might be, or
- become, negative, or numerically less than previous values, during
- a single run of the compiled program.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = MCLOCK()'
- _Return value_:
- The return value is a scalar of type 'INTEGER(4)', equal to the
- number of clock ticks since the start of the process, or '-1' if
- the system does not support 'clock(3)'.
- _See also_:
- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note
- TIME::
- File: gfortran.info, Node: MCLOCK8, Next: MERGE, Prev: MCLOCK, Up: Intrinsic Procedures
- 9.194 'MCLOCK8' -- Time function (64-bit)
- =========================================
- _Description_:
- Returns the number of clock ticks since the start of the process,
- based on the function 'clock(3)' in the C standard library.
- _Warning:_ this intrinsic does not increase the range of the timing
- values over that returned by 'clock(3)'. On a system with a 32-bit
- 'clock(3)', 'MCLOCK8' will return a 32-bit value, even though it is
- converted to a 64-bit 'INTEGER(8)' value. That means overflows of
- the 32-bit value can still occur. Therefore, the values returned
- by this intrinsic might be or become negative or numerically less
- than previous values during a single run of the compiled program.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = MCLOCK8()'
- _Return value_:
- The return value is a scalar of type 'INTEGER(8)', equal to the
- number of clock ticks since the start of the process, or '-1' if
- the system does not support 'clock(3)'.
- _See also_:
- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note
- TIME8::
- File: gfortran.info, Node: MERGE, Next: MERGE_BITS, Prev: MCLOCK8, Up: Intrinsic Procedures
- 9.195 'MERGE' -- Merge variables
- ================================
- _Description_:
- Select values from two arrays according to a logical mask. The
- result is equal to TSOURCE if MASK is '.TRUE.', or equal to FSOURCE
- if it is '.FALSE.'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MERGE(TSOURCE, FSOURCE, MASK)'
- _Arguments_:
- TSOURCE May be of any type.
- FSOURCE Shall be of the same type and type parameters as
- TSOURCE.
- MASK Shall be of type 'LOGICAL'.
- _Return value_:
- The result is of the same type and type parameters as TSOURCE.
- File: gfortran.info, Node: MERGE_BITS, Next: MIN, Prev: MERGE, Up: Intrinsic Procedures
- 9.196 'MERGE_BITS' -- Merge of bits under mask
- ==============================================
- _Description_:
- 'MERGE_BITS(I, J, MASK)' merges the bits of I and J as determined
- by the mask. The i-th bit of the result is equal to the i-th bit
- of I if the i-th bit of MASK is 1; it is equal to the i-th bit of J
- otherwise.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MERGE_BITS(I, J, MASK)'
- _Arguments_:
- I Shall be of type 'INTEGER' or a
- boz-literal-constant.
- J Shall be of type 'INTEGER' with the same kind
- type parameter as I or a boz-literal-constant.
- I and J shall not both be boz-literal-constants.
- MASK Shall be of type 'INTEGER' or a
- boz-literal-constant and of the same kind as I.
- _Return value_:
- The result is of the same type and kind as I.
- File: gfortran.info, Node: MIN, Next: MINEXPONENT, Prev: MERGE_BITS, Up: Intrinsic Procedures
- 9.197 'MIN' -- Minimum value of an argument list
- ================================================
- _Description_:
- Returns the argument with the smallest (most negative) value.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MIN(A1, A2 [, A3, ...])'
- _Arguments_:
- A1 The type shall be 'INTEGER' or 'REAL'.
- A2, A3, An expression of the same type and kind as A1.
- ... (As a GNU extension, arguments of different
- kinds are permitted.)
- _Return value_:
- The return value corresponds to the maximum value among the
- arguments, and has the same type and kind as the first argument.
- _Specific names_:
- Name Argument Return type Standard
- 'MIN0(A1)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- A1' later
- 'AMIN0(A1)' 'INTEGER(4) 'REAL(4)' Fortran 77 and
- A1' later
- 'MIN1(A1)' 'REAL A1' 'INTEGER(4)' Fortran 77 and
- later
- 'AMIN1(A1)' 'REAL(4) A1' 'REAL(4)' Fortran 77 and
- later
- 'DMIN1(A1)' 'REAL(8) A1' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- *note MAX::, *note MINLOC::, *note MINVAL::
- File: gfortran.info, Node: MINEXPONENT, Next: MINLOC, Prev: MIN, Up: Intrinsic Procedures
- 9.198 'MINEXPONENT' -- Minimum exponent of a real kind
- ======================================================
- _Description_:
- 'MINEXPONENT(X)' returns the minimum exponent in the model of the
- type of 'X'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = MINEXPONENT(X)'
- _Arguments_:
- X Shall be of type 'REAL'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _Example_:
- See 'MAXEXPONENT' for an example.
- File: gfortran.info, Node: MINLOC, Next: MINVAL, Prev: MINEXPONENT, Up: Intrinsic Procedures
- 9.199 'MINLOC' -- Location of the minimum value within an array
- ===============================================================
- _Description_:
- Determines the location of the element in the array with the
- minimum value, or, if the DIM argument is supplied, determines the
- locations of the minimum element along each row of the array in the
- DIM direction. If MASK is present, only the elements for which
- MASK is '.TRUE.' are considered. If more than one element in the
- array has the minimum value, the location returned is that of the
- first such element in array element order if the BACK is not
- present, or is false; if BACK is true, the location returned is
- that of the last such element. If the array has zero size, or all
- of the elements of MASK are '.FALSE.', then the result is an array
- of zeroes. Similarly, if DIM is supplied and all of the elements
- of MASK along a given row are zero, the result value for that row
- is zero.
- _Standard_:
- Fortran 90 and later; ARRAY of 'CHARACTER' and the KIND argument
- are available in Fortran 2003 and later. The BACK argument is
- available in Fortran 2008 and later.
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = MINLOC(ARRAY, DIM [, MASK] [,KIND] [,BACK])'
- 'RESULT = MINLOC(ARRAY [, MASK], [,KIND] [,BACK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER', 'REAL' or
- 'CHARACTER'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- BACK (Optional) A scalar of type 'LOGICAL'.
- _Return value_:
- If DIM is absent, the result is a rank-one array with a length
- equal to the rank of ARRAY. If DIM is present, the result is an
- array with a rank one less than the rank of ARRAY, and a size
- corresponding to the size of ARRAY with the DIM dimension removed.
- If DIM is present and ARRAY has a rank of one, the result is a
- scalar. If the optional argument KIND is present, the result is an
- integer of kind KIND, otherwise it is of default kind.
- _See also_:
- *note FINDLOC::, *note MIN::, *note MINVAL::
- File: gfortran.info, Node: MINVAL, Next: MOD, Prev: MINLOC, Up: Intrinsic Procedures
- 9.200 'MINVAL' -- Minimum value of an array
- ===========================================
- _Description_:
- Determines the minimum value of the elements in an array value, or,
- if the DIM argument is supplied, determines the minimum value along
- each row of the array in the DIM direction. If MASK is present,
- only the elements for which MASK is '.TRUE.' are considered. If
- the array has zero size, or all of the elements of MASK are
- '.FALSE.', then the result is 'HUGE(ARRAY)' if ARRAY is numeric, or
- a string of 'CHAR(255)' characters if ARRAY is of character type.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = MINVAL(ARRAY, DIM [, MASK])'
- 'RESULT = MINVAL(ARRAY [, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
- _Return value_:
- If DIM is absent, or if ARRAY has a rank of one, the result is a
- scalar. If DIM is present, the result is an array with a rank one
- less than the rank of ARRAY, and a size corresponding to the size
- of ARRAY with the DIM dimension removed. In all cases, the result
- is of the same type and kind as ARRAY.
- _See also_:
- *note MIN::, *note MINLOC::
- File: gfortran.info, Node: MOD, Next: MODULO, Prev: MINVAL, Up: Intrinsic Procedures
- 9.201 'MOD' -- Remainder function
- =================================
- _Description_:
- 'MOD(A,P)' computes the remainder of the division of A by P.
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MOD(A, P)'
- _Arguments_:
- A Shall be a scalar of type 'INTEGER' or 'REAL'.
- P Shall be a scalar of the same type and kind as A
- and not equal to zero. (As a GNU extension,
- arguments of different kinds are permitted.)
- _Return value_:
- The return value is the result of 'A - (INT(A/P) * P)'. The type
- and kind of the return value is the same as that of the arguments.
- The returned value has the same sign as A and a magnitude less than
- the magnitude of P. (As a GNU extension, kind is the largest kind
- of the actual arguments.)
- _Example_:
- program test_mod
- print *, mod(17,3)
- print *, mod(17.5,5.5)
- print *, mod(17.5d0,5.5)
- print *, mod(17.5,5.5d0)
- print *, mod(-17,3)
- print *, mod(-17.5,5.5)
- print *, mod(-17.5d0,5.5)
- print *, mod(-17.5,5.5d0)
- print *, mod(17,-3)
- print *, mod(17.5,-5.5)
- print *, mod(17.5d0,-5.5)
- print *, mod(17.5,-5.5d0)
- end program test_mod
- _Specific names_:
- Name Arguments Return type Standard
- 'MOD(A,P)' 'INTEGER 'INTEGER' Fortran 77 and
- A,P' later
- 'AMOD(A,P)' 'REAL(4) 'REAL(4)' Fortran 77 and
- A,P' later
- 'DMOD(A,P)' 'REAL(8) 'REAL(8)' Fortran 77 and
- A,P' later
- 'BMOD(A,P)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A,P'
- 'IMOD(A,P)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A,P'
- 'JMOD(A,P)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A,P'
- 'KMOD(A,P)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A,P'
- _See also_:
- *note MODULO::
- File: gfortran.info, Node: MODULO, Next: MOVE_ALLOC, Prev: MOD, Up: Intrinsic Procedures
- 9.202 'MODULO' -- Modulo function
- =================================
- _Description_:
- 'MODULO(A,P)' computes the A modulo P.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MODULO(A, P)'
- _Arguments_:
- A Shall be a scalar of type 'INTEGER' or 'REAL'.
- P Shall be a scalar of the same type and kind as
- A. It shall not be zero. (As a GNU extension,
- arguments of different kinds are permitted.)
- _Return value_:
- The type and kind of the result are those of the arguments. (As a
- GNU extension, kind is the largest kind of the actual arguments.)
- If A and P are of type 'INTEGER':
- 'MODULO(A,P)' has the value R such that 'A=Q*P+R', where Q is
- an integer and R is between 0 (inclusive) and P (exclusive).
- If A and P are of type 'REAL':
- 'MODULO(A,P)' has the value of 'A - FLOOR (A / P) * P'.
- The returned value has the same sign as P and a magnitude less than
- the magnitude of P.
- _Example_:
- program test_modulo
- print *, modulo(17,3)
- print *, modulo(17.5,5.5)
- print *, modulo(-17,3)
- print *, modulo(-17.5,5.5)
- print *, modulo(17,-3)
- print *, modulo(17.5,-5.5)
- end program
- _See also_:
- *note MOD::
- File: gfortran.info, Node: MOVE_ALLOC, Next: MVBITS, Prev: MODULO, Up: Intrinsic Procedures
- 9.203 'MOVE_ALLOC' -- Move allocation from one object to another
- ================================================================
- _Description_:
- 'MOVE_ALLOC(FROM, TO)' moves the allocation from FROM to TO. FROM
- will become deallocated in the process.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Pure subroutine
- _Syntax_:
- 'CALL MOVE_ALLOC(FROM, TO)'
- _Arguments_:
- FROM 'ALLOCATABLE', 'INTENT(INOUT)', may be of any
- type and kind.
- TO 'ALLOCATABLE', 'INTENT(OUT)', shall be of the
- same type, kind and rank as FROM.
- _Return value_:
- None
- _Example_:
- program test_move_alloc
- integer, allocatable :: a(:), b(:)
- allocate(a(3))
- a = [ 1, 2, 3 ]
- call move_alloc(a, b)
- print *, allocated(a), allocated(b)
- print *, b
- end program test_move_alloc
- File: gfortran.info, Node: MVBITS, Next: NEAREST, Prev: MOVE_ALLOC, Up: Intrinsic Procedures
- 9.204 'MVBITS' -- Move bits from one integer to another
- =======================================================
- _Description_:
- Moves LEN bits from positions FROMPOS through 'FROMPOS+LEN-1' of
- FROM to positions TOPOS through 'TOPOS+LEN-1' of TO. The portion
- of argument TO not affected by the movement of bits is unchanged.
- The values of 'FROMPOS+LEN-1' and 'TOPOS+LEN-1' must be less than
- 'BIT_SIZE(FROM)'.
- _Standard_:
- Fortran 90 and later, has overloads that are GNU extensions
- _Class_:
- Elemental subroutine
- _Syntax_:
- 'CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)'
- _Arguments_:
- FROM The type shall be 'INTEGER'.
- FROMPOS The type shall be 'INTEGER'.
- LEN The type shall be 'INTEGER'.
- TO The type shall be 'INTEGER', of the same kind as
- FROM.
- TOPOS The type shall be 'INTEGER'.
- _Specific names_:
- Name Argument Return type Standard
- 'MVBITS(A)' 'INTEGER A' 'INTEGER' Fortran 90 and
- later
- 'BMVBITS(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IMVBITS(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JMVBITS(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KMVBITS(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IBCLR::, *note IBSET::, *note IBITS::, *note IAND::, *note
- IOR::, *note IEOR::
- File: gfortran.info, Node: NEAREST, Next: NEW_LINE, Prev: MVBITS, Up: Intrinsic Procedures
- 9.205 'NEAREST' -- Nearest representable number
- ===============================================
- _Description_:
- 'NEAREST(X, S)' returns the processor-representable number nearest
- to 'X' in the direction indicated by the sign of 'S'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = NEAREST(X, S)'
- _Arguments_:
- X Shall be of type 'REAL'.
- S Shall be of type 'REAL' and not equal to zero.
- _Return value_:
- The return value is of the same type as 'X'. If 'S' is positive,
- 'NEAREST' returns the processor-representable number greater than
- 'X' and nearest to it. If 'S' is negative, 'NEAREST' returns the
- processor-representable number smaller than 'X' and nearest to it.
- _Example_:
- program test_nearest
- real :: x, y
- x = nearest(42.0, 1.0)
- y = nearest(42.0, -1.0)
- write (*,"(3(G20.15))") x, y, x - y
- end program test_nearest
- File: gfortran.info, Node: NEW_LINE, Next: NINT, Prev: NEAREST, Up: Intrinsic Procedures
- 9.206 'NEW_LINE' -- New line character
- ======================================
- _Description_:
- 'NEW_LINE(C)' returns the new-line character.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = NEW_LINE(C)'
- _Arguments_:
- C The argument shall be a scalar or array of the
- type 'CHARACTER'.
- _Return value_:
- Returns a CHARACTER scalar of length one with the new-line
- character of the same kind as parameter C.
- _Example_:
- program newline
- implicit none
- write(*,'(A)') 'This is record 1.'//NEW_LINE('A')//'This is record 2.'
- end program newline
- File: gfortran.info, Node: NINT, Next: NORM2, Prev: NEW_LINE, Up: Intrinsic Procedures
- 9.207 'NINT' -- Nearest whole number
- ====================================
- _Description_:
- 'NINT(A)' rounds its argument to the nearest whole number.
- _Standard_:
- Fortran 77 and later, with KIND argument Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = NINT(A [, KIND])'
- _Arguments_:
- A The type of the argument shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- Returns A with the fractional portion of its magnitude eliminated
- by rounding to the nearest whole number and with its sign
- preserved, converted to an 'INTEGER' of the default kind.
- _Example_:
- program test_nint
- real(4) x4
- real(8) x8
- x4 = 1.234E0_4
- x8 = 4.321_8
- print *, nint(x4), idnint(x8)
- end program test_nint
- _Specific names_:
- Name Argument Return Type Standard
- 'NINT(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and
- later
- 'IDNINT(A)' 'REAL(8) A' 'INTEGER' Fortran 77 and
- later
- _See also_:
- *note CEILING::, *note FLOOR::
- File: gfortran.info, Node: NORM2, Next: NOT, Prev: NINT, Up: Intrinsic Procedures
- 9.208 'NORM2' -- Euclidean vector norms
- =======================================
- _Description_:
- Calculates the Euclidean vector norm (L_2 norm) of of ARRAY along
- dimension DIM.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = NORM2(ARRAY[, DIM])'
- _Arguments_:
- ARRAY Shall be an array of type 'REAL'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the square root of the sum of all
- elements in ARRAY squared is returned. Otherwise, an array of rank
- n-1, where n equals the rank of ARRAY, and a shape similar to that
- of ARRAY with dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_sum
- REAL :: x(5) = [ real :: 1, 2, 3, 4, 5 ]
- print *, NORM2(x) ! = sqrt(55.) ~ 7.416
- END PROGRAM
- File: gfortran.info, Node: NOT, Next: NULL, Prev: NORM2, Up: Intrinsic Procedures
- 9.209 'NOT' -- Logical negation
- ===============================
- _Description_:
- 'NOT' returns the bitwise Boolean inverse of I.
- _Standard_:
- Fortran 90 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = NOT(I)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- _Return value_:
- The return type is 'INTEGER', of the same kind as the argument.
- _Specific names_:
- Name Argument Return type Standard
- 'NOT(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BNOT(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'INOT(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JNOT(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KNOT(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IAND::, *note IEOR::, *note IOR::, *note IBITS::, *note
- IBSET::, *note IBCLR::
- File: gfortran.info, Node: NULL, Next: NUM_IMAGES, Prev: NOT, Up: Intrinsic Procedures
- 9.210 'NULL' -- Function that returns an disassociated pointer
- ==============================================================
- _Description_:
- Returns a disassociated pointer.
- If MOLD is present, a disassociated pointer of the same type is
- returned, otherwise the type is determined by context.
- In Fortran 95, MOLD is optional. Please note that Fortran 2003
- includes cases where it is required.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'PTR => NULL([MOLD])'
- _Arguments_:
- MOLD (Optional) shall be a pointer of any association
- status and of any type.
- _Return value_:
- A disassociated pointer.
- _Example_:
- REAL, POINTER, DIMENSION(:) :: VEC => NULL ()
- _See also_:
- *note ASSOCIATED::
- File: gfortran.info, Node: NUM_IMAGES, Next: OR, Prev: NULL, Up: Intrinsic Procedures
- 9.211 'NUM_IMAGES' -- Function that returns the number of images
- ================================================================
- _Description_:
- Returns the number of images.
- _Standard_:
- Fortran 2008 and later. With DISTANCE or FAILED argument,
- Technical Specification (TS) 18508 or later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = NUM_IMAGES(DISTANCE, FAILED)'
- _Arguments_:
- DISTANCE (optional, intent(in)) Nonnegative scalar
- integer
- FAILED (optional, intent(in)) Scalar logical expression
- _Return value_:
- Scalar default-kind integer. If DISTANCE is not present or has
- value 0, the number of images in the current team is returned. For
- values smaller or equal distance to the initial team, it returns
- the number of images index on the ancestor team which has a
- distance of DISTANCE from the invoking team. If DISTANCE is larger
- than the distance to the initial team, the number of images of the
- initial team is returned. If FAILED is not present the total
- number of images is returned; if it has the value '.TRUE.', the
- number of failed images is returned, otherwise, the number of
- images which do have not the failed status.
- _Example_:
- INTEGER :: value[*]
- INTEGER :: i
- value = THIS_IMAGE()
- SYNC ALL
- IF (THIS_IMAGE() == 1) THEN
- DO i = 1, NUM_IMAGES()
- WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
- END DO
- END IF
- _See also_:
- *note THIS_IMAGE::, *note IMAGE_INDEX::
- File: gfortran.info, Node: OR, Next: PACK, Prev: NUM_IMAGES, Up: Intrinsic Procedures
- 9.212 'OR' -- Bitwise logical OR
- ================================
- _Description_:
- Bitwise logical 'OR'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. For integer arguments, programmers should consider
- the use of the *note IOR:: intrinsic defined by the Fortran
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = OR(I, J)'
- _Arguments_:
- I The type shall be either a scalar 'INTEGER' type
- or a scalar 'LOGICAL' type or a
- boz-literal-constant.
- J The type shall be the same as the type of I or a
- boz-literal-constant. I and J shall not both be
- boz-literal-constants. If either I and J is a
- boz-literal-constant, then the other argument
- must be a scalar 'INTEGER'.
- _Return value_:
- The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
- If the kind type parameters differ, then the smaller kind type is
- implicitly converted to larger kind, and the return has the larger
- kind. A boz-literal-constant is converted to an 'INTEGER' with the
- kind type parameter of the other argument as-if a call to *note
- INT:: occurred.
- _Example_:
- PROGRAM test_or
- LOGICAL :: T = .TRUE., F = .FALSE.
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
- WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
- WRITE (*,*) OR(a, b)
- END PROGRAM
- _See also_:
- Fortran 95 elemental function: *note IOR::
- File: gfortran.info, Node: PACK, Next: PARITY, Prev: OR, Up: Intrinsic Procedures
- 9.213 'PACK' -- Pack an array into an array of rank one
- =======================================================
- _Description_:
- Stores the elements of ARRAY in an array of rank one.
- The beginning of the resulting array is made up of elements whose
- MASK equals 'TRUE'. Afterwards, positions are filled with elements
- taken from VECTOR.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = PACK(ARRAY, MASK[,VECTOR])'
- _Arguments_:
- ARRAY Shall be an array of any type.
- MASK Shall be an array of type 'LOGICAL' and of the
- same size as ARRAY. Alternatively, it may be a
- 'LOGICAL' scalar.
- VECTOR (Optional) shall be an array of the same type as
- ARRAY and of rank one. If present, the number
- of elements in VECTOR shall be equal to or
- greater than the number of true elements in
- MASK. If MASK is scalar, the number of elements
- in VECTOR shall be equal to or greater than the
- number of elements in ARRAY.
- _Return value_:
- The result is an array of rank one and the same type as that of
- ARRAY. If VECTOR is present, the result size is that of VECTOR,
- the number of 'TRUE' values in MASK otherwise.
- _Example_:
- Gathering nonzero elements from an array:
- PROGRAM test_pack_1
- INTEGER :: m(6)
- m = (/ 1, 0, 0, 0, 5, 0 /)
- WRITE(*, FMT="(6(I0, ' '))") pack(m, m /= 0) ! "1 5"
- END PROGRAM
- Gathering nonzero elements from an array and appending elements
- from VECTOR:
- PROGRAM test_pack_2
- INTEGER :: m(4)
- m = (/ 1, 0, 0, 2 /)
- ! The following results in "1 2 3 4"
- WRITE(*, FMT="(4(I0, ' '))") pack(m, m /= 0, (/ 0, 0, 3, 4 /))
- END PROGRAM
- _See also_:
- *note UNPACK::
- File: gfortran.info, Node: PARITY, Next: PERROR, Prev: PACK, Up: Intrinsic Procedures
- 9.214 'PARITY' -- Reduction with exclusive OR
- =============================================
- _Description_:
- Calculates the parity, i.e. the reduction using '.XOR.', of MASK
- along dimension DIM.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = PARITY(MASK[, DIM])'
- _Arguments_:
- LOGICAL Shall be an array of type 'LOGICAL'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of MASK.
- _Return value_:
- The result is of the same type as MASK.
- If DIM is absent, a scalar with the parity of all elements in MASK
- is returned, i.e. true if an odd number of elements is '.true.'
- and false otherwise. If DIM is present, an array of rank n-1,
- where n equals the rank of ARRAY, and a shape similar to that of
- MASK with dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_sum
- LOGICAL :: x(2) = [ .true., .false. ]
- print *, PARITY(x) ! prints "T" (true).
- END PROGRAM
- File: gfortran.info, Node: PERROR, Next: POPCNT, Prev: PARITY, Up: Intrinsic Procedures
- 9.215 'PERROR' -- Print system error message
- ============================================
- _Description_:
- Prints (on the C 'stderr' stream) a newline-terminated error
- message corresponding to the last system error. This is prefixed
- by STRING, a colon and a space. See 'perror(3)'.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL PERROR(STRING)'
- _Arguments_:
- STRING A scalar of type 'CHARACTER' and of the default
- kind.
- _See also_:
- *note IERRNO::
- File: gfortran.info, Node: POPCNT, Next: POPPAR, Prev: PERROR, Up: Intrinsic Procedures
- 9.216 'POPCNT' -- Number of bits set
- ====================================
- _Description_:
- 'POPCNT(I)' returns the number of bits set ('1' bits) in the binary
- representation of 'I'.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = POPCNT(I)'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _Example_:
- program test_population
- print *, popcnt(127), poppar(127)
- print *, popcnt(huge(0_4)), poppar(huge(0_4))
- print *, popcnt(huge(0_8)), poppar(huge(0_8))
- end program test_population
- _See also_:
- *note POPPAR::, *note LEADZ::, *note TRAILZ::
- File: gfortran.info, Node: POPPAR, Next: PRECISION, Prev: POPCNT, Up: Intrinsic Procedures
- 9.217 'POPPAR' -- Parity of the number of bits set
- ==================================================
- _Description_:
- 'POPPAR(I)' returns parity of the integer 'I', i.e. the parity of
- the number of bits set ('1' bits) in the binary representation of
- 'I'. It is equal to 0 if 'I' has an even number of bits set, and 1
- for an odd number of '1' bits.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = POPPAR(I)'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _Example_:
- program test_population
- print *, popcnt(127), poppar(127)
- print *, popcnt(huge(0_4)), poppar(huge(0_4))
- print *, popcnt(huge(0_8)), poppar(huge(0_8))
- end program test_population
- _See also_:
- *note POPCNT::, *note LEADZ::, *note TRAILZ::
- File: gfortran.info, Node: PRECISION, Next: PRESENT, Prev: POPPAR, Up: Intrinsic Procedures
- 9.218 'PRECISION' -- Decimal precision of a real kind
- =====================================================
- _Description_:
- 'PRECISION(X)' returns the decimal precision in the model of the
- type of 'X'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = PRECISION(X)'
- _Arguments_:
- X Shall be of type 'REAL' or 'COMPLEX'. It may be
- scalar or valued.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _Example_:
- program prec_and_range
- real(kind=4) :: x(2)
- complex(kind=8) :: y
- print *, precision(x), range(x)
- print *, precision(y), range(y)
- end program prec_and_range
- _See also_:
- *note SELECTED_REAL_KIND::, *note RANGE::
- File: gfortran.info, Node: PRESENT, Next: PRODUCT, Prev: PRECISION, Up: Intrinsic Procedures
- 9.219 'PRESENT' -- Determine whether an optional dummy argument is specified
- ============================================================================
- _Description_:
- Determines whether an optional dummy argument is present.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = PRESENT(A)'
- _Arguments_:
- A May be of any type and may be a pointer, scalar
- or array value, or a dummy procedure. It shall
- be the name of an optional dummy argument
- accessible within the current subroutine or
- function.
- _Return value_:
- Returns either 'TRUE' if the optional argument A is present, or
- 'FALSE' otherwise.
- _Example_:
- PROGRAM test_present
- WRITE(*,*) f(), f(42) ! "F T"
- CONTAINS
- LOGICAL FUNCTION f(x)
- INTEGER, INTENT(IN), OPTIONAL :: x
- f = PRESENT(x)
- END FUNCTION
- END PROGRAM
- File: gfortran.info, Node: PRODUCT, Next: RADIX, Prev: PRESENT, Up: Intrinsic Procedures
- 9.220 'PRODUCT' -- Product of array elements
- ============================================
- _Description_:
- Multiplies the elements of ARRAY along dimension DIM if the
- corresponding element in MASK is 'TRUE'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = PRODUCT(ARRAY[, MASK])'
- 'RESULT = PRODUCT(ARRAY, DIM[, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER', 'REAL' or
- 'COMPLEX'.
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the product of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_product
- INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
- print *, PRODUCT(x) ! all elements, product = 120
- print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product = 15
- END PROGRAM
- _See also_:
- *note SUM::
- File: gfortran.info, Node: RADIX, Next: RAN, Prev: PRODUCT, Up: Intrinsic Procedures
- 9.221 'RADIX' -- Base of a model number
- =======================================
- _Description_:
- 'RADIX(X)' returns the base of the model representing the entity X.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = RADIX(X)'
- _Arguments_:
- X Shall be of type 'INTEGER' or 'REAL'
- _Return value_:
- The return value is a scalar of type 'INTEGER' and of the default
- integer kind.
- _Example_:
- program test_radix
- print *, "The radix for the default integer kind is", radix(0)
- print *, "The radix for the default real kind is", radix(0.0)
- end program test_radix
- _See also_:
- *note SELECTED_REAL_KIND::
- File: gfortran.info, Node: RAN, Next: RAND, Prev: RADIX, Up: Intrinsic Procedures
- 9.222 'RAN' -- Real pseudo-random number
- ========================================
- _Description_:
- For compatibility with HP FORTRAN 77/iX, the 'RAN' intrinsic is
- provided as an alias for 'RAND'. See *note RAND:: for complete
- documentation.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _See also_:
- *note RAND::, *note RANDOM_NUMBER::
- File: gfortran.info, Node: RAND, Next: RANDOM_INIT, Prev: RAN, Up: Intrinsic Procedures
- 9.223 'RAND' -- Real pseudo-random number
- =========================================
- _Description_:
- 'RAND(FLAG)' returns a pseudo-random number from a uniform
- distribution between 0 and 1. If FLAG is 0, the next number in the
- current sequence is returned; if FLAG is 1, the generator is
- restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is
- used as a new seed with 'SRAND'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. It implements a simple modulo generator as
- provided by 'g77'. For new code, one should consider the use of
- *note RANDOM_NUMBER:: as it implements a superior algorithm.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = RAND(I)'
- _Arguments_:
- I Shall be a scalar 'INTEGER' of kind 4.
- _Return value_:
- The return value is of 'REAL' type and the default kind.
- _Example_:
- program test_rand
- integer,parameter :: seed = 86456
- call srand(seed)
- print *, rand(), rand(), rand(), rand()
- print *, rand(seed), rand(), rand(), rand()
- end program test_rand
- _See also_:
- *note SRAND::, *note RANDOM_NUMBER::
- File: gfortran.info, Node: RANDOM_INIT, Next: RANDOM_NUMBER, Prev: RAND, Up: Intrinsic Procedures
- 9.224 'RANDOM_INIT' -- Initialize a pseudo-random number generator
- ==================================================================
- _Description_:
- Initializes the state of the pseudorandom number generator used by
- 'RANDOM_NUMBER'.
- _Standard_:
- Fortran 2018
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL RANDOM_INIT(REPEATABLE, IMAGE_DISTINCT)'
- _Arguments_:
- REPEATABLE Shall be a scalar with a 'LOGICAL' type, and it
- is 'INTENT(IN)'. If it is '.true.', the seed is
- set to a processor-dependent value that is the
- same each time 'RANDOM_INIT' is called from the
- same image. The term "same image" means a
- single instance of program execution. The
- sequence of random numbers is different for
- repeated execution of the program. If it is
- '.false.', the seed is set to a
- processor-dependent value.
- IMAGE_DISTINCT Shall be a scalar with a 'LOGICAL' type, and it
- is 'INTENT(IN)'. If it is '.true.', the seed is
- set to a processor-dependent value that is
- distinct from th seed set by a call to
- 'RANDOM_INIT' in another image. If it is
- '.false.', the seed is set value that does
- depend which image called 'RANDOM_INIT'.
- _Example_:
- program test_random_seed
- implicit none
- real x(3), y(3)
- call random_init(.true., .true.)
- call random_number(x)
- call random_init(.true., .true.)
- call random_number(y)
- ! x and y are the same sequence
- if (any(x /= y)) call abort
- end program test_random_seed
- _See also_:
- *note RANDOM_NUMBER::, *note RANDOM_SEED::
- File: gfortran.info, Node: RANDOM_NUMBER, Next: RANDOM_SEED, Prev: RANDOM_INIT, Up: Intrinsic Procedures
- 9.225 'RANDOM_NUMBER' -- Pseudo-random number
- =============================================
- _Description_:
- Returns a single pseudorandom number or an array of pseudorandom
- numbers from the uniform distribution over the range 0 \leq x < 1.
- The runtime-library implements the xoshiro256** pseudorandom number
- generator (PRNG). This generator has a period of 2^{256} - 1, and
- when using multiple threads up to 2^{128} threads can each generate
- 2^{128} random numbers before any aliasing occurs.
- Note that in a multi-threaded program (e.g. using OpenMP
- directives), each thread will have its own random number state.
- For details of the seeding procedure, see the documentation for the
- 'RANDOM_SEED' intrinsic.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'RANDOM_NUMBER(HARVEST)'
- _Arguments_:
- HARVEST Shall be a scalar or an array of type 'REAL'.
- _Example_:
- program test_random_number
- REAL :: r(5,5)
- CALL RANDOM_NUMBER(r)
- end program
- _See also_:
- *note RANDOM_SEED::, *note RANDOM_INIT::
- File: gfortran.info, Node: RANDOM_SEED, Next: RANGE, Prev: RANDOM_NUMBER, Up: Intrinsic Procedures
- 9.226 'RANDOM_SEED' -- Initialize a pseudo-random number sequence
- =================================================================
- _Description_:
- Restarts or queries the state of the pseudorandom number generator
- used by 'RANDOM_NUMBER'.
- If 'RANDOM_SEED' is called without arguments, it is seeded with
- random data retrieved from the operating system.
- As an extension to the Fortran standard, the GFortran
- 'RANDOM_NUMBER' supports multiple threads. Each thread in a
- multi-threaded program has its own seed. When 'RANDOM_SEED' is
- called either without arguments or with the PUT argument, the given
- seed is copied into a master seed as well as the seed of the
- current thread. When a new thread uses 'RANDOM_NUMBER' for the
- first time, the seed is copied from the master seed, and forwarded
- N * 2^{128} steps to guarantee that the random stream does not
- alias any other stream in the system, where N is the number of
- threads that have used 'RANDOM_NUMBER' so far during the program
- execution.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL RANDOM_SEED([SIZE, PUT, GET])'
- _Arguments_:
- SIZE (Optional) Shall be a scalar and of type default
- 'INTEGER', with 'INTENT(OUT)'. It specifies the
- minimum size of the arrays used with the PUT and
- GET arguments.
- PUT (Optional) Shall be an array of type default
- 'INTEGER' and rank one. It is 'INTENT(IN)' and
- the size of the array must be larger than or
- equal to the number returned by the SIZE
- argument.
- GET (Optional) Shall be an array of type default
- 'INTEGER' and rank one. It is 'INTENT(OUT)' and
- the size of the array must be larger than or
- equal to the number returned by the SIZE
- argument.
- _Example_:
- program test_random_seed
- implicit none
- integer, allocatable :: seed(:)
- integer :: n
- call random_seed(size = n)
- allocate(seed(n))
- call random_seed(get=seed)
- write (*, *) seed
- end program test_random_seed
- _See also_:
- *note RANDOM_NUMBER::, *note RANDOM_INIT::
- File: gfortran.info, Node: RANGE, Next: RANK, Prev: RANDOM_SEED, Up: Intrinsic Procedures
- 9.227 'RANGE' -- Decimal exponent range
- =======================================
- _Description_:
- 'RANGE(X)' returns the decimal exponent range in the model of the
- type of 'X'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = RANGE(X)'
- _Arguments_:
- X Shall be of type 'INTEGER', 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _Example_:
- See 'PRECISION' for an example.
- _See also_:
- *note SELECTED_REAL_KIND::, *note PRECISION::
- File: gfortran.info, Node: RANK, Next: REAL, Prev: RANGE, Up: Intrinsic Procedures
- 9.228 'RANK' -- Rank of a data object
- =====================================
- _Description_:
- 'RANK(A)' returns the rank of a scalar or array data object.
- _Standard_:
- Technical Specification (TS) 29113
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = RANK(A)'
- _Arguments_:
- A can be of any type
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind. For arrays, their rank is returned; for scalars zero is
- returned.
- _Example_:
- program test_rank
- integer :: a
- real, allocatable :: b(:,:)
- print *, rank(a), rank(b) ! Prints: 0 2
- end program test_rank
- File: gfortran.info, Node: REAL, Next: RENAME, Prev: RANK, Up: Intrinsic Procedures
- 9.229 'REAL' -- Convert to real type
- ====================================
- _Description_:
- 'REAL(A [, KIND])' converts its argument A to a real type. The
- 'REALPART' function is provided for compatibility with 'g77', and
- its use is strongly discouraged.
- _Standard_:
- Fortran 77 and later, with KIND argument Fortran 90 and later, has
- GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = REAL(A [, KIND])'
- 'RESULT = REALPART(Z)'
- _Arguments_:
- A Shall be 'INTEGER', 'REAL', or 'COMPLEX'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- These functions return a 'REAL' variable or array under the
- following rules:
- (A)
- 'REAL(A)' is converted to a default real type if A is an
- integer or real variable.
- (B)
- 'REAL(A)' is converted to a real type with the kind type
- parameter of A if A is a complex variable.
- (C)
- 'REAL(A, KIND)' is converted to a real type with kind type
- parameter KIND if A is a complex, integer, or real variable.
- _Example_:
- program test_real
- complex :: x = (1.0, 2.0)
- print *, real(x), real(x,8), realpart(x)
- end program test_real
- _Specific names_:
- Name Argument Return type Standard
- 'FLOAT(A)' 'INTEGER(4)' 'REAL(4)' GNU extension
- 'DFLOAT(A)' 'INTEGER(4)' 'REAL(8)' GNU extension
- 'FLOATI(A)' 'INTEGER(2)' 'REAL(4)' GNU extension
- 'FLOATJ(A)' 'INTEGER(4)' 'REAL(4)' GNU extension
- 'FLOATK(A)' 'INTEGER(8)' 'REAL(4)' GNU extension
- 'SNGL(A)' 'INTEGER(8)' 'REAL(4)' GNU extension
- _See also_:
- *note DBLE::
- File: gfortran.info, Node: RENAME, Next: REPEAT, Prev: REAL, Up: Intrinsic Procedures
- 9.230 'RENAME' -- Rename a file
- ===============================
- _Description_:
- Renames a file from file PATH1 to PATH2. A null character
- ('CHAR(0)') can be used to mark the end of the names in PATH1 and
- PATH2; otherwise, trailing blanks in the file names are ignored.
- If the STATUS argument is supplied, it contains 0 on success or a
- nonzero error code upon return; see 'rename(2)'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL RENAME(PATH1, PATH2 [, STATUS])'
- 'STATUS = RENAME(PATH1, PATH2)'
- _Arguments_:
- PATH1 Shall be of default 'CHARACTER' type.
- PATH2 Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
- _See also_:
- *note LINK::
- File: gfortran.info, Node: REPEAT, Next: RESHAPE, Prev: RENAME, Up: Intrinsic Procedures
- 9.231 'REPEAT' -- Repeated string concatenation
- ===============================================
- _Description_:
- Concatenates NCOPIES copies of a string.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = REPEAT(STRING, NCOPIES)'
- _Arguments_:
- STRING Shall be scalar and of type 'CHARACTER'.
- NCOPIES Shall be scalar and of type 'INTEGER'.
- _Return value_:
- A new scalar of type 'CHARACTER' built up from NCOPIES copies of
- STRING.
- _Example_:
- program test_repeat
- write(*,*) repeat("x", 5) ! "xxxxx"
- end program
- File: gfortran.info, Node: RESHAPE, Next: RRSPACING, Prev: REPEAT, Up: Intrinsic Procedures
- 9.232 'RESHAPE' -- Function to reshape an array
- ===============================================
- _Description_:
- Reshapes SOURCE to correspond to SHAPE. If necessary, the new
- array may be padded with elements from PAD or permuted as defined
- by ORDER.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])'
- _Arguments_:
- SOURCE Shall be an array of any type.
- SHAPE Shall be of type 'INTEGER' and an array of rank
- one. Its values must be positive or zero.
- PAD (Optional) shall be an array of the same type as
- SOURCE.
- ORDER (Optional) shall be of type 'INTEGER' and an
- array of the same shape as SHAPE. Its values
- shall be a permutation of the numbers from 1 to
- n, where n is the size of SHAPE. If ORDER is
- absent, the natural ordering shall be assumed.
- _Return value_:
- The result is an array of shape SHAPE with the same type as SOURCE.
- _Example_:
- PROGRAM test_reshape
- INTEGER, DIMENSION(4) :: x
- WRITE(*,*) SHAPE(x) ! prints "4"
- WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/))) ! prints "2 2"
- END PROGRAM
- _See also_:
- *note SHAPE::
- File: gfortran.info, Node: RRSPACING, Next: RSHIFT, Prev: RESHAPE, Up: Intrinsic Procedures
- 9.233 'RRSPACING' -- Reciprocal of the relative spacing
- =======================================================
- _Description_:
- 'RRSPACING(X)' returns the reciprocal of the relative spacing of
- model numbers near X.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = RRSPACING(X)'
- _Arguments_:
- X Shall be of type 'REAL'.
- _Return value_:
- The return value is of the same type and kind as X. The value
- returned is equal to 'ABS(FRACTION(X)) *
- FLOAT(RADIX(X))**DIGITS(X)'.
- _See also_:
- *note SPACING::
- File: gfortran.info, Node: RSHIFT, Next: SAME_TYPE_AS, Prev: RRSPACING, Up: Intrinsic Procedures
- 9.234 'RSHIFT' -- Right shift bits
- ==================================
- _Description_:
- 'RSHIFT' returns a value corresponding to I with all of the bits
- shifted right by SHIFT places. SHIFT shall be nonnegative and less
- than or equal to 'BIT_SIZE(I)', otherwise the result value is
- undefined. Bits shifted out from the right end are lost. The fill
- is arithmetic: the bits shifted in from the left end are equal to
- the leftmost bit, which in two's complement representation is the
- sign bit.
- This function has been superseded by the 'SHIFTA' intrinsic, which
- is standard in Fortran 2008 and later.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = RSHIFT(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _See also_:
- *note ISHFT::, *note ISHFTC::, *note LSHIFT::, *note SHIFTA::,
- *note SHIFTR::, *note SHIFTL::
- File: gfortran.info, Node: SAME_TYPE_AS, Next: SCALE, Prev: RSHIFT, Up: Intrinsic Procedures
- 9.235 'SAME_TYPE_AS' -- Query dynamic types for equality
- ========================================================
- _Description_:
- Query dynamic types for equality.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = SAME_TYPE_AS(A, B)'
- _Arguments_:
- A Shall be an object of extensible declared type
- or unlimited polymorphic.
- B Shall be an object of extensible declared type
- or unlimited polymorphic.
- _Return value_:
- The return value is a scalar of type default logical. It is true
- if and only if the dynamic type of A is the same as the dynamic
- type of B.
- _See also_:
- *note EXTENDS_TYPE_OF::
- File: gfortran.info, Node: SCALE, Next: SCAN, Prev: SAME_TYPE_AS, Up: Intrinsic Procedures
- 9.236 'SCALE' -- Scale a real value
- ===================================
- _Description_:
- 'SCALE(X,I)' returns 'X * RADIX(X)**I'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SCALE(X, I)'
- _Arguments_:
- X The type of the argument shall be a 'REAL'.
- I The type of the argument shall be a 'INTEGER'.
- _Return value_:
- The return value is of the same type and kind as X. Its value is
- 'X * RADIX(X)**I'.
- _Example_:
- program test_scale
- real :: x = 178.1387e-4
- integer :: i = 5
- print *, scale(x,i), x*radix(x)**i
- end program test_scale
- File: gfortran.info, Node: SCAN, Next: SECNDS, Prev: SCALE, Up: Intrinsic Procedures
- 9.237 'SCAN' -- Scan a string for the presence of a set of characters
- =====================================================================
- _Description_:
- Scans a STRING for any of the characters in a SET of characters.
- If BACK is either absent or equals 'FALSE', this function returns
- the position of the leftmost character of STRING that is in SET.
- If BACK equals 'TRUE', the rightmost position is returned. If no
- character of SET is found in STRING, the result is zero.
- _Standard_:
- Fortran 90 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SCAN(STRING, SET[, BACK [, KIND]])'
- _Arguments_:
- STRING Shall be of type 'CHARACTER'.
- SET Shall be of type 'CHARACTER'.
- BACK (Optional) shall be of type 'LOGICAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Example_:
- PROGRAM test_scan
- WRITE(*,*) SCAN("FORTRAN", "AO") ! 2, found 'O'
- WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.) ! 6, found 'A'
- WRITE(*,*) SCAN("FORTRAN", "C++") ! 0, found none
- END PROGRAM
- _See also_:
- *note INDEX intrinsic::, *note VERIFY::
- File: gfortran.info, Node: SECNDS, Next: SECOND, Prev: SCAN, Up: Intrinsic Procedures
- 9.238 'SECNDS' -- Time function
- ===============================
- _Description_:
- 'SECNDS(X)' gets the time in seconds from the real-time system
- clock. X is a reference time, also in seconds. If this is zero,
- the time in seconds from midnight is returned. This function is
- non-standard and its use is discouraged.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = SECNDS (X)'
- _Arguments_:
- T Shall be of type 'REAL(4)'.
- X Shall be of type 'REAL(4)'.
- _Return value_:
- None
- _Example_:
- program test_secnds
- integer :: i
- real(4) :: t1, t2
- print *, secnds (0.0) ! seconds since midnight
- t1 = secnds (0.0) ! reference time
- do i = 1, 10000000 ! do something
- end do
- t2 = secnds (t1) ! elapsed time
- print *, "Something took ", t2, " seconds."
- end program test_secnds
- File: gfortran.info, Node: SECOND, Next: SELECTED_CHAR_KIND, Prev: SECNDS, Up: Intrinsic Procedures
- 9.239 'SECOND' -- CPU time function
- ===================================
- _Description_:
- Returns a 'REAL(4)' value representing the elapsed CPU time in
- seconds. This provides the same functionality as the standard
- 'CPU_TIME' intrinsic, and is only included for backwards
- compatibility.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL SECOND(TIME)'
- 'TIME = SECOND()'
- _Arguments_:
- TIME Shall be of type 'REAL(4)'.
- _Return value_:
- In either syntax, TIME is set to the process's current runtime in
- seconds.
- _See also_:
- *note CPU_TIME::
- File: gfortran.info, Node: SELECTED_CHAR_KIND, Next: SELECTED_INT_KIND, Prev: SECOND, Up: Intrinsic Procedures
- 9.240 'SELECTED_CHAR_KIND' -- Choose character kind
- ===================================================
- _Description_:
- 'SELECTED_CHAR_KIND(NAME)' returns the kind value for the character
- set named NAME, if a character set with such a name is supported,
- or -1 otherwise. Currently, supported character sets include
- "ASCII" and "DEFAULT", which are equivalent, and "ISO_10646"
- (Universal Character Set, UCS-4) which is commonly known as
- Unicode.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = SELECTED_CHAR_KIND(NAME)'
- _Arguments_:
- NAME Shall be a scalar and of the default character
- type.
- _Example_:
- program character_kind
- use iso_fortran_env
- implicit none
- integer, parameter :: ascii = selected_char_kind ("ascii")
- integer, parameter :: ucs4 = selected_char_kind ('ISO_10646')
- character(kind=ascii, len=26) :: alphabet
- character(kind=ucs4, len=30) :: hello_world
- alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
- hello_world = ucs4_'Hello World and Ni Hao -- ' &
- // char (int (z'4F60'), ucs4) &
- // char (int (z'597D'), ucs4)
- write (*,*) alphabet
- open (output_unit, encoding='UTF-8')
- write (*,*) trim (hello_world)
- end program character_kind
- File: gfortran.info, Node: SELECTED_INT_KIND, Next: SELECTED_REAL_KIND, Prev: SELECTED_CHAR_KIND, Up: Intrinsic Procedures
- 9.241 'SELECTED_INT_KIND' -- Choose integer kind
- ================================================
- _Description_:
- 'SELECTED_INT_KIND(R)' return the kind value of the smallest
- integer type that can represent all values ranging from -10^R
- (exclusive) to 10^R (exclusive). If there is no integer kind that
- accommodates this range, 'SELECTED_INT_KIND' returns -1.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = SELECTED_INT_KIND(R)'
- _Arguments_:
- R Shall be a scalar and of type 'INTEGER'.
- _Example_:
- program large_integers
- integer,parameter :: k5 = selected_int_kind(5)
- integer,parameter :: k15 = selected_int_kind(15)
- integer(kind=k5) :: i5
- integer(kind=k15) :: i15
- print *, huge(i5), huge(i15)
- ! The following inequalities are always true
- print *, huge(i5) >= 10_k5**5-1
- print *, huge(i15) >= 10_k15**15-1
- end program large_integers
- File: gfortran.info, Node: SELECTED_REAL_KIND, Next: SET_EXPONENT, Prev: SELECTED_INT_KIND, Up: Intrinsic Procedures
- 9.242 'SELECTED_REAL_KIND' -- Choose real kind
- ==============================================
- _Description_:
- 'SELECTED_REAL_KIND(P,R)' returns the kind value of a real data
- type with decimal precision of at least 'P' digits, exponent range
- of at least 'R', and with a radix of 'RADIX'.
- _Standard_:
- Fortran 90 and later, with 'RADIX' Fortran 2008 or later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = SELECTED_REAL_KIND([P, R, RADIX])'
- _Arguments_:
- P (Optional) shall be a scalar and of type
- 'INTEGER'.
- R (Optional) shall be a scalar and of type
- 'INTEGER'.
- RADIX (Optional) shall be a scalar and of type
- 'INTEGER'.
- Before Fortran 2008, at least one of the arguments R or P shall be
- present; since Fortran 2008, they are assumed to be zero if absent.
- _Return value_:
- 'SELECTED_REAL_KIND' returns the value of the kind type parameter
- of a real data type with decimal precision of at least 'P' digits,
- a decimal exponent range of at least 'R', and with the requested
- 'RADIX'. If the 'RADIX' parameter is absent, real kinds with any
- radix can be returned. If more than one real data type meet the
- criteria, the kind of the data type with the smallest decimal
- precision is returned. If no real data type matches the criteria,
- the result is
- -1 if the processor does not support a real data type with a
- precision greater than or equal to 'P', but the 'R' and
- 'RADIX' requirements can be fulfilled
- -2 if the processor does not support a real type with an exponent
- range greater than or equal to 'R', but 'P' and 'RADIX' are
- fulfillable
- -3 if 'RADIX' but not 'P' and 'R' requirements
- are fulfillable
- -4 if 'RADIX' and either 'P' or 'R' requirements
- are fulfillable
- -5 if there is no real type with the given 'RADIX'
- _Example_:
- program real_kinds
- integer,parameter :: p6 = selected_real_kind(6)
- integer,parameter :: p10r100 = selected_real_kind(10,100)
- integer,parameter :: r400 = selected_real_kind(r=400)
- real(kind=p6) :: x
- real(kind=p10r100) :: y
- real(kind=r400) :: z
- print *, precision(x), range(x)
- print *, precision(y), range(y)
- print *, precision(z), range(z)
- end program real_kinds
- _See also_:
- *note PRECISION::, *note RANGE::, *note RADIX::
- File: gfortran.info, Node: SET_EXPONENT, Next: SHAPE, Prev: SELECTED_REAL_KIND, Up: Intrinsic Procedures
- 9.243 'SET_EXPONENT' -- Set the exponent of the model
- =====================================================
- _Description_:
- 'SET_EXPONENT(X, I)' returns the real number whose fractional part
- is that that of X and whose exponent part is I.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SET_EXPONENT(X, I)'
- _Arguments_:
- X Shall be of type 'REAL'.
- I Shall be of type 'INTEGER'.
- _Return value_:
- The return value is of the same type and kind as X. The real
- number whose fractional part is that that of X and whose exponent
- part if I is returned; it is 'FRACTION(X) * RADIX(X)**I'.
- _Example_:
- PROGRAM test_setexp
- REAL :: x = 178.1387e-4
- INTEGER :: i = 17
- PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
- END PROGRAM
- File: gfortran.info, Node: SHAPE, Next: SHIFTA, Prev: SET_EXPONENT, Up: Intrinsic Procedures
- 9.244 'SHAPE' -- Determine the shape of an array
- ================================================
- _Description_:
- Determines the shape of an array.
- _Standard_:
- Fortran 90 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = SHAPE(SOURCE [, KIND])'
- _Arguments_:
- SOURCE Shall be an array or scalar of any type. If
- SOURCE is a pointer it must be associated and
- allocatable arrays must be allocated.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- An 'INTEGER' array of rank one with as many elements as SOURCE has
- dimensions. The elements of the resulting array correspond to the
- extend of SOURCE along the respective dimensions. If SOURCE is a
- scalar, the result is the rank one array of size zero. If KIND is
- absent, the return value has the default integer kind otherwise the
- specified kind.
- _Example_:
- PROGRAM test_shape
- INTEGER, DIMENSION(-1:1, -1:2) :: A
- WRITE(*,*) SHAPE(A) ! (/ 3, 4 /)
- WRITE(*,*) SIZE(SHAPE(42)) ! (/ /)
- END PROGRAM
- _See also_:
- *note RESHAPE::, *note SIZE::
- File: gfortran.info, Node: SHIFTA, Next: SHIFTL, Prev: SHAPE, Up: Intrinsic Procedures
- 9.245 'SHIFTA' -- Right shift with fill
- =======================================
- _Description_:
- 'SHIFTA' returns a value corresponding to I with all of the bits
- shifted right by SHIFT places. SHIFT that be nonnegative and less
- than or equal to 'BIT_SIZE(I)', otherwise the result value is
- undefined. Bits shifted out from the right end are lost. The fill
- is arithmetic: the bits shifted in from the left end are equal to
- the leftmost bit, which in two's complement representation is the
- sign bit.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SHIFTA(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _See also_:
- *note SHIFTL::, *note SHIFTR::
- File: gfortran.info, Node: SHIFTL, Next: SHIFTR, Prev: SHIFTA, Up: Intrinsic Procedures
- 9.246 'SHIFTL' -- Left shift
- ============================
- _Description_:
- 'SHIFTL' returns a value corresponding to I with all of the bits
- shifted left by SHIFT places. SHIFT shall be nonnegative and less
- than or equal to 'BIT_SIZE(I)', otherwise the result value is
- undefined. Bits shifted out from the left end are lost, and bits
- shifted in from the right end are set to 0.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SHIFTL(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _See also_:
- *note SHIFTA::, *note SHIFTR::
- File: gfortran.info, Node: SHIFTR, Next: SIGN, Prev: SHIFTL, Up: Intrinsic Procedures
- 9.247 'SHIFTR' -- Right shift
- =============================
- _Description_:
- 'SHIFTR' returns a value corresponding to I with all of the bits
- shifted right by SHIFT places. SHIFT shall be nonnegative and less
- than or equal to 'BIT_SIZE(I)', otherwise the result value is
- undefined. Bits shifted out from the right end are lost, and bits
- shifted in from the left end are set to 0.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SHIFTR(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _See also_:
- *note SHIFTA::, *note SHIFTL::
- File: gfortran.info, Node: SIGN, Next: SIGNAL, Prev: SHIFTR, Up: Intrinsic Procedures
- 9.248 'SIGN' -- Sign copying function
- =====================================
- _Description_:
- 'SIGN(A,B)' returns the value of A with the sign of B.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SIGN(A, B)'
- _Arguments_:
- A Shall be of type 'INTEGER' or 'REAL'
- B Shall be of the same type and kind as A.
- _Return value_:
- The kind of the return value is that of A and B. If B\ge 0 then
- the result is 'ABS(A)', else it is '-ABS(A)'.
- _Example_:
- program test_sign
- print *, sign(-12,1)
- print *, sign(-12,0)
- print *, sign(-12,-1)
- print *, sign(-12.,1.)
- print *, sign(-12.,0.)
- print *, sign(-12.,-1.)
- end program test_sign
- _Specific names_:
- Name Arguments Return type Standard
- 'SIGN(A,B)' 'REAL(4) A, 'REAL(4)' Fortran 77 and
- B' later
- 'ISIGN(A,B)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- A, B' later
- 'DSIGN(A,B)' 'REAL(8) A, 'REAL(8)' Fortran 77 and
- B' later
- File: gfortran.info, Node: SIGNAL, Next: SIN, Prev: SIGN, Up: Intrinsic Procedures
- 9.249 'SIGNAL' -- Signal handling subroutine (or function)
- ==========================================================
- _Description_:
- 'SIGNAL(NUMBER, HANDLER [, STATUS])' causes external subroutine
- HANDLER to be executed with a single integer argument when signal
- NUMBER occurs. If HANDLER is an integer, it can be used to turn
- off handling of signal NUMBER or revert to its default action. See
- 'signal(2)'.
- If 'SIGNAL' is called as a subroutine and the STATUS argument is
- supplied, it is set to the value returned by 'signal(2)'.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL SIGNAL(NUMBER, HANDLER [, STATUS])'
- 'STATUS = SIGNAL(NUMBER, HANDLER)'
- _Arguments_:
- NUMBER Shall be a scalar integer, with 'INTENT(IN)'
- HANDLER Signal handler ('INTEGER FUNCTION' or
- 'SUBROUTINE') or dummy/global 'INTEGER' scalar.
- 'INTEGER'. It is 'INTENT(IN)'.
- STATUS (Optional) STATUS shall be a scalar integer. It
- has 'INTENT(OUT)'.
- _Return value_:
- The 'SIGNAL' function returns the value returned by 'signal(2)'.
- _Example_:
- program test_signal
- intrinsic signal
- external handler_print
- call signal (12, handler_print)
- call signal (10, 1)
- call sleep (30)
- end program test_signal
- File: gfortran.info, Node: SIN, Next: SIND, Prev: SIGNAL, Up: Intrinsic Procedures
- 9.250 'SIN' -- Sine function
- ============================
- _Description_:
- 'SIN(X)' computes the sine of X.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SIN(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X.
- _Example_:
- program test_sin
- real :: x = 0.0
- x = sin(x)
- end program test_sin
- _Specific names_:
- Name Argument Return type Standard
- 'SIN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DSIN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- 'CSIN(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and
- X' later
- 'ZSIN(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDSIN(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- _See also_:
- Inverse function: *note ASIN:: Degrees function: *note SIND::
- File: gfortran.info, Node: SIND, Next: SINH, Prev: SIN, Up: Intrinsic Procedures
- 9.251 'SIND' -- Sine function, degrees
- ======================================
- _Description_:
- 'SIND(X)' computes the sine of X in degrees.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SIND(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X, and its value is in
- degrees.
- _Example_:
- program test_sind
- real :: x = 0.0
- x = sind(x)
- end program test_sind
- _Specific names_:
- Name Argument Return type Standard
- 'SIND(X)' 'REAL(4) X' 'REAL(4)' GNU extension
- 'DSIND(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- 'CSIND(X)' 'COMPLEX(4) 'COMPLEX(4)' GNU extension
- X'
- 'ZSIND(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDSIND(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- _See also_:
- Inverse function: *note ASIND:: Radians function: *note SIN::
- File: gfortran.info, Node: SINH, Next: SIZE, Prev: SIND, Up: Intrinsic Procedures
- 9.252 'SINH' -- Hyperbolic sine function
- ========================================
- _Description_:
- 'SINH(X)' computes the hyperbolic sine of X.
- _Standard_:
- Fortran 90 and later, for a complex argument Fortran 2008 or later,
- has a GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SINH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X.
- _Example_:
- program test_sinh
- real(8) :: x = - 1.0_8
- x = sinh(x)
- end program test_sinh
- _Specific names_:
- Name Argument Return type Standard
- 'DSINH(X)' 'REAL(8) X' 'REAL(8)' Fortran 90 and
- later
- _See also_:
- *note ASINH::
- File: gfortran.info, Node: SIZE, Next: SIZEOF, Prev: SINH, Up: Intrinsic Procedures
- 9.253 'SIZE' -- Determine the size of an array
- ==============================================
- _Description_:
- Determine the extent of ARRAY along a specified dimension DIM, or
- the total number of elements in ARRAY if DIM is absent.
- _Standard_:
- Fortran 90 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = SIZE(ARRAY[, DIM [, KIND]])'
- _Arguments_:
- ARRAY Shall be an array of any type. If ARRAY is a
- pointer it must be associated and allocatable
- arrays must be allocated.
- DIM (Optional) shall be a scalar of type 'INTEGER'
- and its value shall be in the range from 1 to n,
- where n equals the rank of ARRAY.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Example_:
- PROGRAM test_size
- WRITE(*,*) SIZE((/ 1, 2 /)) ! 2
- END PROGRAM
- _See also_:
- *note SHAPE::, *note RESHAPE::
- File: gfortran.info, Node: SIZEOF, Next: SLEEP, Prev: SIZE, Up: Intrinsic Procedures
- 9.254 'SIZEOF' -- Size in bytes of an expression
- ================================================
- _Description_:
- 'SIZEOF(X)' calculates the number of bytes of storage the
- expression 'X' occupies.
- _Standard_:
- GNU extension
- _Class_:
- Inquiry function
- _Syntax_:
- 'N = SIZEOF(X)'
- _Arguments_:
- X The argument shall be of any type, rank or
- shape.
- _Return value_:
- The return value is of type integer and of the system-dependent
- kind C_SIZE_T (from the ISO_C_BINDING module). Its value is the
- number of bytes occupied by the argument. If the argument has the
- 'POINTER' attribute, the number of bytes of the storage area
- pointed to is returned. If the argument is of a derived type with
- 'POINTER' or 'ALLOCATABLE' components, the return value does not
- account for the sizes of the data pointed to by these components.
- If the argument is polymorphic, the size according to the dynamic
- type is returned. The argument may not be a procedure or procedure
- pointer. Note that the code assumes for arrays that those are
- contiguous; for contiguous arrays, it returns the storage or an
- array element multiplied by the size of the array.
- _Example_:
- integer :: i
- real :: r, s(5)
- print *, (sizeof(s)/sizeof(r) == 5)
- end
- The example will print '.TRUE.' unless you are using a platform
- where default 'REAL' variables are unusually padded.
- _See also_:
- *note C_SIZEOF::, *note STORAGE_SIZE::
- File: gfortran.info, Node: SLEEP, Next: SPACING, Prev: SIZEOF, Up: Intrinsic Procedures
- 9.255 'SLEEP' -- Sleep for the specified number of seconds
- ==========================================================
- _Description_:
- Calling this subroutine causes the process to pause for SECONDS
- seconds.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL SLEEP(SECONDS)'
- _Arguments_:
- SECONDS The type shall be of default 'INTEGER'.
- _Example_:
- program test_sleep
- call sleep(5)
- end
- File: gfortran.info, Node: SPACING, Next: SPREAD, Prev: SLEEP, Up: Intrinsic Procedures
- 9.256 'SPACING' -- Smallest distance between two numbers of a given type
- ========================================================================
- _Description_:
- Determines the distance between the argument X and the nearest
- adjacent number of the same type.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SPACING(X)'
- _Arguments_:
- X Shall be of type 'REAL'.
- _Return value_:
- The result is of the same type as the input argument X.
- _Example_:
- PROGRAM test_spacing
- INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
- INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
- WRITE(*,*) spacing(1.0_SGL) ! "1.1920929E-07" on i686
- WRITE(*,*) spacing(1.0_DBL) ! "2.220446049250313E-016" on i686
- END PROGRAM
- _See also_:
- *note RRSPACING::
- File: gfortran.info, Node: SPREAD, Next: SQRT, Prev: SPACING, Up: Intrinsic Procedures
- 9.257 'SPREAD' -- Add a dimension to an array
- =============================================
- _Description_:
- Replicates a SOURCE array NCOPIES times along a specified dimension
- DIM.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = SPREAD(SOURCE, DIM, NCOPIES)'
- _Arguments_:
- SOURCE Shall be a scalar or an array of any type and a
- rank less than seven.
- DIM Shall be a scalar of type 'INTEGER' with a value
- in the range from 1 to n+1, where n equals the
- rank of SOURCE.
- NCOPIES Shall be a scalar of type 'INTEGER'.
- _Return value_:
- The result is an array of the same type as SOURCE and has rank n+1
- where n equals the rank of SOURCE.
- _Example_:
- PROGRAM test_spread
- INTEGER :: a = 1, b(2) = (/ 1, 2 /)
- WRITE(*,*) SPREAD(A, 1, 2) ! "1 1"
- WRITE(*,*) SPREAD(B, 1, 2) ! "1 1 2 2"
- END PROGRAM
- _See also_:
- *note UNPACK::
- File: gfortran.info, Node: SQRT, Next: SRAND, Prev: SPREAD, Up: Intrinsic Procedures
- 9.258 'SQRT' -- Square-root function
- ====================================
- _Description_:
- 'SQRT(X)' computes the square root of X.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SQRT(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of type 'REAL' or 'COMPLEX'. The kind type
- parameter is the same as X.
- _Example_:
- program test_sqrt
- real(8) :: x = 2.0_8
- complex :: z = (1.0, 2.0)
- x = sqrt(x)
- z = sqrt(z)
- end program test_sqrt
- _Specific names_:
- Name Argument Return type Standard
- 'SQRT(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DSQRT(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- 'CSQRT(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and
- X' later
- 'ZSQRT(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDSQRT(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- File: gfortran.info, Node: SRAND, Next: STAT, Prev: SQRT, Up: Intrinsic Procedures
- 9.259 'SRAND' -- Reinitialize the random number generator
- =========================================================
- _Description_:
- 'SRAND' reinitializes the pseudo-random number generator called by
- 'RAND' and 'IRAND'. The new seed used by the generator is
- specified by the required argument SEED.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL SRAND(SEED)'
- _Arguments_:
- SEED Shall be a scalar 'INTEGER(kind=4)'.
- _Return value_:
- Does not return anything.
- _Example_:
- See 'RAND' and 'IRAND' for examples.
- _Notes_:
- The Fortran standard specifies the intrinsic subroutines
- 'RANDOM_SEED' to initialize the pseudo-random number generator and
- 'RANDOM_NUMBER' to generate pseudo-random numbers. These
- subroutines should be used in new codes.
- Please note that in GNU Fortran, these two sets of intrinsics
- ('RAND', 'IRAND' and 'SRAND' on the one hand, 'RANDOM_NUMBER' and
- 'RANDOM_SEED' on the other hand) access two independent
- pseudo-random number generators.
- _See also_:
- *note RAND::, *note RANDOM_SEED::, *note RANDOM_NUMBER::
- File: gfortran.info, Node: STAT, Next: STORAGE_SIZE, Prev: SRAND, Up: Intrinsic Procedures
- 9.260 'STAT' -- Get file status
- ===============================
- _Description_:
- This function returns information about a file. No permissions are
- required on the file itself, but execute (search) permission is
- required on all of the directories in path that lead to the file.
- The elements that are obtained and stored in the array 'VALUES':
- 'VALUES(1)' Device ID
- 'VALUES(2)' Inode number
- 'VALUES(3)' File mode
- 'VALUES(4)' Number of links
- 'VALUES(5)' Owner's uid
- 'VALUES(6)' Owner's gid
- 'VALUES(7)' ID of device containing directory entry for file
- (0 if not available)
- 'VALUES(8)' File size (bytes)
- 'VALUES(9)' Last access time
- 'VALUES(10)'Last modification time
- 'VALUES(11)'Last file status change time
- 'VALUES(12)'Preferred I/O block size (-1 if not available)
- 'VALUES(13)'Number of blocks allocated (-1 if not available)
- Not all these elements are relevant on all systems. If an element
- is not relevant, it is returned as 0.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL STAT(NAME, VALUES [, STATUS])'
- 'STATUS = STAT(NAME, VALUES)'
- _Arguments_:
- NAME The type shall be 'CHARACTER', of the default
- kind and a valid path within the file system.
- VALUES The type shall be 'INTEGER(4), DIMENSION(13)'.
- STATUS (Optional) status flag of type 'INTEGER(4)'.
- Returns 0 on success and a system specific error
- code otherwise.
- _Example_:
- PROGRAM test_stat
- INTEGER, DIMENSION(13) :: buff
- INTEGER :: status
- CALL STAT("/etc/passwd", buff, status)
- IF (status == 0) THEN
- WRITE (*, FMT="('Device ID:', T30, I19)") buff(1)
- WRITE (*, FMT="('Inode number:', T30, I19)") buff(2)
- WRITE (*, FMT="('File mode (octal):', T30, O19)") buff(3)
- WRITE (*, FMT="('Number of links:', T30, I19)") buff(4)
- WRITE (*, FMT="('Owner''s uid:', T30, I19)") buff(5)
- WRITE (*, FMT="('Owner''s gid:', T30, I19)") buff(6)
- WRITE (*, FMT="('Device where located:', T30, I19)") buff(7)
- WRITE (*, FMT="('File size:', T30, I19)") buff(8)
- WRITE (*, FMT="('Last access time:', T30, A19)") CTIME(buff(9))
- WRITE (*, FMT="('Last modification time', T30, A19)") CTIME(buff(10))
- WRITE (*, FMT="('Last status change time:', T30, A19)") CTIME(buff(11))
- WRITE (*, FMT="('Preferred block size:', T30, I19)") buff(12)
- WRITE (*, FMT="('No. of blocks allocated:', T30, I19)") buff(13)
- END IF
- END PROGRAM
- _See also_:
- To stat an open file: *note FSTAT:: To stat a link: *note LSTAT::
- File: gfortran.info, Node: STORAGE_SIZE, Next: SUM, Prev: STAT, Up: Intrinsic Procedures
- 9.261 'STORAGE_SIZE' -- Storage size in bits
- ============================================
- _Description_:
- Returns the storage size of argument A in bits.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = STORAGE_SIZE(A [, KIND])'
- _Arguments_:
- A Shall be a scalar or array of any type.
- KIND (Optional) shall be a scalar integer constant
- expression.
- _Return Value_:
- The result is a scalar integer with the kind type parameter
- specified by KIND (or default integer type if KIND is missing).
- The result value is the size expressed in bits for an element of an
- array that has the dynamic type and type parameters of A.
- _See also_:
- *note C_SIZEOF::, *note SIZEOF::
- File: gfortran.info, Node: SUM, Next: SYMLNK, Prev: STORAGE_SIZE, Up: Intrinsic Procedures
- 9.262 'SUM' -- Sum of array elements
- ====================================
- _Description_:
- Adds the elements of ARRAY along dimension DIM if the corresponding
- element in MASK is 'TRUE'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = SUM(ARRAY[, MASK])'
- 'RESULT = SUM(ARRAY, DIM[, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER', 'REAL' or
- 'COMPLEX'.
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the sum of all elements in ARRAY is
- returned. Otherwise, an array of rank n-1, where n equals the rank
- of ARRAY, and a shape similar to that of ARRAY with dimension DIM
- dropped is returned.
- _Example_:
- PROGRAM test_sum
- INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
- print *, SUM(x) ! all elements, sum = 15
- print *, SUM(x, MASK=MOD(x, 2)==1) ! odd elements, sum = 9
- END PROGRAM
- _See also_:
- *note PRODUCT::
- File: gfortran.info, Node: SYMLNK, Next: SYSTEM, Prev: SUM, Up: Intrinsic Procedures
- 9.263 'SYMLNK' -- Create a symbolic link
- ========================================
- _Description_:
- Makes a symbolic link from file PATH1 to PATH2. A null character
- ('CHAR(0)') can be used to mark the end of the names in PATH1 and
- PATH2; otherwise, trailing blanks in the file names are ignored.
- If the STATUS argument is supplied, it contains 0 on success or a
- nonzero error code upon return; see 'symlink(2)'. If the system
- does not supply 'symlink(2)', 'ENOSYS' is returned.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL SYMLNK(PATH1, PATH2 [, STATUS])'
- 'STATUS = SYMLNK(PATH1, PATH2)'
- _Arguments_:
- PATH1 Shall be of default 'CHARACTER' type.
- PATH2 Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
- _See also_:
- *note LINK::, *note UNLINK::
- File: gfortran.info, Node: SYSTEM, Next: SYSTEM_CLOCK, Prev: SYMLNK, Up: Intrinsic Procedures
- 9.264 'SYSTEM' -- Execute a shell command
- =========================================
- _Description_:
- Passes the command COMMAND to a shell (see 'system(3)'). If
- argument STATUS is present, it contains the value returned by
- 'system(3)', which is presumably 0 if the shell command succeeded.
- Note that which shell is used to invoke the command is
- system-dependent and environment-dependent.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- Note that the 'system' function need not be thread-safe. It is the
- responsibility of the user to ensure that 'system' is not called
- concurrently.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL SYSTEM(COMMAND [, STATUS])'
- 'STATUS = SYSTEM(COMMAND)'
- _Arguments_:
- COMMAND Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
- _See also_:
- *note EXECUTE_COMMAND_LINE::, which is part of the Fortran 2008
- standard and should considered in new code for future portability.
- File: gfortran.info, Node: SYSTEM_CLOCK, Next: TAN, Prev: SYSTEM, Up: Intrinsic Procedures
- 9.265 'SYSTEM_CLOCK' -- Time function
- =====================================
- _Description_:
- Determines the COUNT of a processor clock since an unspecified time
- in the past modulo COUNT_MAX, COUNT_RATE determines the number of
- clock ticks per second. If the platform supports a monotonic
- clock, that clock is used and can, depending on the platform clock
- implementation, provide up to nanosecond resolution. If a
- monotonic clock is not available, the implementation falls back to
- a realtime clock.
- COUNT_RATE is system dependent and can vary depending on the kind
- of the arguments. For KIND=4 arguments (and smaller integer
- kinds), COUNT represents milliseconds, while for KIND=8 arguments
- (and larger integer kinds), COUNT typically represents micro- or
- nanoseconds depending on resolution of the underlying platform
- clock. COUNT_MAX usually equals 'HUGE(COUNT_MAX)'. Note that the
- millisecond resolution of the KIND=4 version implies that the COUNT
- will wrap around in roughly 25 days. In order to avoid issues with
- the wrap around and for more precise timing, please use the KIND=8
- version.
- If there is no clock, or querying the clock fails, COUNT is set to
- '-HUGE(COUNT)', and COUNT_RATE and COUNT_MAX are set to zero.
- When running on a platform using the GNU C library (glibc) version
- 2.16 or older, or a derivative thereof, the high resolution
- monotonic clock is available only when linking with the RT library.
- This can be done explicitly by adding the '-lrt' flag when linking
- the application, but is also done implicitly when using OpenMP.
- On the Windows platform, the version with KIND=4 arguments uses the
- 'GetTickCount' function, whereas the KIND=8 version uses
- 'QueryPerformanceCounter' and 'QueryPerformanceCounterFrequency'.
- For more information, and potential caveats, please see the
- platform documentation.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])'
- _Arguments_:
- COUNT (Optional) shall be a scalar of type
- 'INTEGER' with 'INTENT(OUT)'.
- COUNT_RATE (Optional) shall be a scalar of type
- 'INTEGER' or 'REAL', with 'INTENT(OUT)'.
- COUNT_MAX (Optional) shall be a scalar of type
- 'INTEGER' with 'INTENT(OUT)'.
- _Example_:
- PROGRAM test_system_clock
- INTEGER :: count, count_rate, count_max
- CALL SYSTEM_CLOCK(count, count_rate, count_max)
- WRITE(*,*) count, count_rate, count_max
- END PROGRAM
- _See also_:
- *note DATE_AND_TIME::, *note CPU_TIME::
- File: gfortran.info, Node: TAN, Next: TAND, Prev: SYSTEM_CLOCK, Up: Intrinsic Procedures
- 9.266 'TAN' -- Tangent function
- ===============================
- _Description_:
- 'TAN(X)' computes the tangent of X.
- _Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = TAN(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X, and its value is in
- radians.
- _Example_:
- program test_tan
- real(8) :: x = 0.165_8
- x = tan(x)
- end program test_tan
- _Specific names_:
- Name Argument Return type Standard
- 'TAN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DTAN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- Inverse function: *note ATAN:: Degrees function: *note TAND::
- File: gfortran.info, Node: TAND, Next: TANH, Prev: TAN, Up: Intrinsic Procedures
- 9.267 'TAND' -- Tangent function, degrees
- =========================================
- _Description_:
- 'TAND(X)' computes the tangent of X in degrees.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = TAND(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X, and its value is in
- degrees.
- _Example_:
- program test_tand
- real(8) :: x = 0.165_8
- x = tand(x)
- end program test_tand
- _Specific names_:
- Name Argument Return type Standard
- 'TAND(X)' 'REAL(4) X' 'REAL(4)' GNU extension
- 'DTAND(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Inverse function: *note ATAND:: Radians function: *note TAN::
- File: gfortran.info, Node: TANH, Next: THIS_IMAGE, Prev: TAND, Up: Intrinsic Procedures
- 9.268 'TANH' -- Hyperbolic tangent function
- ===========================================
- _Description_:
- 'TANH(X)' computes the hyperbolic tangent of X.
- _Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'X = TANH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X. If X is complex, the
- imaginary part of the result is in radians. If X is 'REAL', the
- return value lies in the range - 1 \leq tanh(x) \leq 1 .
- _Example_:
- program test_tanh
- real(8) :: x = 2.1_8
- x = tanh(x)
- end program test_tanh
- _Specific names_:
- Name Argument Return type Standard
- 'TANH(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DTANH(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- *note ATANH::
- File: gfortran.info, Node: THIS_IMAGE, Next: TIME, Prev: TANH, Up: Intrinsic Procedures
- 9.269 'THIS_IMAGE' -- Function that returns the cosubscript index of this image
- ===============================================================================
- _Description_:
- Returns the cosubscript for this image.
- _Standard_:
- Fortran 2008 and later. With DISTANCE argument, Technical
- Specification (TS) 18508 or later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = THIS_IMAGE()'
- 'RESULT = THIS_IMAGE(DISTANCE)'
- 'RESULT = THIS_IMAGE(COARRAY [, DIM])'
- _Arguments_:
- DISTANCE (optional, intent(in)) Nonnegative scalar
- integer (not permitted together with COARRAY).
- COARRAY Coarray of any type (optional; if DIM present,
- required).
- DIM default integer scalar (optional). If present,
- DIM shall be between one and the corank of
- COARRAY.
- _Return value_:
- Default integer. If COARRAY is not present, it is scalar; if
- DISTANCE is not present or has value 0, its value is the image
- index on the invoking image for the current team, for values
- smaller or equal distance to the initial team, it returns the image
- index on the ancestor team which has a distance of DISTANCE from
- the invoking team. If DISTANCE is larger than the distance to the
- initial team, the image index of the initial team is returned.
- Otherwise when the COARRAY is present, if DIM is not present, a
- rank-1 array with corank elements is returned, containing the
- cosubscripts for COARRAY specifying the invoking image. If DIM is
- present, a scalar is returned, with the value of the DIM element of
- 'THIS_IMAGE(COARRAY)'.
- _Example_:
- INTEGER :: value[*]
- INTEGER :: i
- value = THIS_IMAGE()
- SYNC ALL
- IF (THIS_IMAGE() == 1) THEN
- DO i = 1, NUM_IMAGES()
- WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
- END DO
- END IF
- ! Check whether the current image is the initial image
- IF (THIS_IMAGE(HUGE(1)) /= THIS_IMAGE())
- error stop "something is rotten here"
- _See also_:
- *note NUM_IMAGES::, *note IMAGE_INDEX::
- File: gfortran.info, Node: TIME, Next: TIME8, Prev: THIS_IMAGE, Up: Intrinsic Procedures
- 9.270 'TIME' -- Time function
- =============================
- _Description_:
- Returns the current time encoded as an integer (in the manner of
- the function 'time(3)' in the C standard library). This value is
- suitable for passing to *note CTIME::, *note GMTIME::, and *note
- LTIME::.
- This intrinsic is not fully portable, such as to systems with
- 32-bit 'INTEGER' types but supporting times wider than 32 bits.
- Therefore, the values returned by this intrinsic might be, or
- become, negative, or numerically less than previous values, during
- a single run of the compiled program.
- See *note TIME8::, for information on a similar intrinsic that
- might be portable to more GNU Fortran implementations, though to
- fewer Fortran compilers.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = TIME()'
- _Return value_:
- The return value is a scalar of type 'INTEGER(4)'.
- _See also_:
- *note DATE_AND_TIME::, *note CTIME::, *note GMTIME::, *note
- LTIME::, *note MCLOCK::, *note TIME8::
- File: gfortran.info, Node: TIME8, Next: TINY, Prev: TIME, Up: Intrinsic Procedures
- 9.271 'TIME8' -- Time function (64-bit)
- =======================================
- _Description_:
- Returns the current time encoded as an integer (in the manner of
- the function 'time(3)' in the C standard library). This value is
- suitable for passing to *note CTIME::, *note GMTIME::, and *note
- LTIME::.
- _Warning:_ this intrinsic does not increase the range of the timing
- values over that returned by 'time(3)'. On a system with a 32-bit
- 'time(3)', 'TIME8' will return a 32-bit value, even though it is
- converted to a 64-bit 'INTEGER(8)' value. That means overflows of
- the 32-bit value can still occur. Therefore, the values returned
- by this intrinsic might be or become negative or numerically less
- than previous values during a single run of the compiled program.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = TIME8()'
- _Return value_:
- The return value is a scalar of type 'INTEGER(8)'.
- _See also_:
- *note DATE_AND_TIME::, *note CTIME::, *note GMTIME::, *note
- LTIME::, *note MCLOCK8::, *note TIME::
- File: gfortran.info, Node: TINY, Next: TRAILZ, Prev: TIME8, Up: Intrinsic Procedures
- 9.272 'TINY' -- Smallest positive number of a real kind
- =======================================================
- _Description_:
- 'TINY(X)' returns the smallest positive (non zero) number in the
- model of the type of 'X'.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = TINY(X)'
- _Arguments_:
- X Shall be of type 'REAL'.
- _Return value_:
- The return value is of the same type and kind as X
- _Example_:
- See 'HUGE' for an example.
- File: gfortran.info, Node: TRAILZ, Next: TRANSFER, Prev: TINY, Up: Intrinsic Procedures
- 9.273 'TRAILZ' -- Number of trailing zero bits of an integer
- ============================================================
- _Description_:
- 'TRAILZ' returns the number of trailing zero bits of an integer.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = TRAILZ(I)'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- _Return value_:
- The type of the return value is the default 'INTEGER'. If all the
- bits of 'I' are zero, the result value is 'BIT_SIZE(I)'.
- _Example_:
- PROGRAM test_trailz
- WRITE (*,*) TRAILZ(8) ! prints 3
- END PROGRAM
- _See also_:
- *note BIT_SIZE::, *note LEADZ::, *note POPPAR::, *note POPCNT::
- File: gfortran.info, Node: TRANSFER, Next: TRANSPOSE, Prev: TRAILZ, Up: Intrinsic Procedures
- 9.274 'TRANSFER' -- Transfer bit patterns
- =========================================
- _Description_:
- Interprets the bitwise representation of SOURCE in memory as if it
- is the representation of a variable or array of the same type and
- type parameters as MOLD.
- This is approximately equivalent to the C concept of _casting_ one
- type to another.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = TRANSFER(SOURCE, MOLD[, SIZE])'
- _Arguments_:
- SOURCE Shall be a scalar or an array of any type.
- MOLD Shall be a scalar or an array of any type.
- SIZE (Optional) shall be a scalar of type 'INTEGER'.
- _Return value_:
- The result has the same type as MOLD, with the bit level
- representation of SOURCE. If SIZE is present, the result is a
- one-dimensional array of length SIZE. If SIZE is absent but MOLD
- is an array (of any size or shape), the result is a one-
- dimensional array of the minimum length needed to contain the
- entirety of the bitwise representation of SOURCE. If SIZE is
- absent and MOLD is a scalar, the result is a scalar.
- If the bitwise representation of the result is longer than that of
- SOURCE, then the leading bits of the result correspond to those of
- SOURCE and any trailing bits are filled arbitrarily.
- When the resulting bit representation does not correspond to a
- valid representation of a variable of the same type as MOLD, the
- results are undefined, and subsequent operations on the result
- cannot be guaranteed to produce sensible behavior. For example, it
- is possible to create 'LOGICAL' variables for which 'VAR' and
- '.NOT.VAR' both appear to be true.
- _Example_:
- PROGRAM test_transfer
- integer :: x = 2143289344
- print *, transfer(x, 1.0) ! prints "NaN" on i686
- END PROGRAM
- File: gfortran.info, Node: TRANSPOSE, Next: TRIM, Prev: TRANSFER, Up: Intrinsic Procedures
- 9.275 'TRANSPOSE' -- Transpose an array of rank two
- ===================================================
- _Description_:
- Transpose an array of rank two. Element (i, j) of the result has
- the value 'MATRIX(j, i)', for all i, j.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = TRANSPOSE(MATRIX)'
- _Arguments_:
- MATRIX Shall be an array of any type and have a rank of
- two.
- _Return value_:
- The result has the same type as MATRIX, and has shape '(/ m, n /)'
- if MATRIX has shape '(/ n, m /)'.
- File: gfortran.info, Node: TRIM, Next: TTYNAM, Prev: TRANSPOSE, Up: Intrinsic Procedures
- 9.276 'TRIM' -- Remove trailing blank characters of a string
- ============================================================
- _Description_:
- Removes trailing blank characters of a string.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = TRIM(STRING)'
- _Arguments_:
- STRING Shall be a scalar of type 'CHARACTER'.
- _Return value_:
- A scalar of type 'CHARACTER' which length is that of STRING less
- the number of trailing blanks.
- _Example_:
- PROGRAM test_trim
- CHARACTER(len=10), PARAMETER :: s = "GFORTRAN "
- WRITE(*,*) LEN(s), LEN(TRIM(s)) ! "10 8", with/without trailing blanks
- END PROGRAM
- _See also_:
- *note ADJUSTL::, *note ADJUSTR::
- File: gfortran.info, Node: TTYNAM, Next: UBOUND, Prev: TRIM, Up: Intrinsic Procedures
- 9.277 'TTYNAM' -- Get the name of a terminal device.
- ====================================================
- _Description_:
- Get the name of a terminal device. For more information, see
- 'ttyname(3)'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL TTYNAM(UNIT, NAME)'
- 'NAME = TTYNAM(UNIT)'
- _Arguments_:
- UNIT Shall be a scalar 'INTEGER'.
- NAME Shall be of type 'CHARACTER'.
- _Example_:
- PROGRAM test_ttynam
- INTEGER :: unit
- DO unit = 1, 10
- IF (isatty(unit=unit)) write(*,*) ttynam(unit)
- END DO
- END PROGRAM
- _See also_:
- *note ISATTY::
- File: gfortran.info, Node: UBOUND, Next: UCOBOUND, Prev: TTYNAM, Up: Intrinsic Procedures
- 9.278 'UBOUND' -- Upper dimension bounds of an array
- ====================================================
- _Description_:
- Returns the upper bounds of an array, or a single upper bound along
- the DIM dimension.
- _Standard_:
- Fortran 90 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = UBOUND(ARRAY [, DIM [, KIND]])'
- _Arguments_:
- ARRAY Shall be an array, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the upper bounds of ARRAY. If
- DIM is present, the result is a scalar corresponding to the upper
- bound of the array along that dimension. If ARRAY is an expression
- rather than a whole array or array structure component, or if it
- has a zero extent along the relevant dimension, the upper bound is
- taken to be the number of elements along the relevant dimension.
- _See also_:
- *note LBOUND::, *note LCOBOUND::
- File: gfortran.info, Node: UCOBOUND, Next: UMASK, Prev: UBOUND, Up: Intrinsic Procedures
- 9.279 'UCOBOUND' -- Upper codimension bounds of an array
- ========================================================
- _Description_:
- Returns the upper cobounds of a coarray, or a single upper cobound
- along the DIM codimension.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])'
- _Arguments_:
- ARRAY Shall be an coarray, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the lower cobounds of COARRAY.
- If DIM is present, the result is a scalar corresponding to the
- lower cobound of the array along that codimension.
- _See also_:
- *note LCOBOUND::, *note LBOUND::
- File: gfortran.info, Node: UMASK, Next: UNLINK, Prev: UCOBOUND, Up: Intrinsic Procedures
- 9.280 'UMASK' -- Set the file creation mask
- ===========================================
- _Description_:
- Sets the file creation mask to MASK. If called as a function, it
- returns the old value. If called as a subroutine and argument OLD
- if it is supplied, it is set to the old value. See 'umask(2)'.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL UMASK(MASK [, OLD])'
- 'OLD = UMASK(MASK)'
- _Arguments_:
- MASK Shall be a scalar of type 'INTEGER'.
- OLD (Optional) Shall be a scalar of type 'INTEGER'.
- File: gfortran.info, Node: UNLINK, Next: UNPACK, Prev: UMASK, Up: Intrinsic Procedures
- 9.281 'UNLINK' -- Remove a file from the file system
- ====================================================
- _Description_:
- Unlinks the file PATH. A null character ('CHAR(0)') can be used to
- mark the end of the name in PATH; otherwise, trailing blanks in the
- file name are ignored. If the STATUS argument is supplied, it
- contains 0 on success or a nonzero error code upon return; see
- 'unlink(2)'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL UNLINK(PATH [, STATUS])'
- 'STATUS = UNLINK(PATH)'
- _Arguments_:
- PATH Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
- _See also_:
- *note LINK::, *note SYMLNK::
- File: gfortran.info, Node: UNPACK, Next: VERIFY, Prev: UNLINK, Up: Intrinsic Procedures
- 9.282 'UNPACK' -- Unpack an array of rank one into an array
- ===========================================================
- _Description_:
- Store the elements of VECTOR in an array of higher rank.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = UNPACK(VECTOR, MASK, FIELD)'
- _Arguments_:
- VECTOR Shall be an array of any type and rank one. It
- shall have at least as many elements as MASK has
- 'TRUE' values.
- MASK Shall be an array of type 'LOGICAL'.
- FIELD Shall be of the same type as VECTOR and have the
- same shape as MASK.
- _Return value_:
- The resulting array corresponds to FIELD with 'TRUE' elements of
- MASK replaced by values from VECTOR in array element order.
- _Example_:
- PROGRAM test_unpack
- integer :: vector(2) = (/1,1/)
- logical :: mask(4) = (/ .TRUE., .FALSE., .FALSE., .TRUE. /)
- integer :: field(2,2) = 0, unity(2,2)
- ! result: unity matrix
- unity = unpack(vector, reshape(mask, (/2,2/)), field)
- END PROGRAM
- _See also_:
- *note PACK::, *note SPREAD::
- File: gfortran.info, Node: VERIFY, Next: XOR, Prev: UNPACK, Up: Intrinsic Procedures
- 9.283 'VERIFY' -- Scan a string for characters not a given set
- ==============================================================
- _Description_:
- Verifies that all the characters in STRING belong to the set of
- characters in SET.
- If BACK is either absent or equals 'FALSE', this function returns
- the position of the leftmost character of STRING that is not in
- SET. If BACK equals 'TRUE', the rightmost position is returned.
- If all characters of STRING are found in SET, the result is zero.
- _Standard_:
- Fortran 90 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = VERIFY(STRING, SET[, BACK [, KIND]])'
- _Arguments_:
- STRING Shall be of type 'CHARACTER'.
- SET Shall be of type 'CHARACTER'.
- BACK (Optional) shall be of type 'LOGICAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Example_:
- PROGRAM test_verify
- WRITE(*,*) VERIFY("FORTRAN", "AO") ! 1, found 'F'
- WRITE(*,*) VERIFY("FORTRAN", "FOO") ! 3, found 'R'
- WRITE(*,*) VERIFY("FORTRAN", "C++") ! 1, found 'F'
- WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.) ! 7, found 'N'
- WRITE(*,*) VERIFY("FORTRAN", "FORTRAN") ! 0' found none
- END PROGRAM
- _See also_:
- *note SCAN::, *note INDEX intrinsic::
- File: gfortran.info, Node: XOR, Prev: VERIFY, Up: Intrinsic Procedures
- 9.284 'XOR' -- Bitwise logical exclusive OR
- ===========================================
- _Description_:
- Bitwise logical exclusive or.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. For integer arguments, programmers should consider
- the use of the *note IEOR:: intrinsic and for logical arguments the
- '.NEQV.' operator, which are both defined by the Fortran standard.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = XOR(I, J)'
- _Arguments_:
- I The type shall be either a scalar 'INTEGER' type
- or a scalar 'LOGICAL' type or a
- boz-literal-constant.
- J The type shall be the same as the type of I or a
- boz-literal-constant. I and J shall not both be
- boz-literal-constants. If either I and J is a
- boz-literal-constant, then the other argument
- must be a scalar 'INTEGER'.
- _Return value_:
- The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
- If the kind type parameters differ, then the smaller kind type is
- implicitly converted to larger kind, and the return has the larger
- kind. A boz-literal-constant is converted to an 'INTEGER' with the
- kind type parameter of the other argument as-if a call to *note
- INT:: occurred.
- _Example_:
- PROGRAM test_xor
- LOGICAL :: T = .TRUE., F = .FALSE.
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
- WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
- WRITE (*,*) XOR(a, b)
- END PROGRAM
- _See also_:
- Fortran 95 elemental function: *note IEOR::
- File: gfortran.info, Node: Intrinsic Modules, Next: Contributing, Prev: Intrinsic Procedures, Up: Top
- 10 Intrinsic Modules
- ********************
- * Menu:
- * ISO_FORTRAN_ENV::
- * ISO_C_BINDING::
- * IEEE modules::
- * OpenMP Modules OMP_LIB and OMP_LIB_KINDS::
- * OpenACC Module OPENACC::
- File: gfortran.info, Node: ISO_FORTRAN_ENV, Next: ISO_C_BINDING, Up: Intrinsic Modules
- 10.1 'ISO_FORTRAN_ENV'
- ======================
- _Standard_:
- Fortran 2003 and later, except when otherwise noted
- The 'ISO_FORTRAN_ENV' module provides the following scalar
- default-integer named constants:
- 'ATOMIC_INT_KIND':
- Default-kind integer constant to be used as kind parameter when
- defining integer variables used in atomic operations. (Fortran
- 2008 or later.)
- 'ATOMIC_LOGICAL_KIND':
- Default-kind integer constant to be used as kind parameter when
- defining logical variables used in atomic operations. (Fortran
- 2008 or later.)
- 'CHARACTER_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'CHARACTER' type. (Fortran 2008
- or later.)
- 'CHARACTER_STORAGE_SIZE':
- Size in bits of the character storage unit.
- 'ERROR_UNIT':
- Identifies the preconnected unit used for error reporting.
- 'FILE_STORAGE_SIZE':
- Size in bits of the file-storage unit.
- 'INPUT_UNIT':
- Identifies the preconnected unit identified by the asterisk ('*')
- in 'READ' statement.
- 'INT8', 'INT16', 'INT32', 'INT64':
- Kind type parameters to specify an INTEGER type with a storage size
- of 16, 32, and 64 bits. It is negative if a target platform does
- not support the particular kind. (Fortran 2008 or later.)
- 'INTEGER_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'INTEGER' type. (Fortran 2008 or
- later.)
- 'IOSTAT_END':
- The value assigned to the variable passed to the 'IOSTAT='
- specifier of an input/output statement if an end-of-file condition
- occurred.
- 'IOSTAT_EOR':
- The value assigned to the variable passed to the 'IOSTAT='
- specifier of an input/output statement if an end-of-record
- condition occurred.
- 'IOSTAT_INQUIRE_INTERNAL_UNIT':
- Scalar default-integer constant, used by 'INQUIRE' for the
- 'IOSTAT=' specifier to denote an that a unit number identifies an
- internal unit. (Fortran 2008 or later.)
- 'NUMERIC_STORAGE_SIZE':
- The size in bits of the numeric storage unit.
- 'LOGICAL_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'LOGICAL' type. (Fortran 2008 or
- later.)
- 'OUTPUT_UNIT':
- Identifies the preconnected unit identified by the asterisk ('*')
- in 'WRITE' statement.
- 'REAL32', 'REAL64', 'REAL128':
- Kind type parameters to specify a REAL type with a storage size of
- 32, 64, and 128 bits. It is negative if a target platform does not
- support the particular kind. (Fortran 2008 or later.)
- 'REAL_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'REAL' type. (Fortran 2008 or
- later.)
- 'STAT_LOCKED':
- Scalar default-integer constant used as STAT= return value by
- 'LOCK' to denote that the lock variable is locked by the executing
- image. (Fortran 2008 or later.)
- 'STAT_LOCKED_OTHER_IMAGE':
- Scalar default-integer constant used as STAT= return value by
- 'UNLOCK' to denote that the lock variable is locked by another
- image. (Fortran 2008 or later.)
- 'STAT_STOPPED_IMAGE':
- Positive, scalar default-integer constant used as STAT= return
- value if the argument in the statement requires synchronisation
- with an image, which has initiated the termination of the
- execution. (Fortran 2008 or later.)
- 'STAT_FAILED_IMAGE':
- Positive, scalar default-integer constant used as STAT= return
- value if the argument in the statement requires communication with
- an image, which has is in the failed state. (TS 18508 or later.)
- 'STAT_UNLOCKED':
- Scalar default-integer constant used as STAT= return value by
- 'UNLOCK' to denote that the lock variable is unlocked. (Fortran
- 2008 or later.)
- The module provides the following derived type:
- 'LOCK_TYPE':
- Derived type with private components to be use with the 'LOCK' and
- 'UNLOCK' statement. A variable of its type has to be always
- declared as coarray and may not appear in a variable-definition
- context. (Fortran 2008 or later.)
- The module also provides the following intrinsic procedures: *note
- COMPILER_OPTIONS:: and *note COMPILER_VERSION::.
- File: gfortran.info, Node: ISO_C_BINDING, Next: IEEE modules, Prev: ISO_FORTRAN_ENV, Up: Intrinsic Modules
- 10.2 'ISO_C_BINDING'
- ====================
- _Standard_:
- Fortran 2003 and later, GNU extensions
- The following intrinsic procedures are provided by the module; their
- definition can be found in the section Intrinsic Procedures of this
- manual.
- 'C_ASSOCIATED'
- 'C_F_POINTER'
- 'C_F_PROCPOINTER'
- 'C_FUNLOC'
- 'C_LOC'
- 'C_SIZEOF'
- The 'ISO_C_BINDING' module provides the following named constants of
- type default integer, which can be used as KIND type parameters.
- In addition to the integer named constants required by the Fortran
- 2003 standard and 'C_PTRDIFF_T' of TS 29113, GNU Fortran provides as an
- extension named constants for the 128-bit integer types supported by the
- C compiler: 'C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T'.
- Furthermore, if '__float128' is supported in C, the named constants
- 'C_FLOAT128, C_FLOAT128_COMPLEX' are defined.
- Fortran Named constant C type Extension
- Type
- 'INTEGER' 'C_INT' 'int'
- 'INTEGER' 'C_SHORT' 'short int'
- 'INTEGER' 'C_LONG' 'long int'
- 'INTEGER' 'C_LONG_LONG' 'long long int'
- 'INTEGER' 'C_SIGNED_CHAR' 'signed char'/'unsigned
- char'
- 'INTEGER' 'C_SIZE_T' 'size_t'
- 'INTEGER' 'C_INT8_T' 'int8_t'
- 'INTEGER' 'C_INT16_T' 'int16_t'
- 'INTEGER' 'C_INT32_T' 'int32_t'
- 'INTEGER' 'C_INT64_T' 'int64_t'
- 'INTEGER' 'C_INT128_T' 'int128_t' Ext.
- 'INTEGER' 'C_INT_LEAST8_T' 'int_least8_t'
- 'INTEGER' 'C_INT_LEAST16_T' 'int_least16_t'
- 'INTEGER' 'C_INT_LEAST32_T' 'int_least32_t'
- 'INTEGER' 'C_INT_LEAST64_T' 'int_least64_t'
- 'INTEGER' 'C_INT_LEAST128_T' 'int_least128_t' Ext.
- 'INTEGER' 'C_INT_FAST8_T' 'int_fast8_t'
- 'INTEGER' 'C_INT_FAST16_T' 'int_fast16_t'
- 'INTEGER' 'C_INT_FAST32_T' 'int_fast32_t'
- 'INTEGER' 'C_INT_FAST64_T' 'int_fast64_t'
- 'INTEGER' 'C_INT_FAST128_T' 'int_fast128_t' Ext.
- 'INTEGER' 'C_INTMAX_T' 'intmax_t'
- 'INTEGER' 'C_INTPTR_T' 'intptr_t'
- 'INTEGER' 'C_PTRDIFF_T' 'ptrdiff_t' TS 29113
- 'REAL' 'C_FLOAT' 'float'
- 'REAL' 'C_DOUBLE' 'double'
- 'REAL' 'C_LONG_DOUBLE' 'long double'
- 'REAL' 'C_FLOAT128' '__float128' Ext.
- 'COMPLEX' 'C_FLOAT_COMPLEX' 'float _Complex'
- 'COMPLEX' 'C_DOUBLE_COMPLEX' 'double _Complex'
- 'COMPLEX' 'C_LONG_DOUBLE_COMPLEX' 'long double _Complex'
- 'REAL' 'C_FLOAT128_COMPLEX' '__float128 _Complex' Ext.
- 'LOGICAL' 'C_BOOL' '_Bool'
- 'CHARACTER' 'C_CHAR' 'char'
- Additionally, the following parameters of type
- 'CHARACTER(KIND=C_CHAR)' are defined.
- Name C definition Value
- 'C_NULL_CHAR' null character ''\0''
- 'C_ALERT' alert ''\a''
- 'C_BACKSPACE' backspace ''\b''
- 'C_FORM_FEED' form feed ''\f''
- 'C_NEW_LINE' new line ''\n''
- 'C_CARRIAGE_RETURN'carriage return ''\r''
- 'C_HORIZONTAL_TAB'horizontal tab ''\t''
- 'C_VERTICAL_TAB'vertical tab ''\v''
- Moreover, the following two named constants are defined:
- Name Type
- 'C_NULL_PTR' 'C_PTR'
- 'C_NULL_FUNPTR''C_FUNPTR'
- Both are equivalent to the value 'NULL' in C.
- File: gfortran.info, Node: IEEE modules, Next: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_C_BINDING, Up: Intrinsic Modules
- 10.3 IEEE modules: 'IEEE_EXCEPTIONS', 'IEEE_ARITHMETIC', and 'IEEE_FEATURES'
- ============================================================================
- _Standard_:
- Fortran 2003 and later
- The 'IEEE_EXCEPTIONS', 'IEEE_ARITHMETIC', and 'IEEE_FEATURES'
- intrinsic modules provide support for exceptions and IEEE arithmetic, as
- defined in Fortran 2003 and later standards, and the IEC 60559:1989
- standard (_Binary floating-point arithmetic for microprocessor
- systems_). These modules are only provided on the following supported
- platforms:
- * i386 and x86_64 processors
- * platforms which use the GNU C Library (glibc)
- * platforms with support for SysV/386 routines for floating point
- interface (including Solaris and BSDs)
- * platforms with the AIX OS
- For full compliance with the Fortran standards, code using the
- 'IEEE_EXCEPTIONS' or 'IEEE_ARITHMETIC' modules should be compiled with
- the following options: '-fno-unsafe-math-optimizations -frounding-math
- -fsignaling-nans'.
- File: gfortran.info, Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Next: OpenACC Module OPENACC, Prev: IEEE modules, Up: Intrinsic Modules
- 10.4 OpenMP Modules 'OMP_LIB' and 'OMP_LIB_KINDS'
- =================================================
- _Standard_:
- OpenMP Application Program Interface v4.5
- The OpenMP Fortran runtime library routines are provided both in a
- form of two Fortran 90 modules, named 'OMP_LIB' and 'OMP_LIB_KINDS', and
- in a form of a Fortran 'include' file named 'omp_lib.h'. The procedures
- provided by 'OMP_LIB' can be found in the *note Introduction:
- (libgomp)Top. manual, the named constants defined in the modules are
- listed below.
- For details refer to the actual OpenMP Application Program Interface
- v4.5 (http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf). And for
- the 'pause'-related constants to the OpenMP 5.0 specification.
- 'OMP_LIB_KINDS' provides the following scalar default-integer named
- constants:
- 'omp_lock_kind'
- 'omp_lock_hint_kind'
- 'omp_nest_lock_kind'
- 'omp_pause_resource_kind'
- 'omp_proc_bind_kind'
- 'omp_sched_kind'
- 'OMP_LIB' provides the scalar default-integer named constant
- 'openmp_version' with a value of the form YYYYMM, where 'yyyy' is the
- year and MM the month of the OpenMP version; for OpenMP v4.5 the value
- is '201511'.
- The following scalar integer named constants of the kind
- 'omp_sched_kind':
- 'omp_sched_static'
- 'omp_sched_dynamic'
- 'omp_sched_guided'
- 'omp_sched_auto'
- And the following scalar integer named constants of the kind
- 'omp_proc_bind_kind':
- 'omp_proc_bind_false'
- 'omp_proc_bind_true'
- 'omp_proc_bind_master'
- 'omp_proc_bind_close'
- 'omp_proc_bind_spread'
- The following scalar integer named constants are of the kind
- 'omp_lock_hint_kind':
- 'omp_lock_hint_none'
- 'omp_lock_hint_uncontended'
- 'omp_lock_hint_contended'
- 'omp_lock_hint_nonspeculative'
- 'omp_lock_hint_speculative'
- And the following two scalar integer named constants are of the kind
- 'omp_pause_resource_kind':
- 'omp_pause_soft'
- 'omp_pause_hard'
- File: gfortran.info, Node: OpenACC Module OPENACC, Prev: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Up: Intrinsic Modules
- 10.5 OpenACC Module 'OPENACC'
- =============================
- _Standard_:
- OpenACC Application Programming Interface v2.6
- The OpenACC Fortran runtime library routines are provided both in a
- form of a Fortran 90 module, named 'OPENACC', and in form of a Fortran
- 'include' file named 'openacc_lib.h'. The procedures provided by
- 'OPENACC' can be found in the *note Introduction: (libgomp)Top. manual,
- the named constants defined in the modules are listed below.
- For details refer to the actual OpenACC Application Programming
- Interface v2.6 (http://www.openacc.org/).
- 'OPENACC' provides the scalar default-integer named constant
- 'openacc_version' with a value of the form YYYYMM, where 'yyyy' is the
- year and MM the month of the OpenACC version; for OpenACC v2.6 the value
- is '201711'.
- File: gfortran.info, Node: Contributing, Next: Copying, Prev: Intrinsic Modules, Up: Top
- Contributing
- ************
- Free software is only possible if people contribute to efforts to create
- it. We're always in need of more people helping out with ideas and
- comments, writing documentation and contributing code.
- If you want to contribute to GNU Fortran, have a look at the long
- lists of projects you can take on. Some of these projects are small,
- some of them are large; some are completely orthogonal to the rest of
- what is happening on GNU Fortran, but others are "mainstream" projects
- in need of enthusiastic hackers. All of these projects are important!
- We will eventually get around to the things here, but they are also
- things doable by someone who is willing and able.
- * Menu:
- * Contributors::
- * Projects::
- * Proposed Extensions::
- File: gfortran.info, Node: Contributors, Next: Projects, Up: Contributing
- Contributors to GNU Fortran
- ===========================
- Most of the parser was hand-crafted by _Andy Vaught_, who is also the
- initiator of the whole project. Thanks Andy! Most of the interface
- with GCC was written by _Paul Brook_.
- The following individuals have contributed code and/or ideas and
- significant help to the GNU Fortran project (in alphabetical order):
- - Janne Blomqvist
- - Steven Bosscher
- - Paul Brook
- - Tobias Burnus
- - Franc,ois-Xavier Coudert
- - Bud Davis
- - Jerry DeLisle
- - Erik Edelmann
- - Bernhard Fischer
- - Daniel Franke
- - Richard Guenther
- - Richard Henderson
- - Katherine Holcomb
- - Jakub Jelinek
- - Niels Kristian Bech Jensen
- - Steven Johnson
- - Steven G. Kargl
- - Thomas Koenig
- - Asher Langton
- - H. J. Lu
- - Toon Moene
- - Brooks Moses
- - Andrew Pinski
- - Tim Prince
- - Christopher D. Rickett
- - Richard Sandiford
- - Tobias Schlu"ter
- - Roger Sayle
- - Paul Thomas
- - Andy Vaught
- - Feng Wang
- - Janus Weil
- - Daniel Kraft
- The following people have contributed bug reports, smaller or larger
- patches, and much needed feedback and encouragement for the GNU Fortran
- project:
- - Bill Clodius
- - Dominique d'Humie`res
- - Kate Hedstrom
- - Erik Schnetter
- - Joost VandeVondele
- Many other individuals have helped debug, test and improve the GNU
- Fortran compiler over the past few years, and we welcome you to do the
- same! If you already have done so, and you would like to see your name
- listed in the list above, please contact us.
- File: gfortran.info, Node: Projects, Next: Proposed Extensions, Prev: Contributors, Up: Contributing
- Projects
- ========
- _Help build the test suite_
- Solicit more code for donation to the test suite: the more
- extensive the testsuite, the smaller the risk of breaking things in
- the future! We can keep code private on request.
- _Bug hunting/squishing_
- Find bugs and write more test cases! Test cases are especially
- very welcome, because it allows us to concentrate on fixing bugs
- instead of isolating them. Going through the bugzilla database at
- <https://gcc.gnu.org/bugzilla/> to reduce testcases posted there
- and add more information (for example, for which version does the
- testcase work, for which versions does it fail?) is also very
- helpful.
- File: gfortran.info, Node: Proposed Extensions, Prev: Projects, Up: Contributing
- Proposed Extensions
- ===================
- Here's a list of proposed extensions for the GNU Fortran compiler, in no
- particular order. Most of these are necessary to be fully compatible
- with existing Fortran compilers, but they are not part of the official
- J3 Fortran 95 standard.
- Compiler extensions:
- --------------------
- * User-specified alignment rules for structures.
- * Automatically extend single precision constants to double.
- * Compile code that conserves memory by dynamically allocating common
- and module storage either on stack or heap.
- * Compile flag to generate code for array conformance checking
- (suggest -CC).
- * User control of symbol names (underscores, etc).
- * Compile setting for maximum size of stack frame size before
- spilling parts to static or heap.
- * Flag to force local variables into static space.
- * Flag to force local variables onto stack.
- Environment Options
- -------------------
- * Pluggable library modules for random numbers, linear algebra. LA
- should use BLAS calling conventions.
- * Environment variables controlling actions on arithmetic exceptions
- like overflow, underflow, precision loss--Generate NaN, abort,
- default. action.
- * Set precision for fp units that support it (i387).
- * Variable for setting fp rounding mode.
- * Variable to fill uninitialized variables with a user-defined bit
- pattern.
- * Environment variable controlling filename that is opened for that
- unit number.
- * Environment variable to clear/trash memory being freed.
- * Environment variable to control tracing of allocations and frees.
- * Environment variable to display allocated memory at normal program
- end.
- * Environment variable for filename for * IO-unit.
- * Environment variable for temporary file directory.
- * Environment variable forcing standard output to be line buffered
- (Unix).
- File: gfortran.info, Node: Copying, Next: GNU Free Documentation License, Prev: Contributing, Up: Top
- GNU General Public License
- **************************
- Version 3, 29 June 2007
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies of this
- license document, but changing it is not allowed.
- Preamble
- ========
- The GNU General Public License is a free, copyleft license for software
- and other kinds of works.
- The licenses for most software and other practical works are designed
- to take away your freedom to share and change the works. By contrast,
- the GNU General Public License is intended to guarantee your freedom to
- share and change all versions of a program-to make sure it remains free
- software for all its users. We, the Free Software Foundation, use the
- GNU General Public License for most of our software; it applies also to
- any other work released this way by its authors. You can apply it to
- your programs, too.
- When we speak of free software, we are referring to freedom, not
- price. Our General Public Licenses are designed to make sure that you
- have the freedom to distribute copies of free software (and charge for
- them if you wish), that you receive source code or can get it if you
- want it, that you can change the software or use pieces of it in new
- free programs, and that you know you can do these things.
- To protect your rights, we need to prevent others from denying you
- these rights or asking you to surrender the rights. Therefore, you have
- certain responsibilities if you distribute copies of the software, or if
- you modify it: responsibilities to respect the freedom of others.
- For example, if you distribute copies of such a program, whether
- gratis or for a fee, you must pass on to the recipients the same
- freedoms that you received. You must make sure that they, too, receive
- or can get the source code. And you must show them these terms so they
- know their rights.
- Developers that use the GNU GPL protect your rights with two steps:
- (1) assert copyright on the software, and (2) offer you this License
- giving you legal permission to copy, distribute and/or modify it.
- For the developers' and authors' protection, the GPL clearly explains
- that there is no warranty for this free software. For both users' and
- authors' sake, the GPL requires that modified versions be marked as
- changed, so that their problems will not be attributed erroneously to
- authors of previous versions.
- Some devices are designed to deny users access to install or run
- modified versions of the software inside them, although the manufacturer
- can do so. This is fundamentally incompatible with the aim of
- protecting users' freedom to change the software. The systematic
- pattern of such abuse occurs in the area of products for individuals to
- use, which is precisely where it is most unacceptable. Therefore, we
- have designed this version of the GPL to prohibit the practice for those
- products. If such problems arise substantially in other domains, we
- stand ready to extend this provision to those domains in future versions
- of the GPL, as needed to protect the freedom of users.
- Finally, every program is threatened constantly by software patents.
- States should not allow patents to restrict development and use of
- software on general-purpose computers, but in those that do, we wish to
- avoid the special danger that patents applied to a free program could
- make it effectively proprietary. To prevent this, the GPL assures that
- patents cannot be used to render the program non-free.
- The precise terms and conditions for copying, distribution and
- modification follow.
- TERMS AND CONDITIONS
- ====================
- 0. Definitions.
- "This License" refers to version 3 of the GNU General Public
- License.
- "Copyright" also means copyright-like laws that apply to other
- kinds of works, such as semiconductor masks.
- "The Program" refers to any copyrightable work licensed under this
- License. Each licensee is addressed as "you". "Licensees" and
- "recipients" may be individuals or organizations.
- To "modify" a work means to copy from or adapt all or part of the
- work in a fashion requiring copyright permission, other than the
- making of an exact copy. The resulting work is called a "modified
- version" of the earlier work or a work "based on" the earlier work.
- A "covered work" means either the unmodified Program or a work
- based on the Program.
- To "propagate" a work means to do anything with it that, without
- permission, would make you directly or secondarily liable for
- infringement under applicable copyright law, except executing it on
- a computer or modifying a private copy. Propagation includes
- copying, distribution (with or without modification), making
- available to the public, and in some countries other activities as
- well.
- To "convey" a work means any kind of propagation that enables other
- parties to make or receive copies. Mere interaction with a user
- through a computer network, with no transfer of a copy, is not
- conveying.
- An interactive user interface displays "Appropriate Legal Notices"
- to the extent that it includes a convenient and prominently visible
- feature that (1) displays an appropriate copyright notice, and (2)
- tells the user that there is no warranty for the work (except to
- the extent that warranties are provided), that licensees may convey
- the work under this License, and how to view a copy of this
- License. If the interface presents a list of user commands or
- options, such as a menu, a prominent item in the list meets this
- criterion.
- 1. Source Code.
- The "source code" for a work means the preferred form of the work
- for making modifications to it. "Object code" means any non-source
- form of a work.
- A "Standard Interface" means an interface that either is an
- official standard defined by a recognized standards body, or, in
- the case of interfaces specified for a particular programming
- language, one that is widely used among developers working in that
- language.
- The "System Libraries" of an executable work include anything,
- other than the work as a whole, that (a) is included in the normal
- form of packaging a Major Component, but which is not part of that
- Major Component, and (b) serves only to enable use of the work with
- that Major Component, or to implement a Standard Interface for
- which an implementation is available to the public in source code
- form. A "Major Component", in this context, means a major
- essential component (kernel, window system, and so on) of the
- specific operating system (if any) on which the executable work
- runs, or a compiler used to produce the work, or an object code
- interpreter used to run it.
- The "Corresponding Source" for a work in object code form means all
- the source code needed to generate, install, and (for an executable
- work) run the object code and to modify the work, including scripts
- to control those activities. However, it does not include the
- work's System Libraries, or general-purpose tools or generally
- available free programs which are used unmodified in performing
- those activities but which are not part of the work. For example,
- Corresponding Source includes interface definition files associated
- with source files for the work, and the source code for shared
- libraries and dynamically linked subprograms that the work is
- specifically designed to require, such as by intimate data
- communication or control flow between those subprograms and other
- parts of the work.
- The Corresponding Source need not include anything that users can
- regenerate automatically from other parts of the Corresponding
- Source.
- The Corresponding Source for a work in source code form is that
- same work.
- 2. Basic Permissions.
- All rights granted under this License are granted for the term of
- copyright on the Program, and are irrevocable provided the stated
- conditions are met. This License explicitly affirms your unlimited
- permission to run the unmodified Program. The output from running
- a covered work is covered by this License only if the output, given
- its content, constitutes a covered work. This License acknowledges
- your rights of fair use or other equivalent, as provided by
- copyright law.
- You may make, run and propagate covered works that you do not
- convey, without conditions so long as your license otherwise
- remains in force. You may convey covered works to others for the
- sole purpose of having them make modifications exclusively for you,
- or provide you with facilities for running those works, provided
- that you comply with the terms of this License in conveying all
- material for which you do not control copyright. Those thus making
- or running the covered works for you must do so exclusively on your
- behalf, under your direction and control, on terms that prohibit
- them from making any copies of your copyrighted material outside
- their relationship with you.
- Conveying under any other circumstances is permitted solely under
- the conditions stated below. Sublicensing is not allowed; section
- 10 makes it unnecessary.
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
- No covered work shall be deemed part of an effective technological
- measure under any applicable law fulfilling obligations under
- article 11 of the WIPO copyright treaty adopted on 20 December
- 1996, or similar laws prohibiting or restricting circumvention of
- such measures.
- When you convey a covered work, you waive any legal power to forbid
- circumvention of technological measures to the extent such
- circumvention is effected by exercising rights under this License
- with respect to the covered work, and you disclaim any intention to
- limit operation or modification of the work as a means of
- enforcing, against the work's users, your or third parties' legal
- rights to forbid circumvention of technological measures.
- 4. Conveying Verbatim Copies.
- You may convey verbatim copies of the Program's source code as you
- receive it, in any medium, provided that you conspicuously and
- appropriately publish on each copy an appropriate copyright notice;
- keep intact all notices stating that this License and any
- non-permissive terms added in accord with section 7 apply to the
- code; keep intact all notices of the absence of any warranty; and
- give all recipients a copy of this License along with the Program.
- You may charge any price or no price for each copy that you convey,
- and you may offer support or warranty protection for a fee.
- 5. Conveying Modified Source Versions.
- You may convey a work based on the Program, or the modifications to
- produce it from the Program, in the form of source code under the
- terms of section 4, provided that you also meet all of these
- conditions:
- a. The work must carry prominent notices stating that you
- modified it, and giving a relevant date.
- b. The work must carry prominent notices stating that it is
- released under this License and any conditions added under
- section 7. This requirement modifies the requirement in
- section 4 to "keep intact all notices".
- c. You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable
- section 7 additional terms, to the whole of the work, and all
- its parts, regardless of how they are packaged. This License
- gives no permission to license the work in any other way, but
- it does not invalidate such permission if you have separately
- received it.
- d. If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has
- interactive interfaces that do not display Appropriate Legal
- Notices, your work need not make them do so.
- A compilation of a covered work with other separate and independent
- works, which are not by their nature extensions of the covered
- work, and which are not combined with it such as to form a larger
- program, in or on a volume of a storage or distribution medium, is
- called an "aggregate" if the compilation and its resulting
- copyright are not used to limit the access or legal rights of the
- compilation's users beyond what the individual works permit.
- Inclusion of a covered work in an aggregate does not cause this
- License to apply to the other parts of the aggregate.
- 6. Conveying Non-Source Forms.
- You may convey a covered work in object code form under the terms
- of sections 4 and 5, provided that you also convey the
- machine-readable Corresponding Source under the terms of this
- License, in one of these ways:
- a. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
- b. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that
- product model, to give anyone who possesses the object code
- either (1) a copy of the Corresponding Source for all the
- software in the product that is covered by this License, on a
- durable physical medium customarily used for software
- interchange, for a price no more than your reasonable cost of
- physically performing this conveying of source, or (2) access
- to copy the Corresponding Source from a network server at no
- charge.
- c. Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially,
- and only if you received the object code with such an offer,
- in accord with subsection 6b.
- d. Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to
- the Corresponding Source in the same way through the same
- place at no further charge. You need not require recipients
- to copy the Corresponding Source along with the object code.
- If the place to copy the object code is a network server, the
- Corresponding Source may be on a different server (operated by
- you or a third party) that supports equivalent copying
- facilities, provided you maintain clear directions next to the
- object code saying where to find the Corresponding Source.
- Regardless of what server hosts the Corresponding Source, you
- remain obligated to ensure that it is available for as long as
- needed to satisfy these requirements.
- e. Convey the object code using peer-to-peer transmission,
- provided you inform other peers where the object code and
- Corresponding Source of the work are being offered to the
- general public at no charge under subsection 6d.
- A separable portion of the object code, whose source code is
- excluded from the Corresponding Source as a System Library, need
- not be included in conveying the object code work.
- A "User Product" is either (1) a "consumer product", which means
- any tangible personal property which is normally used for personal,
- family, or household purposes, or (2) anything designed or sold for
- incorporation into a dwelling. In determining whether a product is
- a consumer product, doubtful cases shall be resolved in favor of
- coverage. For a particular product received by a particular user,
- "normally used" refers to a typical or common use of that class of
- product, regardless of the status of the particular user or of the
- way in which the particular user actually uses, or expects or is
- expected to use, the product. A product is a consumer product
- regardless of whether the product has substantial commercial,
- industrial or non-consumer uses, unless such uses represent the
- only significant mode of use of the product.
- "Installation Information" for a User Product means any methods,
- procedures, authorization keys, or other information required to
- install and execute modified versions of a covered work in that
- User Product from a modified version of its Corresponding Source.
- The information must suffice to ensure that the continued
- functioning of the modified object code is in no case prevented or
- interfered with solely because modification has been made.
- If you convey an object code work under this section in, or with,
- or specifically for use in, a User Product, and the conveying
- occurs as part of a transaction in which the right of possession
- and use of the User Product is transferred to the recipient in
- perpetuity or for a fixed term (regardless of how the transaction
- is characterized), the Corresponding Source conveyed under this
- section must be accompanied by the Installation Information. But
- this requirement does not apply if neither you nor any third party
- retains the ability to install modified object code on the User
- Product (for example, the work has been installed in ROM).
- The requirement to provide Installation Information does not
- include a requirement to continue to provide support service,
- warranty, or updates for a work that has been modified or installed
- by the recipient, or for the User Product in which it has been
- modified or installed. Access to a network may be denied when the
- modification itself materially and adversely affects the operation
- of the network or violates the rules and protocols for
- communication across the network.
- Corresponding Source conveyed, and Installation Information
- provided, in accord with this section must be in a format that is
- publicly documented (and with an implementation available to the
- public in source code form), and must require no special password
- or key for unpacking, reading or copying.
- 7. Additional Terms.
- "Additional permissions" are terms that supplement the terms of
- this License by making exceptions from one or more of its
- conditions. Additional permissions that are applicable to the
- entire Program shall be treated as though they were included in
- this License, to the extent that they are valid under applicable
- law. If additional permissions apply only to part of the Program,
- that part may be used separately under those permissions, but the
- entire Program remains governed by this License without regard to
- the additional permissions.
- When you convey a copy of a covered work, you may at your option
- remove any additional permissions from that copy, or from any part
- of it. (Additional permissions may be written to require their own
- removal in certain cases when you modify the work.) You may place
- additional permissions on material, added by you to a covered work,
- for which you have or can give appropriate copyright permission.
- Notwithstanding any other provision of this License, for material
- you add to a covered work, you may (if authorized by the copyright
- holders of that material) supplement the terms of this License with
- terms:
- a. Disclaiming warranty or limiting liability differently from
- the terms of sections 15 and 16 of this License; or
- b. Requiring preservation of specified reasonable legal notices
- or author attributions in that material or in the Appropriate
- Legal Notices displayed by works containing it; or
- c. Prohibiting misrepresentation of the origin of that material,
- or requiring that modified versions of such material be marked
- in reasonable ways as different from the original version; or
- d. Limiting the use for publicity purposes of names of licensors
- or authors of the material; or
- e. Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
- f. Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified
- versions of it) with contractual assumptions of liability to
- the recipient, for any liability that these contractual
- assumptions directly impose on those licensors and authors.
- All other non-permissive additional terms are considered "further
- restrictions" within the meaning of section 10. If the Program as
- you received it, or any part of it, contains a notice stating that
- it is governed by this License along with a term that is a further
- restriction, you may remove that term. If a license document
- contains a further restriction but permits relicensing or conveying
- under this License, you may add to a covered work material governed
- by the terms of that license document, provided that the further
- restriction does not survive such relicensing or conveying.
- If you add terms to a covered work in accord with this section, you
- must place, in the relevant source files, a statement of the
- additional terms that apply to those files, or a notice indicating
- where to find the applicable terms.
- Additional terms, permissive or non-permissive, may be stated in
- the form of a separately written license, or stated as exceptions;
- the above requirements apply either way.
- 8. Termination.
- You may not propagate or modify a covered work except as expressly
- provided under this License. Any attempt otherwise to propagate or
- modify it is void, and will automatically terminate your rights
- under this License (including any patent licenses granted under the
- third paragraph of section 11).
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, you do not qualify to receive new licenses
- for the same material under section 10.
- 9. Acceptance Not Required for Having Copies.
- You are not required to accept this License in order to receive or
- run a copy of the Program. Ancillary propagation of a covered work
- occurring solely as a consequence of using peer-to-peer
- transmission to receive a copy likewise does not require
- acceptance. However, nothing other than this License grants you
- permission to propagate or modify any covered work. These actions
- infringe copyright if you do not accept this License. Therefore,
- by modifying or propagating a covered work, you indicate your
- acceptance of this License to do so.
- 10. Automatic Licensing of Downstream Recipients.
- Each time you convey a covered work, the recipient automatically
- receives a license from the original licensors, to run, modify and
- propagate that work, subject to this License. You are not
- responsible for enforcing compliance by third parties with this
- License.
- An "entity transaction" is a transaction transferring control of an
- organization, or substantially all assets of one, or subdividing an
- organization, or merging organizations. If propagation of a
- covered work results from an entity transaction, each party to that
- transaction who receives a copy of the work also receives whatever
- licenses to the work the party's predecessor in interest had or
- could give under the previous paragraph, plus a right to possession
- of the Corresponding Source of the work from the predecessor in
- interest, if the predecessor has it or can get it with reasonable
- efforts.
- You may not impose any further restrictions on the exercise of the
- rights granted or affirmed under this License. For example, you
- may not impose a license fee, royalty, or other charge for exercise
- of rights granted under this License, and you may not initiate
- litigation (including a cross-claim or counterclaim in a lawsuit)
- alleging that any patent claim is infringed by making, using,
- selling, offering for sale, or importing the Program or any portion
- of it.
- 11. Patents.
- A "contributor" is a copyright holder who authorizes use under this
- License of the Program or a work on which the Program is based.
- The work thus licensed is called the contributor's "contributor
- version".
- A contributor's "essential patent claims" are all patent claims
- owned or controlled by the contributor, whether already acquired or
- hereafter acquired, that would be infringed by some manner,
- permitted by this License, of making, using, or selling its
- contributor version, but do not include claims that would be
- infringed only as a consequence of further modification of the
- contributor version. For purposes of this definition, "control"
- includes the right to grant patent sublicenses in a manner
- consistent with the requirements of this License.
- Each contributor grants you a non-exclusive, worldwide,
- royalty-free patent license under the contributor's essential
- patent claims, to make, use, sell, offer for sale, import and
- otherwise run, modify and propagate the contents of its contributor
- version.
- In the following three paragraphs, a "patent license" is any
- express agreement or commitment, however denominated, not to
- enforce a patent (such as an express permission to practice a
- patent or covenant not to sue for patent infringement). To "grant"
- such a patent license to a party means to make such an agreement or
- commitment not to enforce a patent against the party.
- If you convey a covered work, knowingly relying on a patent
- license, and the Corresponding Source of the work is not available
- for anyone to copy, free of charge and under the terms of this
- License, through a publicly available network server or other
- readily accessible means, then you must either (1) cause the
- Corresponding Source to be so available, or (2) arrange to deprive
- yourself of the benefit of the patent license for this particular
- work, or (3) arrange, in a manner consistent with the requirements
- of this License, to extend the patent license to downstream
- recipients. "Knowingly relying" means you have actual knowledge
- that, but for the patent license, your conveying the covered work
- in a country, or your recipient's use of the covered work in a
- country, would infringe one or more identifiable patents in that
- country that you have reason to believe are valid.
- If, pursuant to or in connection with a single transaction or
- arrangement, you convey, or propagate by procuring conveyance of, a
- covered work, and grant a patent license to some of the parties
- receiving the covered work authorizing them to use, propagate,
- modify or convey a specific copy of the covered work, then the
- patent license you grant is automatically extended to all
- recipients of the covered work and works based on it.
- A patent license is "discriminatory" if it does not include within
- the scope of its coverage, prohibits the exercise of, or is
- conditioned on the non-exercise of one or more of the rights that
- are specifically granted under this License. You may not convey a
- covered work if you are a party to an arrangement with a third
- party that is in the business of distributing software, under which
- you make payment to the third party based on the extent of your
- activity of conveying the work, and under which the third party
- grants, to any of the parties who would receive the covered work
- from you, a discriminatory patent license (a) in connection with
- copies of the covered work conveyed by you (or copies made from
- those copies), or (b) primarily for and in connection with specific
- products or compilations that contain the covered work, unless you
- entered into that arrangement, or that patent license was granted,
- prior to 28 March 2007.
- Nothing in this License shall be construed as excluding or limiting
- any implied license or other defenses to infringement that may
- otherwise be available to you under applicable patent law.
- 12. No Surrender of Others' Freedom.
- If conditions are imposed on you (whether by court order, agreement
- or otherwise) that contradict the conditions of this License, they
- do not excuse you from the conditions of this License. If you
- cannot convey a covered work so as to satisfy simultaneously your
- obligations under this License and any other pertinent obligations,
- then as a consequence you may not convey it at all. For example,
- if you agree to terms that obligate you to collect a royalty for
- further conveying from those to whom you convey the Program, the
- only way you could satisfy both those terms and this License would
- be to refrain entirely from conveying the Program.
- 13. Use with the GNU Affero General Public License.
- Notwithstanding any other provision of this License, you have
- permission to link or combine any covered work with a work licensed
- under version 3 of the GNU Affero General Public License into a
- single combined work, and to convey the resulting work. The terms
- of this License will continue to apply to the part which is the
- covered work, but the special requirements of the GNU Affero
- General Public License, section 13, concerning interaction through
- a network will apply to the combination as such.
- 14. Revised Versions of this License.
- The Free Software Foundation may publish revised and/or new
- versions of the GNU General Public License from time to time. Such
- new versions will be similar in spirit to the present version, but
- may differ in detail to address new problems or concerns.
- Each version is given a distinguishing version number. If the
- Program specifies that a certain numbered version of the GNU
- General Public License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that numbered version or of any later version published by the Free
- Software Foundation. If the Program does not specify a version
- number of the GNU General Public License, you may choose any
- version ever published by the Free Software Foundation.
- If the Program specifies that a proxy can decide which future
- versions of the GNU General Public License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Program.
- Later license versions may give you additional or different
- permissions. However, no additional obligations are imposed on any
- author or copyright holder as a result of your choosing to follow a
- later version.
- 15. Disclaimer of Warranty.
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
- COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
- WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
- MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
- RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
- SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
- NECESSARY SERVICING, REPAIR OR CORRECTION.
- 16. Limitation of Liability.
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
- WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
- AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
- DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
- CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
- THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
- BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
- THE POSSIBILITY OF SUCH DAMAGES.
- 17. Interpretation of Sections 15 and 16.
- If the disclaimer of warranty and limitation of liability provided
- above cannot be given local legal effect according to their terms,
- reviewing courts shall apply local law that most closely
- approximates an absolute waiver of all civil liability in
- connection with the Program, unless a warranty or assumption of
- liability accompanies a copy of the Program in return for a fee.
- END OF TERMS AND CONDITIONS
- ===========================
- How to Apply These Terms to Your New Programs
- =============================================
- If you develop a new program, and you want it to be of the greatest
- possible use to the public, the best way to achieve this is to make it
- free software which everyone can redistribute and change under these
- terms.
- To do so, attach the following notices to the program. It is safest
- to attach them to the start of each source file to most effectively
- state the exclusion of warranty; and each file should have at least the
- "copyright" line and a pointer to where the full notice is found.
- ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
- Copyright (C) YEAR NAME OF AUTHOR
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or (at
- your option) any later version.
- This program is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- Also add information on how to contact you by electronic and paper
- mail.
- If the program does terminal interaction, make it output a short
- notice like this when it starts in an interactive mode:
- PROGRAM Copyright (C) YEAR NAME OF AUTHOR
- This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type 'show c' for details.
- The hypothetical commands 'show w' and 'show c' should show the
- appropriate parts of the General Public License. Of course, your
- program's commands might be different; for a GUI interface, you would
- use an "about box".
- You should also get your employer (if you work as a programmer) or
- school, if any, to sign a "copyright disclaimer" for the program, if
- necessary. For more information on this, and how to apply and follow
- the GNU GPL, see <http://www.gnu.org/licenses/>.
- The GNU General Public License does not permit incorporating your
- program into proprietary programs. If your program is a subroutine
- library, you may consider it more useful to permit linking proprietary
- applications with the library. If this is what you want to do, use the
- GNU Lesser General Public License instead of this License. But first,
- please read <https://www.gnu.org/licenses/why-not-lgpl.html>.
- File: gfortran.info, Node: GNU Free Documentation License, Next: Funding, Prev: Copying, Up: Top
- GNU Free Documentation License
- ******************************
- Version 1.3, 3 November 2008
- Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
- <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
- 0. PREAMBLE
- The purpose of this License is to make a manual, textbook, or other
- functional and useful document "free" in the sense of freedom: to
- assure everyone the effective freedom to copy and redistribute it,
- with or without modifying it, either commercially or
- noncommercially. Secondarily, this License preserves for the
- author and publisher a way to get credit for their work, while not
- being considered responsible for modifications made by others.
- This License is a kind of "copyleft", which means that derivative
- works of the document must themselves be free in the same sense.
- It complements the GNU General Public License, which is a copyleft
- license designed for free software.
- We have designed this License in order to use it for manuals for
- free software, because free software needs free documentation: a
- free program should come with manuals providing the same freedoms
- that the software does. But this License is not limited to
- software manuals; it can be used for any textual work, regardless
- of subject matter or whether it is published as a printed book. We
- recommend this License principally for works whose purpose is
- instruction or reference.
- 1. APPLICABILITY AND DEFINITIONS
- This License applies to any manual or other work, in any medium,
- that contains a notice placed by the copyright holder saying it can
- be distributed under the terms of this License. Such a notice
- grants a world-wide, royalty-free license, unlimited in duration,
- to use that work under the conditions stated herein. The
- "Document", below, refers to any such manual or work. Any member
- of the public is a licensee, and is addressed as "you". You accept
- the license if you copy, modify or distribute the work in a way
- requiring permission under copyright law.
- A "Modified Version" of the Document means any work containing the
- Document or a portion of it, either copied verbatim, or with
- modifications and/or translated into another language.
- A "Secondary Section" is a named appendix or a front-matter section
- of the Document that deals exclusively with the relationship of the
- publishers or authors of the Document to the Document's overall
- subject (or to related matters) and contains nothing that could
- fall directly within that overall subject. (Thus, if the Document
- is in part a textbook of mathematics, a Secondary Section may not
- explain any mathematics.) The relationship could be a matter of
- historical connection with the subject or with related matters, or
- of legal, commercial, philosophical, ethical or political position
- regarding them.
- The "Invariant Sections" are certain Secondary Sections whose
- titles are designated, as being those of Invariant Sections, in the
- notice that says that the Document is released under this License.
- If a section does not fit the above definition of Secondary then it
- is not allowed to be designated as Invariant. The Document may
- contain zero Invariant Sections. If the Document does not identify
- any Invariant Sections then there are none.
- The "Cover Texts" are certain short passages of text that are
- listed, as Front-Cover Texts or Back-Cover Texts, in the notice
- that says that the Document is released under this License. A
- Front-Cover Text may be at most 5 words, and a Back-Cover Text may
- be at most 25 words.
- A "Transparent" copy of the Document means a machine-readable copy,
- represented in a format whose specification is available to the
- general public, that is suitable for revising the document
- straightforwardly with generic text editors or (for images composed
- of pixels) generic paint programs or (for drawings) some widely
- available drawing editor, and that is suitable for input to text
- formatters or for automatic translation to a variety of formats
- suitable for input to text formatters. A copy made in an otherwise
- Transparent file format whose markup, or absence of markup, has
- been arranged to thwart or discourage subsequent modification by
- readers is not Transparent. An image format is not Transparent if
- used for any substantial amount of text. A copy that is not
- "Transparent" is called "Opaque".
- Examples of suitable formats for Transparent copies include plain
- ASCII without markup, Texinfo input format, LaTeX input format,
- SGML or XML using a publicly available DTD, and standard-conforming
- simple HTML, PostScript or PDF designed for human modification.
- Examples of transparent image formats include PNG, XCF and JPG.
- Opaque formats include proprietary formats that can be read and
- edited only by proprietary word processors, SGML or XML for which
- the DTD and/or processing tools are not generally available, and
- the machine-generated HTML, PostScript or PDF produced by some word
- processors for output purposes only.
- The "Title Page" means, for a printed book, the title page itself,
- plus such following pages as are needed to hold, legibly, the
- material this License requires to appear in the title page. For
- works in formats which do not have any title page as such, "Title
- Page" means the text near the most prominent appearance of the
- work's title, preceding the beginning of the body of the text.
- The "publisher" means any person or entity that distributes copies
- of the Document to the public.
- A section "Entitled XYZ" means a named subunit of the Document
- whose title either is precisely XYZ or contains XYZ in parentheses
- following text that translates XYZ in another language. (Here XYZ
- stands for a specific section name mentioned below, such as
- "Acknowledgements", "Dedications", "Endorsements", or "History".)
- To "Preserve the Title" of such a section when you modify the
- Document means that it remains a section "Entitled XYZ" according
- to this definition.
- The Document may include Warranty Disclaimers next to the notice
- which states that this License applies to the Document. These
- Warranty Disclaimers are considered to be included by reference in
- this License, but only as regards disclaiming warranties: any other
- implication that these Warranty Disclaimers may have is void and
- has no effect on the meaning of this License.
- 2. VERBATIM COPYING
- You may copy and distribute the Document in any medium, either
- commercially or noncommercially, provided that this License, the
- copyright notices, and the license notice saying this License
- applies to the Document are reproduced in all copies, and that you
- add no other conditions whatsoever to those of this License. You
- may not use technical measures to obstruct or control the reading
- or further copying of the copies you make or distribute. However,
- you may accept compensation in exchange for copies. If you
- distribute a large enough number of copies you must also follow the
- conditions in section 3.
- You may also lend copies, under the same conditions stated above,
- and you may publicly display copies.
- 3. COPYING IN QUANTITY
- If you publish printed copies (or copies in media that commonly
- have printed covers) of the Document, numbering more than 100, and
- the Document's license notice requires Cover Texts, you must
- enclose the copies in covers that carry, clearly and legibly, all
- these Cover Texts: Front-Cover Texts on the front cover, and
- Back-Cover Texts on the back cover. Both covers must also clearly
- and legibly identify you as the publisher of these copies. The
- front cover must present the full title with all words of the title
- equally prominent and visible. You may add other material on the
- covers in addition. Copying with changes limited to the covers, as
- long as they preserve the title of the Document and satisfy these
- conditions, can be treated as verbatim copying in other respects.
- If the required texts for either cover are too voluminous to fit
- legibly, you should put the first ones listed (as many as fit
- reasonably) on the actual cover, and continue the rest onto
- adjacent pages.
- If you publish or distribute Opaque copies of the Document
- numbering more than 100, you must either include a machine-readable
- Transparent copy along with each Opaque copy, or state in or with
- each Opaque copy a computer-network location from which the general
- network-using public has access to download using public-standard
- network protocols a complete Transparent copy of the Document, free
- of added material. If you use the latter option, you must take
- reasonably prudent steps, when you begin distribution of Opaque
- copies in quantity, to ensure that this Transparent copy will
- remain thus accessible at the stated location until at least one
- year after the last time you distribute an Opaque copy (directly or
- through your agents or retailers) of that edition to the public.
- It is requested, but not required, that you contact the authors of
- the Document well before redistributing any large number of copies,
- to give them a chance to provide you with an updated version of the
- Document.
- 4. MODIFICATIONS
- You may copy and distribute a Modified Version of the Document
- under the conditions of sections 2 and 3 above, provided that you
- release the Modified Version under precisely this License, with the
- Modified Version filling the role of the Document, thus licensing
- distribution and modification of the Modified Version to whoever
- possesses a copy of it. In addition, you must do these things in
- the Modified Version:
- A. Use in the Title Page (and on the covers, if any) a title
- distinct from that of the Document, and from those of previous
- versions (which should, if there were any, be listed in the
- History section of the Document). You may use the same title
- as a previous version if the original publisher of that
- version gives permission.
- B. List on the Title Page, as authors, one or more persons or
- entities responsible for authorship of the modifications in
- the Modified Version, together with at least five of the
- principal authors of the Document (all of its principal
- authors, if it has fewer than five), unless they release you
- from this requirement.
- C. State on the Title page the name of the publisher of the
- Modified Version, as the publisher.
- D. Preserve all the copyright notices of the Document.
- E. Add an appropriate copyright notice for your modifications
- adjacent to the other copyright notices.
- F. Include, immediately after the copyright notices, a license
- notice giving the public permission to use the Modified
- Version under the terms of this License, in the form shown in
- the Addendum below.
- G. Preserve in that license notice the full lists of Invariant
- Sections and required Cover Texts given in the Document's
- license notice.
- H. Include an unaltered copy of this License.
- I. Preserve the section Entitled "History", Preserve its Title,
- and add to it an item stating at least the title, year, new
- authors, and publisher of the Modified Version as given on the
- Title Page. If there is no section Entitled "History" in the
- Document, create one stating the title, year, authors, and
- publisher of the Document as given on its Title Page, then add
- an item describing the Modified Version as stated in the
- previous sentence.
- J. Preserve the network location, if any, given in the Document
- for public access to a Transparent copy of the Document, and
- likewise the network locations given in the Document for
- previous versions it was based on. These may be placed in the
- "History" section. You may omit a network location for a work
- that was published at least four years before the Document
- itself, or if the original publisher of the version it refers
- to gives permission.
- K. For any section Entitled "Acknowledgements" or "Dedications",
- Preserve the Title of the section, and preserve in the section
- all the substance and tone of each of the contributor
- acknowledgements and/or dedications given therein.
- L. Preserve all the Invariant Sections of the Document, unaltered
- in their text and in their titles. Section numbers or the
- equivalent are not considered part of the section titles.
- M. Delete any section Entitled "Endorsements". Such a section
- may not be included in the Modified Version.
- N. Do not retitle any existing section to be Entitled
- "Endorsements" or to conflict in title with any Invariant
- Section.
- O. Preserve any Warranty Disclaimers.
- If the Modified Version includes new front-matter sections or
- appendices that qualify as Secondary Sections and contain no
- material copied from the Document, you may at your option designate
- some or all of these sections as invariant. To do this, add their
- titles to the list of Invariant Sections in the Modified Version's
- license notice. These titles must be distinct from any other
- section titles.
- You may add a section Entitled "Endorsements", provided it contains
- nothing but endorsements of your Modified Version by various
- parties--for example, statements of peer review or that the text
- has been approved by an organization as the authoritative
- definition of a standard.
- You may add a passage of up to five words as a Front-Cover Text,
- and a passage of up to 25 words as a Back-Cover Text, to the end of
- the list of Cover Texts in the Modified Version. Only one passage
- of Front-Cover Text and one of Back-Cover Text may be added by (or
- through arrangements made by) any one entity. If the Document
- already includes a cover text for the same cover, previously added
- by you or by arrangement made by the same entity you are acting on
- behalf of, you may not add another; but you may replace the old
- one, on explicit permission from the previous publisher that added
- the old one.
- The author(s) and publisher(s) of the Document do not by this
- License give permission to use their names for publicity for or to
- assert or imply endorsement of any Modified Version.
- 5. COMBINING DOCUMENTS
- You may combine the Document with other documents released under
- this License, under the terms defined in section 4 above for
- modified versions, provided that you include in the combination all
- of the Invariant Sections of all of the original documents,
- unmodified, and list them all as Invariant Sections of your
- combined work in its license notice, and that you preserve all
- their Warranty Disclaimers.
- The combined work need only contain one copy of this License, and
- multiple identical Invariant Sections may be replaced with a single
- copy. If there are multiple Invariant Sections with the same name
- but different contents, make the title of each such section unique
- by adding at the end of it, in parentheses, the name of the
- original author or publisher of that section if known, or else a
- unique number. Make the same adjustment to the section titles in
- the list of Invariant Sections in the license notice of the
- combined work.
- In the combination, you must combine any sections Entitled
- "History" in the various original documents, forming one section
- Entitled "History"; likewise combine any sections Entitled
- "Acknowledgements", and any sections Entitled "Dedications". You
- must delete all sections Entitled "Endorsements."
- 6. COLLECTIONS OF DOCUMENTS
- You may make a collection consisting of the Document and other
- documents released under this License, and replace the individual
- copies of this License in the various documents with a single copy
- that is included in the collection, provided that you follow the
- rules of this License for verbatim copying of each of the documents
- in all other respects.
- You may extract a single document from such a collection, and
- distribute it individually under this License, provided you insert
- a copy of this License into the extracted document, and follow this
- License in all other respects regarding verbatim copying of that
- document.
- 7. AGGREGATION WITH INDEPENDENT WORKS
- A compilation of the Document or its derivatives with other
- separate and independent documents or works, in or on a volume of a
- storage or distribution medium, is called an "aggregate" if the
- copyright resulting from the compilation is not used to limit the
- legal rights of the compilation's users beyond what the individual
- works permit. When the Document is included in an aggregate, this
- License does not apply to the other works in the aggregate which
- are not themselves derivative works of the Document.
- If the Cover Text requirement of section 3 is applicable to these
- copies of the Document, then if the Document is less than one half
- of the entire aggregate, the Document's Cover Texts may be placed
- on covers that bracket the Document within the aggregate, or the
- electronic equivalent of covers if the Document is in electronic
- form. Otherwise they must appear on printed covers that bracket
- the whole aggregate.
- 8. TRANSLATION
- Translation is considered a kind of modification, so you may
- distribute translations of the Document under the terms of section
- 4. Replacing Invariant Sections with translations requires special
- permission from their copyright holders, but you may include
- translations of some or all Invariant Sections in addition to the
- original versions of these Invariant Sections. You may include a
- translation of this License, and all the license notices in the
- Document, and any Warranty Disclaimers, provided that you also
- include the original English version of this License and the
- original versions of those notices and disclaimers. In case of a
- disagreement between the translation and the original version of
- this License or a notice or disclaimer, the original version will
- prevail.
- If a section in the Document is Entitled "Acknowledgements",
- "Dedications", or "History", the requirement (section 4) to
- Preserve its Title (section 1) will typically require changing the
- actual title.
- 9. TERMINATION
- You may not copy, modify, sublicense, or distribute the Document
- except as expressly provided under this License. Any attempt
- otherwise to copy, modify, sublicense, or distribute it is void,
- and will automatically terminate your rights under this License.
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, receipt of a copy of some or all of the
- same material does not give you any rights to use it.
- 10. FUTURE REVISIONS OF THIS LICENSE
- The Free Software Foundation may publish new, revised versions of
- the GNU Free Documentation License from time to time. Such new
- versions will be similar in spirit to the present version, but may
- differ in detail to address new problems or concerns. See
- <http://www.gnu.org/copyleft/>.
- Each version of the License is given a distinguishing version
- number. If the Document specifies that a particular numbered
- version of this License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that specified version or of any later version that has been
- published (not as a draft) by the Free Software Foundation. If the
- Document does not specify a version number of this License, you may
- choose any version ever published (not as a draft) by the Free
- Software Foundation. If the Document specifies that a proxy can
- decide which future versions of this License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Document.
- 11. RELICENSING
- "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
- World Wide Web server that publishes copyrightable works and also
- provides prominent facilities for anybody to edit those works. A
- public wiki that anybody can edit is an example of such a server.
- A "Massive Multiauthor Collaboration" (or "MMC") contained in the
- site means any set of copyrightable works thus published on the MMC
- site.
- "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
- license published by Creative Commons Corporation, a not-for-profit
- corporation with a principal place of business in San Francisco,
- California, as well as future copyleft versions of that license
- published by that same organization.
- "Incorporate" means to publish or republish a Document, in whole or
- in part, as part of another Document.
- An MMC is "eligible for relicensing" if it is licensed under this
- License, and if all works that were first published under this
- License somewhere other than this MMC, and subsequently
- incorporated in whole or in part into the MMC, (1) had no cover
- texts or invariant sections, and (2) were thus incorporated prior
- to November 1, 2008.
- The operator of an MMC Site may republish an MMC contained in the
- site under CC-BY-SA on the same site at any time before August 1,
- 2009, provided the MMC is eligible for relicensing.
- ADDENDUM: How to use this License for your documents
- ====================================================
- To use this License in a document you have written, include a copy of
- the License in the document and put the following copyright and license
- notices just after the title page:
- Copyright (C) YEAR YOUR NAME.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3
- or any later version published by the Free Software Foundation;
- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
- Texts. A copy of the license is included in the section entitled ``GNU
- Free Documentation License''.
- If you have Invariant Sections, Front-Cover Texts and Back-Cover
- Texts, replace the "with...Texts." line with this:
- with the Invariant Sections being LIST THEIR TITLES, with
- the Front-Cover Texts being LIST, and with the Back-Cover Texts
- being LIST.
- If you have Invariant Sections without Cover Texts, or some other
- combination of the three, merge those two alternatives to suit the
- situation.
- If your document contains nontrivial examples of program code, we
- recommend releasing these examples in parallel under your choice of free
- software license, such as the GNU General Public License, to permit
- their use in free software.
- File: gfortran.info, Node: Funding, Next: Option Index, Prev: GNU Free Documentation License, Up: Top
- Funding Free Software
- *********************
- If you want to have more free software a few years from now, it makes
- sense for you to help encourage people to contribute funds for its
- development. The most effective approach known is to encourage
- commercial redistributors to donate.
- Users of free software systems can boost the pace of development by
- encouraging for-a-fee distributors to donate part of their selling price
- to free software developers--the Free Software Foundation, and others.
- The way to convince distributors to do this is to demand it and
- expect it from them. So when you compare distributors, judge them
- partly by how much they give to free software development. Show
- distributors they must compete to be the one who gives the most.
- To make this approach work, you must insist on numbers that you can
- compare, such as, "We will donate ten dollars to the Frobnitz project
- for each disk sold." Don't be satisfied with a vague promise, such as
- "A portion of the profits are donated," since it doesn't give a basis
- for comparison.
- Even a precise fraction "of the profits from this disk" is not very
- meaningful, since creative accounting and unrelated business decisions
- can greatly alter what fraction of the sales price counts as profit. If
- the price you pay is $50, ten percent of the profit is probably less
- than a dollar; it might be a few cents, or nothing at all.
- Some redistributors do development work themselves. This is useful
- too; but to keep everyone honest, you need to inquire how much they do,
- and what kind. Some kinds of development make much more long-term
- difference than others. For example, maintaining a separate version of
- a program contributes very little; maintaining the standard version of a
- program for the whole community contributes much. Easy new ports
- contribute little, since someone else would surely do them; difficult
- ports such as adding a new CPU to the GNU Compiler Collection contribute
- more; major new features or packages contribute the most.
- By establishing the idea that supporting further development is "the
- proper thing to do" when distributing free software for a fee, we can
- assure a steady flow of resources into making more free software.
- Copyright (C) 1994 Free Software Foundation, Inc.
- Verbatim copying and redistribution of this section is permitted
- without royalty; alteration is not permitted.
- File: gfortran.info, Node: Option Index, Next: Keyword Index, Prev: Funding, Up: Top
- Option Index
- ************
- 'gfortran''s command line options are indexed here without any initial
- '-' or '--'. Where an option has both positive and negative forms (such
- as -foption and -fno-option), relevant entries in the manual are indexed
- under the most appropriate form; it may sometimes be useful to look up
- both forms.
- �[index�]
- * Menu:
- * 'A-PREDICATE=ANSWER': Preprocessing Options.
- (line 119)
- * 'allow-invalid-boz': Fortran Dialect Options.
- (line 40)
- * 'APREDICATE=ANSWER': Preprocessing Options.
- (line 113)
- * 'backslash': Fortran Dialect Options.
- (line 112)
- * 'C': Preprocessing Options.
- (line 122)
- * 'c-prototypes': Interoperability Options.
- (line 7)
- * 'c-prototypes-external': Interoperability Options.
- (line 25)
- * 'CC': Preprocessing Options.
- (line 137)
- * 'cpp': Preprocessing Options.
- (line 12)
- * 'dD': Preprocessing Options.
- (line 35)
- * 'dI': Preprocessing Options.
- (line 51)
- * 'dM': Preprocessing Options.
- (line 26)
- * 'dN': Preprocessing Options.
- (line 41)
- * 'DNAME': Preprocessing Options.
- (line 151)
- * 'DNAME=DEFINITION': Preprocessing Options.
- (line 154)
- * 'dU': Preprocessing Options.
- (line 44)
- * 'faggressive-function-elimination': Code Gen Options. (line 435)
- * 'falign-commons': Code Gen Options. (line 408)
- * 'fall-intrinsics': Fortran Dialect Options.
- (line 17)
- * 'fallow-argument-mismatch': Fortran Dialect Options.
- (line 26)
- * 'fblas-matmul-limit': Code Gen Options. (line 337)
- * 'fbounds-check': Code Gen Options. (line 205)
- * 'fcheck': Code Gen Options. (line 144)
- * 'fcheck-array-temporaries': Code Gen Options. (line 239)
- * 'fcoarray': Code Gen Options. (line 130)
- * 'fconvert='CONVERSION: Runtime Options. (line 10)
- * 'fcray-pointer': Fortran Dialect Options.
- (line 167)
- * 'fd-lines-as-code': Fortran Dialect Options.
- (line 47)
- * 'fd-lines-as-comments': Fortran Dialect Options.
- (line 47)
- * 'fdec': Fortran Dialect Options.
- (line 54)
- * 'fdec-blank-format-item': Fortran Dialect Options.
- (line 102)
- * 'fdec-char-conversions': Fortran Dialect Options.
- (line 69)
- * 'fdec-format-defaults': Fortran Dialect Options.
- (line 98)
- * 'fdec-include': Fortran Dialect Options.
- (line 93)
- * 'fdec-intrinsic-ints': Fortran Dialect Options.
- (line 79)
- * 'fdec-math': Fortran Dialect Options.
- (line 84)
- * 'fdec-static': Fortran Dialect Options.
- (line 89)
- * 'fdec-structure': Fortran Dialect Options.
- (line 73)
- * 'fdefault-double-8': Fortran Dialect Options.
- (line 234)
- * 'fdefault-integer-8': Fortran Dialect Options.
- (line 198)
- * 'fdefault-real-10': Fortran Dialect Options.
- (line 214)
- * 'fdefault-real-16': Fortran Dialect Options.
- (line 224)
- * 'fdefault-real-8': Fortran Dialect Options.
- (line 204)
- * 'fdollar-ok': Fortran Dialect Options.
- (line 106)
- * 'fdump-fortran-global': Debugging Options. (line 33)
- * 'fdump-fortran-optimized': Debugging Options. (line 18)
- * 'fdump-fortran-original': Debugging Options. (line 10)
- * 'fdump-parse-tree': Debugging Options. (line 25)
- * 'fexternal-blas': Code Gen Options. (line 329)
- * ff2c: Code Gen Options. (line 28)
- * 'ffixed-form': Fortran Dialect Options.
- (line 11)
- * 'ffixed-line-length-'N: Fortran Dialect Options.
- (line 129)
- * 'ffpe-summary='LIST: Debugging Options. (line 73)
- * 'ffpe-trap='LIST: Debugging Options. (line 40)
- * 'ffree-form': Fortran Dialect Options.
- (line 11)
- * 'ffree-line-length-'N: Fortran Dialect Options.
- (line 151)
- * 'fimplicit-none': Fortran Dialect Options.
- (line 162)
- * 'finit-character': Code Gen Options. (line 372)
- * 'finit-derived': Code Gen Options. (line 372)
- * 'finit-integer': Code Gen Options. (line 372)
- * 'finit-local-zero': Code Gen Options. (line 372)
- * 'finit-logical': Code Gen Options. (line 372)
- * 'finit-real': Code Gen Options. (line 372)
- * 'finline-arg-packing': Code Gen Options. (line 304)
- * 'finline-matmul-limit': Code Gen Options. (line 348)
- * 'finteger-4-integer-8': Fortran Dialect Options.
- (line 242)
- * 'fintrinsic-modules-path' DIR: Directory Options. (line 36)
- * 'fmax-array-constructor': Code Gen Options. (line 242)
- * 'fmax-errors='N: Error and Warning Options.
- (line 27)
- * 'fmax-identifier-length='N: Fortran Dialect Options.
- (line 158)
- * 'fmax-stack-var-size': Code Gen Options. (line 260)
- * 'fmax-subrecord-length='LENGTH: Runtime Options. (line 29)
- * 'fmodule-private': Fortran Dialect Options.
- (line 124)
- * 'fno-automatic': Code Gen Options. (line 15)
- * 'fno-backtrace': Debugging Options. (line 86)
- * 'fno-protect-parens': Code Gen Options. (line 420)
- * 'fno-underscoring': Code Gen Options. (line 57)
- * 'fopenacc': Fortran Dialect Options.
- (line 171)
- * 'fopenmp': Fortran Dialect Options.
- (line 178)
- * 'fpack-derived': Code Gen Options. (line 282)
- * 'fpad-source': Fortran Dialect Options.
- (line 143)
- * 'fpp': Preprocessing Options.
- (line 12)
- * 'frange-check': Fortran Dialect Options.
- (line 186)
- * 'freal-4-real-10': Fortran Dialect Options.
- (line 257)
- * 'freal-4-real-16': Fortran Dialect Options.
- (line 257)
- * 'freal-4-real-8': Fortran Dialect Options.
- (line 257)
- * 'freal-8-real-10': Fortran Dialect Options.
- (line 257)
- * 'freal-8-real-16': Fortran Dialect Options.
- (line 257)
- * 'freal-8-real-4': Fortran Dialect Options.
- (line 257)
- * 'frealloc-lhs': Code Gen Options. (line 429)
- * 'frecord-marker='LENGTH: Runtime Options. (line 21)
- * 'frecursive': Code Gen Options. (line 362)
- * 'frepack-arrays': Code Gen Options. (line 288)
- * 'frontend-loop-interchange': Code Gen Options. (line 456)
- * 'frontend-optimize': Code Gen Options. (line 443)
- * 'fsecond-underscore': Code Gen Options. (line 113)
- * 'fshort-enums': Code Gen Options. (line 298)
- * 'fshort-enums' <1>: Fortran 2003 status. (line 92)
- * 'fsign-zero': Runtime Options. (line 34)
- * 'fstack-arrays': Code Gen Options. (line 274)
- * 'fsyntax-only': Error and Warning Options.
- (line 33)
- * 'ftest-forall-temp': Fortran Dialect Options.
- (line 287)
- * 'fworking-directory': Preprocessing Options.
- (line 55)
- * 'H': Preprocessing Options.
- (line 174)
- * 'I'DIR: Directory Options. (line 14)
- * 'idirafter DIR': Preprocessing Options.
- (line 69)
- * 'imultilib DIR': Preprocessing Options.
- (line 76)
- * 'iprefix PREFIX': Preprocessing Options.
- (line 80)
- * 'iquote DIR': Preprocessing Options.
- (line 89)
- * 'isysroot DIR': Preprocessing Options.
- (line 85)
- * 'isystem DIR': Preprocessing Options.
- (line 96)
- * 'J'DIR: Directory Options. (line 29)
- * 'M'DIR: Directory Options. (line 29)
- * 'nostdinc': Preprocessing Options.
- (line 104)
- * 'P': Preprocessing Options.
- (line 179)
- * 'pedantic': Error and Warning Options.
- (line 39)
- * 'pedantic-errors': Error and Warning Options.
- (line 58)
- * 'static-libgfortran': Link Options. (line 11)
- * 'std='STD option: Fortran Dialect Options.
- (line 268)
- * 'tail-call-workaround': Code Gen Options. (line 209)
- * 'UNAME': Preprocessing Options.
- (line 185)
- * 'undef': Preprocessing Options.
- (line 109)
- * 'Waliasing': Error and Warning Options.
- (line 71)
- * 'Walign-commons': Error and Warning Options.
- (line 228)
- * 'Wall': Error and Warning Options.
- (line 62)
- * 'Wampersand': Error and Warning Options.
- (line 88)
- * 'Warray-temporaries': Error and Warning Options.
- (line 96)
- * 'Wc-binding-type': Error and Warning Options.
- (line 101)
- * 'Wcharacter-truncation': Error and Warning Options.
- (line 108)
- * 'Wcompare-reals': Error and Warning Options.
- (line 256)
- * 'Wconversion': Error and Warning Options.
- (line 117)
- * 'Wconversion-extra': Error and Warning Options.
- (line 121)
- * 'Wdo-subscript': Error and Warning Options.
- (line 268)
- * 'Werror': Error and Warning Options.
- (line 280)
- * 'Wextra': Error and Warning Options.
- (line 125)
- * 'Wfrontend-loop-interchange': Error and Warning Options.
- (line 130)
- * 'Wfunction-elimination': Error and Warning Options.
- (line 234)
- * 'Wimplicit-interface': Error and Warning Options.
- (line 134)
- * 'Wimplicit-procedure': Error and Warning Options.
- (line 140)
- * 'Winteger-division': Error and Warning Options.
- (line 144)
- * 'Wintrinsic-shadow': Error and Warning Options.
- (line 206)
- * 'Wintrinsics-std': Error and Warning Options.
- (line 148)
- * 'Wline-truncation': Error and Warning Options.
- (line 111)
- * 'Woverwrite-recursive': Error and Warning Options.
- (line 155)
- * 'Wpedantic': Error and Warning Options.
- (line 39)
- * 'Wreal-q-constant': Error and Warning Options.
- (line 162)
- * 'Wrealloc-lhs': Error and Warning Options.
- (line 239)
- * 'Wrealloc-lhs-all': Error and Warning Options.
- (line 251)
- * 'Wsurprising': Error and Warning Options.
- (line 166)
- * 'Wtabs': Error and Warning Options.
- (line 188)
- * 'Wtargt-lifetime': Error and Warning Options.
- (line 260)
- * 'Wundefined-do-loop': Error and Warning Options.
- (line 196)
- * 'Wunderflow': Error and Warning Options.
- (line 201)
- * 'Wunused-dummy-argument': Error and Warning Options.
- (line 217)
- * 'Wunused-parameter': Error and Warning Options.
- (line 221)
- * 'Wuse-without-only': Error and Warning Options.
- (line 213)
- * 'Wzerotrip': Error and Warning Options.
- (line 264)
- File: gfortran.info, Node: Keyword Index, Prev: Option Index, Up: Top
- Keyword Index
- *************
- �[index�]
- * Menu:
- * '$': Fortran Dialect Options.
- (line 106)
- * '%LOC': Argument list functions.
- (line 6)
- * '%REF': Argument list functions.
- (line 6)
- * '%VAL': Argument list functions.
- (line 6)
- * '&': Error and Warning Options.
- (line 88)
- * '[...]': Fortran 2003 status. (line 78)
- * _gfortran_set_args: _gfortran_set_args. (line 6)
- * _gfortran_set_convert: _gfortran_set_convert.
- (line 6)
- * _gfortran_set_fpe: _gfortran_set_fpe. (line 6)
- * _gfortran_set_max_subrecord_length: _gfortran_set_max_subrecord_length.
- (line 6)
- * _gfortran_set_options: _gfortran_set_options.
- (line 6)
- * _gfortran_set_record_marker: _gfortran_set_record_marker.
- (line 6)
- * ABORT: ABORT. (line 6)
- * ABS: ABS. (line 6)
- * absolute value: ABS. (line 6)
- * ACCESS: ACCESS. (line 6)
- * 'ACCESS='STREAM'' I/O: Fortran 2003 status. (line 102)
- * ACHAR: ACHAR. (line 6)
- * ACOS: ACOS. (line 6)
- * ACOSD: ACOSD. (line 6)
- * ACOSH: ACOSH. (line 6)
- * adjust string: ADJUSTL. (line 6)
- * adjust string <1>: ADJUSTR. (line 6)
- * ADJUSTL: ADJUSTL. (line 6)
- * ADJUSTR: ADJUSTR. (line 6)
- * AIMAG: AIMAG. (line 6)
- * AINT: AINT. (line 6)
- * ALARM: ALARM. (line 6)
- * ALGAMA: LOG_GAMMA. (line 6)
- * aliasing: Error and Warning Options.
- (line 71)
- * alignment of 'COMMON' blocks: Error and Warning Options.
- (line 228)
- * alignment of 'COMMON' blocks <1>: Code Gen Options. (line 408)
- * ALL: ALL. (line 6)
- * all warnings: Error and Warning Options.
- (line 62)
- * 'ALLOCATABLE' components of derived types: Fortran 2003 status.
- (line 100)
- * 'ALLOCATABLE' dummy arguments: Fortran 2003 status. (line 98)
- * 'ALLOCATABLE' function results: Fortran 2003 status. (line 99)
- * ALLOCATED: ALLOCATED. (line 6)
- * allocation, moving: MOVE_ALLOC. (line 6)
- * allocation, status: ALLOCATED. (line 6)
- * ALOG: LOG. (line 6)
- * ALOG10: LOG10. (line 6)
- * AMAX0: MAX. (line 6)
- * AMAX1: MAX. (line 6)
- * AMIN0: MIN. (line 6)
- * AMIN1: MIN. (line 6)
- * AMOD: MOD. (line 6)
- * AND: AND. (line 6)
- * ANINT: ANINT. (line 6)
- * ANY: ANY. (line 6)
- * area hyperbolic cosine: ACOSH. (line 6)
- * area hyperbolic sine: ASINH. (line 6)
- * area hyperbolic tangent: ATANH. (line 6)
- * argument list functions: Argument list functions.
- (line 6)
- * arguments, to program: COMMAND_ARGUMENT_COUNT.
- (line 6)
- * arguments, to program <1>: GETARG. (line 6)
- * arguments, to program <2>: GET_COMMAND. (line 6)
- * arguments, to program <3>: GET_COMMAND_ARGUMENT.
- (line 6)
- * arguments, to program <4>: IARGC. (line 6)
- * array, add elements: SUM. (line 6)
- * array, AND: IALL. (line 6)
- * array, apply condition: ALL. (line 6)
- * array, apply condition <1>: ANY. (line 6)
- * array, bounds checking: Code Gen Options. (line 144)
- * array, change dimensions: RESHAPE. (line 6)
- * array, combine arrays: MERGE. (line 6)
- * array, condition testing: ALL. (line 6)
- * array, condition testing <1>: ANY. (line 6)
- * array, conditionally add elements: SUM. (line 6)
- * array, conditionally count elements: COUNT. (line 6)
- * array, conditionally multiply elements: PRODUCT. (line 6)
- * array, constructors: Fortran 2003 status. (line 78)
- * array, contiguity: IS_CONTIGUOUS. (line 6)
- * array, count elements: SIZE. (line 6)
- * array, duplicate dimensions: SPREAD. (line 6)
- * array, duplicate elements: SPREAD. (line 6)
- * array, element counting: COUNT. (line 6)
- * array, gather elements: PACK. (line 6)
- * array, increase dimension: SPREAD. (line 6)
- * array, increase dimension <1>: UNPACK. (line 6)
- * array, indices of type real: Real array indices. (line 6)
- * array, location of maximum element: MAXLOC. (line 6)
- * array, location of minimum element: MINLOC. (line 6)
- * array, lower bound: LBOUND. (line 6)
- * array, maximum value: MAXVAL. (line 6)
- * array, merge arrays: MERGE. (line 6)
- * array, minimum value: MINVAL. (line 6)
- * array, multiply elements: PRODUCT. (line 6)
- * array, number of elements: COUNT. (line 6)
- * array, number of elements <1>: SIZE. (line 6)
- * array, OR: IANY. (line 6)
- * array, packing: PACK. (line 6)
- * array, parity: IPARITY. (line 6)
- * array, permutation: CSHIFT. (line 6)
- * array, product: PRODUCT. (line 6)
- * array, reduce dimension: PACK. (line 6)
- * array, rotate: CSHIFT. (line 6)
- * array, scatter elements: UNPACK. (line 6)
- * array, shape: SHAPE. (line 6)
- * array, shift: EOSHIFT. (line 6)
- * array, shift circularly: CSHIFT. (line 6)
- * array, size: SIZE. (line 6)
- * array, sum: SUM. (line 6)
- * array, transmogrify: RESHAPE. (line 6)
- * array, transpose: TRANSPOSE. (line 6)
- * array, unpacking: UNPACK. (line 6)
- * array, upper bound: UBOUND. (line 6)
- * array, XOR: IPARITY. (line 6)
- * ASCII collating sequence: ACHAR. (line 6)
- * ASCII collating sequence <1>: IACHAR. (line 6)
- * ASIN: ASIN. (line 6)
- * ASIND: ASIND. (line 6)
- * ASINH: ASINH. (line 6)
- * ASSOCIATED: ASSOCIATED. (line 6)
- * association status: ASSOCIATED. (line 6)
- * association status, C pointer: C_ASSOCIATED. (line 6)
- * asynchronous I/O: Asynchronous I/O. (line 6)
- * ATAN: ATAN. (line 6)
- * ATAN2: ATAN2. (line 6)
- * ATAN2D: ATAN2D. (line 6)
- * ATAND: ATAND. (line 6)
- * ATANH: ATANH. (line 6)
- * Atomic subroutine, add: ATOMIC_ADD. (line 6)
- * Atomic subroutine, ADD with fetch: ATOMIC_FETCH_ADD. (line 6)
- * Atomic subroutine, AND: ATOMIC_AND. (line 6)
- * Atomic subroutine, AND with fetch: ATOMIC_FETCH_AND. (line 6)
- * Atomic subroutine, compare and swap: ATOMIC_CAS. (line 6)
- * Atomic subroutine, define: ATOMIC_DEFINE. (line 6)
- * Atomic subroutine, OR: ATOMIC_OR. (line 6)
- * Atomic subroutine, OR with fetch: ATOMIC_FETCH_OR. (line 6)
- * Atomic subroutine, reference: ATOMIC_REF. (line 6)
- * Atomic subroutine, XOR: ATOMIC_XOR. (line 6)
- * Atomic subroutine, XOR with fetch: ATOMIC_FETCH_XOR. (line 6)
- * ATOMIC_ADD: ATOMIC_ADD. (line 6)
- * ATOMIC_AND: ATOMIC_AND. (line 6)
- * ATOMIC_DEFINE: ATOMIC_CAS. (line 6)
- * ATOMIC_DEFINE <1>: ATOMIC_DEFINE. (line 6)
- * ATOMIC_FETCH_ADD: ATOMIC_FETCH_ADD. (line 6)
- * ATOMIC_FETCH_AND: ATOMIC_FETCH_AND. (line 6)
- * ATOMIC_FETCH_OR: ATOMIC_FETCH_OR. (line 6)
- * ATOMIC_FETCH_XOR: ATOMIC_FETCH_XOR. (line 6)
- * ATOMIC_OR: ATOMIC_OR. (line 6)
- * ATOMIC_REF: ATOMIC_REF. (line 6)
- * ATOMIC_XOR: ATOMIC_XOR. (line 6)
- * Authors: Contributors. (line 6)
- * 'AUTOMATIC': AUTOMATIC and STATIC attributes.
- (line 6)
- * BABS: ABS. (line 6)
- * backslash: Fortran Dialect Options.
- (line 112)
- * 'BACKSPACE': Read/Write after EOF marker.
- (line 6)
- * BACKTRACE: BACKTRACE. (line 6)
- * backtrace: Debugging Options. (line 86)
- * backtrace <1>: BACKTRACE. (line 6)
- * base 10 logarithm function: LOG10. (line 6)
- * BBCLR: IBCLR. (line 6)
- * BBITS: IBITS. (line 6)
- * BBSET: IBSET. (line 6)
- * BBTEST: BTEST. (line 6)
- * BESJ0: BESSEL_J0. (line 6)
- * BESJ1: BESSEL_J1. (line 6)
- * BESJN: BESSEL_JN. (line 6)
- * Bessel function, first kind: BESSEL_J0. (line 6)
- * Bessel function, first kind <1>: BESSEL_J1. (line 6)
- * Bessel function, first kind <2>: BESSEL_JN. (line 6)
- * Bessel function, second kind: BESSEL_Y0. (line 6)
- * Bessel function, second kind <1>: BESSEL_Y1. (line 6)
- * Bessel function, second kind <2>: BESSEL_YN. (line 6)
- * BESSEL_J0: BESSEL_J0. (line 6)
- * BESSEL_J1: BESSEL_J1. (line 6)
- * BESSEL_JN: BESSEL_JN. (line 6)
- * BESSEL_Y0: BESSEL_Y0. (line 6)
- * BESSEL_Y1: BESSEL_Y1. (line 6)
- * BESSEL_YN: BESSEL_YN. (line 6)
- * BESY0: BESSEL_Y0. (line 6)
- * BESY1: BESSEL_Y1. (line 6)
- * BESYN: BESSEL_YN. (line 6)
- * BGE: BGE. (line 6)
- * BGT: BGT. (line 6)
- * BIAND: IAND. (line 6)
- * BIEOR: IEOR. (line 6)
- * binary representation: POPCNT. (line 6)
- * binary representation <1>: POPPAR. (line 6)
- * BIOR: IOR. (line 6)
- * bit intrinsics checking: Code Gen Options. (line 144)
- * BITEST: BTEST. (line 6)
- * bits set: POPCNT. (line 6)
- * bits, AND of array elements: IALL. (line 6)
- * bits, clear: IBCLR. (line 6)
- * bits, extract: IBITS. (line 6)
- * bits, get: IBITS. (line 6)
- * bits, merge: MERGE_BITS. (line 6)
- * bits, move: MVBITS. (line 6)
- * bits, move <1>: TRANSFER. (line 6)
- * bits, negate: NOT. (line 6)
- * bits, number of: BIT_SIZE. (line 6)
- * bits, OR of array elements: IANY. (line 6)
- * bits, set: IBSET. (line 6)
- * bits, shift: ISHFT. (line 6)
- * bits, shift circular: ISHFTC. (line 6)
- * bits, shift left: LSHIFT. (line 6)
- * bits, shift left <1>: SHIFTL. (line 6)
- * bits, shift right: RSHIFT. (line 6)
- * bits, shift right <1>: SHIFTA. (line 6)
- * bits, shift right <2>: SHIFTR. (line 6)
- * bits, testing: BTEST. (line 6)
- * bits, unset: IBCLR. (line 6)
- * bits, XOR of array elements: IPARITY. (line 6)
- * bitwise comparison: BGE. (line 6)
- * bitwise comparison <1>: BGT. (line 6)
- * bitwise comparison <2>: BLE. (line 6)
- * bitwise comparison <3>: BLT. (line 6)
- * bitwise logical and: AND. (line 6)
- * bitwise logical and <1>: IAND. (line 6)
- * bitwise logical exclusive or: IEOR. (line 6)
- * bitwise logical exclusive or <1>: XOR. (line 6)
- * bitwise logical not: NOT. (line 6)
- * bitwise logical or: IOR. (line 6)
- * bitwise logical or <1>: OR. (line 6)
- * BIT_SIZE: BIT_SIZE. (line 6)
- * BJTEST: BTEST. (line 6)
- * BKTEST: BTEST. (line 6)
- * BLE: BLE. (line 6)
- * BLT: BLT. (line 6)
- * BMOD: MOD. (line 6)
- * BMVBITS: MVBITS. (line 6)
- * BNOT: NOT. (line 6)
- * bounds checking: Code Gen Options. (line 144)
- * BOZ literal constants: BOZ literal constants.
- (line 6)
- * BSHFT: ISHFT. (line 6)
- * BSHFTC: ISHFTC. (line 6)
- * BTEST: BTEST. (line 6)
- * CABS: ABS. (line 6)
- * calling convention: Code Gen Options. (line 28)
- * 'CARRIAGECONTROL': Extended I/O specifiers.
- (line 6)
- * CCOS: COS. (line 6)
- * CCOSD: COSD. (line 6)
- * CDABS: ABS. (line 6)
- * CDCOS: COS. (line 6)
- * CDCOSD: COSD. (line 6)
- * CDEXP: EXP. (line 6)
- * CDLOG: LOG. (line 6)
- * CDSIN: SIN. (line 6)
- * CDSIND: SIND. (line 6)
- * CDSQRT: SQRT. (line 6)
- * CEILING: CEILING. (line 6)
- * ceiling: ANINT. (line 6)
- * ceiling <1>: CEILING. (line 6)
- * CEXP: EXP. (line 6)
- * CHAR: CHAR. (line 6)
- * character kind: SELECTED_CHAR_KIND. (line 6)
- * character set: Fortran Dialect Options.
- (line 106)
- * CHDIR: CHDIR. (line 6)
- * checking array temporaries: Code Gen Options. (line 144)
- * checking subscripts: Code Gen Options. (line 144)
- * CHMOD: CHMOD. (line 6)
- * clock ticks: MCLOCK. (line 6)
- * clock ticks <1>: MCLOCK8. (line 6)
- * clock ticks <2>: SYSTEM_CLOCK. (line 6)
- * CLOG: LOG. (line 6)
- * CMPLX: CMPLX. (line 6)
- * coarray, 'IMAGE_INDEX': IMAGE_INDEX. (line 6)
- * coarray, lower bound: LCOBOUND. (line 6)
- * coarray, 'NUM_IMAGES': NUM_IMAGES. (line 6)
- * coarray, 'THIS_IMAGE': THIS_IMAGE. (line 6)
- * coarray, upper bound: UCOBOUND. (line 6)
- * Coarray, _gfortran_caf_atomic_cas: _gfortran_caf_atomic_cas.
- (line 6)
- * Coarray, _gfortran_caf_atomic_define: _gfortran_caf_atomic_define.
- (line 6)
- * Coarray, _gfortran_caf_atomic_op: _gfortran_caf_atomic_op.
- (line 6)
- * Coarray, _gfortran_caf_atomic_ref: _gfortran_caf_atomic_ref.
- (line 6)
- * Coarray, _gfortran_caf_co_broadcast: _gfortran_caf_co_broadcast.
- (line 6)
- * Coarray, _gfortran_caf_co_max: _gfortran_caf_co_max.
- (line 6)
- * Coarray, _gfortran_caf_co_min: _gfortran_caf_co_min.
- (line 6)
- * Coarray, _gfortran_caf_co_reduce: _gfortran_caf_co_reduce.
- (line 6)
- * Coarray, _gfortran_caf_co_sum: _gfortran_caf_co_sum.
- (line 6)
- * Coarray, _gfortran_caf_deregister: _gfortran_caf_deregister.
- (line 6)
- * Coarray, _gfortran_caf_error_stop: _gfortran_caf_error_stop.
- (line 6)
- * Coarray, _gfortran_caf_error_stop_str: _gfortran_caf_error_stop_str.
- (line 6)
- * Coarray, _gfortran_caf_event_post: _gfortran_caf_event_post.
- (line 6)
- * Coarray, _gfortran_caf_event_query: _gfortran_caf_event_query.
- (line 6)
- * Coarray, _gfortran_caf_event_wait: _gfortran_caf_event_wait.
- (line 6)
- * Coarray, _gfortran_caf_failed_images: _gfortran_caf_failed_images.
- (line 6)
- * Coarray, _gfortran_caf_fail_image: _gfortran_caf_fail_image.
- (line 6)
- * Coarray, _gfortran_caf_finish: _gfortran_caf_finish.
- (line 6)
- * Coarray, _gfortran_caf_get: _gfortran_caf_get. (line 6)
- * Coarray, _gfortran_caf_get_by_ref: _gfortran_caf_get_by_ref.
- (line 6)
- * Coarray, _gfortran_caf_image_status: _gfortran_caf_image_status.
- (line 6)
- * Coarray, _gfortran_caf_init: _gfortran_caf_init. (line 6)
- * Coarray, _gfortran_caf_is_present: _gfortran_caf_is_present.
- (line 6)
- * Coarray, _gfortran_caf_lock: _gfortran_caf_lock. (line 6)
- * Coarray, _gfortran_caf_num_images: _gfortran_caf_num_images.
- (line 6)
- * Coarray, _gfortran_caf_register: _gfortran_caf_register.
- (line 6)
- * Coarray, _gfortran_caf_send: _gfortran_caf_send. (line 6)
- * Coarray, _gfortran_caf_sendget: _gfortran_caf_sendget.
- (line 6)
- * Coarray, _gfortran_caf_sendget_by_ref: _gfortran_caf_sendget_by_ref.
- (line 6)
- * Coarray, _gfortran_caf_send_by_ref: _gfortran_caf_send_by_ref.
- (line 6)
- * Coarray, _gfortran_caf_stopped_images: _gfortran_caf_stopped_images.
- (line 6)
- * Coarray, _gfortran_caf_sync_all: _gfortran_caf_sync_all.
- (line 6)
- * Coarray, _gfortran_caf_sync_images: _gfortran_caf_sync_images.
- (line 6)
- * Coarray, _gfortran_caf_sync_memory: _gfortran_caf_sync_memory.
- (line 6)
- * Coarray, _gfortran_caf_this_image: _gfortran_caf_this_image.
- (line 6)
- * Coarray, _gfortran_caf_unlock: _gfortran_caf_unlock.
- (line 6)
- * coarrays: Code Gen Options. (line 130)
- * Coarrays: Coarray Programming. (line 6)
- * code generation, conventions: Code Gen Options. (line 6)
- * collating sequence, ASCII: ACHAR. (line 6)
- * collating sequence, ASCII <1>: IACHAR. (line 6)
- * Collectives, generic reduction: CO_REDUCE. (line 6)
- * Collectives, maximal value: CO_MAX. (line 6)
- * Collectives, minimal value: CO_MIN. (line 6)
- * Collectives, sum of values: CO_SUM. (line 6)
- * Collectives, value broadcasting: CO_BROADCAST. (line 6)
- * command line: EXECUTE_COMMAND_LINE.
- (line 6)
- * command options: Invoking GNU Fortran.
- (line 6)
- * command-line arguments: COMMAND_ARGUMENT_COUNT.
- (line 6)
- * command-line arguments <1>: GETARG. (line 6)
- * command-line arguments <2>: GET_COMMAND. (line 6)
- * command-line arguments <3>: GET_COMMAND_ARGUMENT.
- (line 6)
- * command-line arguments <4>: IARGC. (line 6)
- * command-line arguments, number of: COMMAND_ARGUMENT_COUNT.
- (line 6)
- * command-line arguments, number of <1>: IARGC. (line 6)
- * COMMAND_ARGUMENT_COUNT: COMMAND_ARGUMENT_COUNT.
- (line 6)
- * 'COMMON': Volatile COMMON blocks.
- (line 6)
- * compiler flags inquiry function: COMPILER_OPTIONS. (line 6)
- * compiler, name and version: COMPILER_VERSION. (line 6)
- * COMPILER_OPTIONS: COMPILER_OPTIONS. (line 6)
- * COMPILER_VERSION: COMPILER_VERSION. (line 6)
- * COMPLEX: COMPLEX. (line 6)
- * complex conjugate: CONJG. (line 6)
- * Complex function: Alternate complex function syntax.
- (line 6)
- * complex numbers, conversion to: CMPLX. (line 6)
- * complex numbers, conversion to <1>: COMPLEX. (line 6)
- * complex numbers, conversion to <2>: DCMPLX. (line 6)
- * complex numbers, imaginary part: AIMAG. (line 6)
- * complex numbers, real part: DREAL. (line 6)
- * complex numbers, real part <1>: REAL. (line 6)
- * Conditional compilation: Preprocessing and conditional compilation.
- (line 6)
- * CONJG: CONJG. (line 6)
- * consistency, durability: Data consistency and durability.
- (line 6)
- * Contributing: Contributing. (line 6)
- * Contributors: Contributors. (line 6)
- * conversion: Error and Warning Options.
- (line 117)
- * conversion <1>: Error and Warning Options.
- (line 121)
- * conversion, to character: Character conversion.
- (line 6)
- * conversion, to character <1>: CHAR. (line 6)
- * conversion, to complex: CMPLX. (line 6)
- * conversion, to complex <1>: COMPLEX. (line 6)
- * conversion, to complex <2>: DCMPLX. (line 6)
- * conversion, to integer: Implicitly convert LOGICAL and INTEGER values.
- (line 6)
- * conversion, to integer <1>: IACHAR. (line 6)
- * conversion, to integer <2>: ICHAR. (line 6)
- * conversion, to integer <3>: INT. (line 6)
- * conversion, to integer <4>: INT2. (line 6)
- * conversion, to integer <5>: INT8. (line 6)
- * conversion, to integer <6>: LONG. (line 6)
- * conversion, to logical: Implicitly convert LOGICAL and INTEGER values.
- (line 6)
- * conversion, to logical <1>: LOGICAL. (line 6)
- * conversion, to real: DBLE. (line 6)
- * conversion, to real <1>: REAL. (line 6)
- * conversion, to string: CTIME. (line 6)
- * 'CONVERT' specifier: CONVERT specifier. (line 6)
- * core, dump: ABORT. (line 6)
- * COS: COS. (line 6)
- * COSD: COSD. (line 6)
- * COSH: COSH. (line 6)
- * cosine: COS. (line 6)
- * cosine, degrees: COSD. (line 6)
- * cosine, hyperbolic: COSH. (line 6)
- * cosine, hyperbolic, inverse: ACOSH. (line 6)
- * cosine, inverse: ACOS. (line 6)
- * cosine, inverse, degrees: ACOSD. (line 6)
- * COTAN: COTAN. (line 6)
- * COTAND: COTAND. (line 6)
- * cotangent: COTAN. (line 6)
- * cotangent, degrees: COTAND. (line 6)
- * COUNT: COUNT. (line 6)
- * CO_BROADCAST: CO_BROADCAST. (line 6)
- * CO_MAX: CO_MAX. (line 6)
- * CO_MIN: CO_MIN. (line 6)
- * CO_REDUCE: CO_REDUCE. (line 6)
- * CO_SUM: CO_SUM. (line 6)
- * CPP: Preprocessing and conditional compilation.
- (line 6)
- * CPP <1>: Preprocessing Options.
- (line 6)
- * CPU_TIME: CPU_TIME. (line 6)
- * Credits: Contributors. (line 6)
- * CSHIFT: CSHIFT. (line 6)
- * CSIN: SIN. (line 6)
- * CSIND: SIND. (line 6)
- * CSQRT: SQRT. (line 6)
- * CTIME: CTIME. (line 6)
- * current date: DATE_AND_TIME. (line 6)
- * current date <1>: FDATE. (line 6)
- * current date <2>: IDATE. (line 6)
- * current time: DATE_AND_TIME. (line 6)
- * current time <1>: FDATE. (line 6)
- * current time <2>: ITIME. (line 6)
- * current time <3>: TIME. (line 6)
- * current time <4>: TIME8. (line 6)
- * C_ASSOCIATED: C_ASSOCIATED. (line 6)
- * C_FUNLOC: C_FUNLOC. (line 6)
- * C_F_POINTER: C_F_POINTER. (line 6)
- * C_F_PROCPOINTER: C_F_PROCPOINTER. (line 6)
- * C_LOC: C_LOC. (line 6)
- * C_SIZEOF: C_SIZEOF. (line 6)
- * DABS: ABS. (line 6)
- * DACOS: ACOS. (line 6)
- * DACOSD: ACOSD. (line 6)
- * DACOSH: ACOSH. (line 6)
- * DASIN: ASIN. (line 6)
- * DASIND: ASIND. (line 6)
- * DASINH: ASINH. (line 6)
- * DATAN: ATAN. (line 6)
- * DATAN2: ATAN2. (line 6)
- * DATAN2D: ATAN2D. (line 6)
- * DATAND: ATAND. (line 6)
- * DATANH: ATANH. (line 6)
- * date, current: DATE_AND_TIME. (line 6)
- * date, current <1>: FDATE. (line 6)
- * date, current <2>: IDATE. (line 6)
- * DATE_AND_TIME: DATE_AND_TIME. (line 6)
- * DBESJ0: BESSEL_J0. (line 6)
- * DBESJ1: BESSEL_J1. (line 6)
- * DBESJN: BESSEL_JN. (line 6)
- * DBESY0: BESSEL_Y0. (line 6)
- * DBESY1: BESSEL_Y1. (line 6)
- * DBESYN: BESSEL_YN. (line 6)
- * DBLE: DBLE. (line 6)
- * DCMPLX: DCMPLX. (line 6)
- * DCONJG: CONJG. (line 6)
- * DCOS: COS. (line 6)
- * DCOSD: COSD. (line 6)
- * DCOSH: COSH. (line 6)
- * DCOTAN: COTAN. (line 6)
- * DCOTAND: COTAND. (line 6)
- * DDIM: DIM. (line 6)
- * debugging information options: Debugging Options. (line 6)
- * debugging, preprocessor: Preprocessing Options.
- (line 26)
- * debugging, preprocessor <1>: Preprocessing Options.
- (line 35)
- * debugging, preprocessor <2>: Preprocessing Options.
- (line 41)
- * debugging, preprocessor <3>: Preprocessing Options.
- (line 44)
- * debugging, preprocessor <4>: Preprocessing Options.
- (line 51)
- * 'DECODE': ENCODE and DECODE statements.
- (line 6)
- * delayed execution: ALARM. (line 6)
- * delayed execution <1>: SLEEP. (line 6)
- * DEXP: EXP. (line 6)
- * DFLOAT: REAL. (line 6)
- * DGAMMA: GAMMA. (line 6)
- * dialect options: Fortran Dialect Options.
- (line 6)
- * DIGITS: DIGITS. (line 6)
- * DIM: DIM. (line 6)
- * DIMAG: AIMAG. (line 6)
- * DINT: AINT. (line 6)
- * directive, 'INCLUDE': Directory Options. (line 6)
- * directory, options: Directory Options. (line 6)
- * directory, search paths for inclusion: Directory Options. (line 14)
- * division, modulo: MODULO. (line 6)
- * division, remainder: MOD. (line 6)
- * DLGAMA: LOG_GAMMA. (line 6)
- * DLOG: LOG. (line 6)
- * DLOG10: LOG10. (line 6)
- * DMAX1: MAX. (line 6)
- * DMIN1: MIN. (line 6)
- * DMOD: MOD. (line 6)
- * DNINT: ANINT. (line 6)
- * dot product: DOT_PRODUCT. (line 6)
- * DOT_PRODUCT: DOT_PRODUCT. (line 6)
- * DPROD: DPROD. (line 6)
- * DREAL: DREAL. (line 6)
- * DSHIFTL: DSHIFTL. (line 6)
- * DSHIFTR: DSHIFTR. (line 6)
- * DSIGN: SIGN. (line 6)
- * DSIN: SIN. (line 6)
- * DSIND: SIND. (line 6)
- * DSINH: SINH. (line 6)
- * DSQRT: SQRT. (line 6)
- * DTAN: TAN. (line 6)
- * DTAND: TAND. (line 6)
- * DTANH: TANH. (line 6)
- * DTIME: DTIME. (line 6)
- * dummy argument, unused: Error and Warning Options.
- (line 217)
- * elapsed time: DTIME. (line 6)
- * elapsed time <1>: SECNDS. (line 6)
- * elapsed time <2>: SECOND. (line 6)
- * Elimination of functions with identical argument lists: Code Gen Options.
- (line 435)
- * 'ENCODE': ENCODE and DECODE statements.
- (line 6)
- * 'ENUM' statement: Fortran 2003 status. (line 92)
- * 'ENUMERATOR' statement: Fortran 2003 status. (line 92)
- * environment variable: Environment Variables.
- (line 6)
- * environment variable <1>: Runtime. (line 6)
- * environment variable <2>: GETENV. (line 6)
- * environment variable <3>: GET_ENVIRONMENT_VARIABLE.
- (line 6)
- * 'EOF': Read/Write after EOF marker.
- (line 6)
- * EOSHIFT: EOSHIFT. (line 6)
- * EPSILON: EPSILON. (line 6)
- * ERF: ERF. (line 6)
- * ERFC: ERFC. (line 6)
- * ERFC_SCALED: ERFC_SCALED. (line 6)
- * error function: ERF. (line 6)
- * error function, complementary: ERFC. (line 6)
- * error function, complementary, exponentially-scaled: ERFC_SCALED.
- (line 6)
- * errors, limiting: Error and Warning Options.
- (line 27)
- * escape characters: Fortran Dialect Options.
- (line 112)
- * ETIME: ETIME. (line 6)
- * Euclidean distance: HYPOT. (line 6)
- * Euclidean vector norm: NORM2. (line 6)
- * Events, EVENT_QUERY: EVENT_QUERY. (line 6)
- * EVENT_QUERY: EVENT_QUERY. (line 6)
- * EXECUTE_COMMAND_LINE: EXECUTE_COMMAND_LINE.
- (line 6)
- * EXIT: EXIT. (line 6)
- * EXP: EXP. (line 6)
- * EXPONENT: EXPONENT. (line 6)
- * exponent: Default exponents. (line 6)
- * exponential function: EXP. (line 6)
- * exponential function, inverse: LOG. (line 6)
- * exponential function, inverse <1>: LOG10. (line 6)
- * expression size: C_SIZEOF. (line 6)
- * expression size <1>: SIZEOF. (line 6)
- * EXTENDS_TYPE_OF: EXTENDS_TYPE_OF. (line 6)
- * extensions: Extensions. (line 6)
- * extensions, implemented: Extensions implemented in GNU Fortran.
- (line 6)
- * extensions, not implemented: Extensions not implemented in GNU Fortran.
- (line 6)
- * extra warnings: Error and Warning Options.
- (line 125)
- * 'f2c' calling convention: Code Gen Options. (line 28)
- * 'f2c' calling convention <1>: Code Gen Options. (line 113)
- * Factorial function: GAMMA. (line 6)
- * FDATE: FDATE. (line 6)
- * FDL, GNU Free Documentation License: GNU Free Documentation License.
- (line 6)
- * FGET: FGET. (line 6)
- * FGETC: FGETC. (line 6)
- * file format, fixed: Fortran Dialect Options.
- (line 11)
- * file format, fixed <1>: Fortran Dialect Options.
- (line 129)
- * file format, free: Fortran Dialect Options.
- (line 11)
- * file format, free <1>: Fortran Dialect Options.
- (line 151)
- * file operation, file number: FNUM. (line 6)
- * file operation, flush: FLUSH. (line 6)
- * file operation, position: FSEEK. (line 6)
- * file operation, position <1>: FTELL. (line 6)
- * file operation, read character: FGET. (line 6)
- * file operation, read character <1>: FGETC. (line 6)
- * file operation, seek: FSEEK. (line 6)
- * file operation, write character: FPUT. (line 6)
- * file operation, write character <1>: FPUTC. (line 6)
- * file system, access mode: ACCESS. (line 6)
- * file system, change access mode: CHMOD. (line 6)
- * file system, create link: LINK. (line 6)
- * file system, create link <1>: SYMLNK. (line 6)
- * file system, file creation mask: UMASK. (line 6)
- * file system, file status: FSTAT. (line 6)
- * file system, file status <1>: LSTAT. (line 6)
- * file system, file status <2>: STAT. (line 6)
- * file system, hard link: LINK. (line 6)
- * file system, remove file: UNLINK. (line 6)
- * file system, rename file: RENAME. (line 6)
- * file system, soft link: SYMLNK. (line 6)
- * file, symbolic link: File operations on symbolic links.
- (line 6)
- * file, unformatted sequential: File format of unformatted sequential files.
- (line 6)
- * FINDLOC: FINDLOC. (line 6)
- * findloc: FINDLOC. (line 6)
- * flags inquiry function: COMPILER_OPTIONS. (line 6)
- * FLOAT: REAL. (line 6)
- * FLOATI: REAL. (line 6)
- * floating point, exponent: EXPONENT. (line 6)
- * floating point, fraction: FRACTION. (line 6)
- * floating point, nearest different: NEAREST. (line 6)
- * floating point, relative spacing: RRSPACING. (line 6)
- * floating point, relative spacing <1>: SPACING. (line 6)
- * floating point, scale: SCALE. (line 6)
- * floating point, set exponent: SET_EXPONENT. (line 6)
- * FLOATJ: REAL. (line 6)
- * FLOATK: REAL. (line 6)
- * FLOOR: FLOOR. (line 6)
- * floor: AINT. (line 6)
- * floor <1>: FLOOR. (line 6)
- * FLUSH: FLUSH. (line 6)
- * 'FLUSH' statement: Fortran 2003 status. (line 88)
- * FNUM: FNUM. (line 6)
- * form feed whitespace: Form feed as whitespace.
- (line 6)
- * 'FORMAT': Variable FORMAT expressions.
- (line 6)
- * Fortran 77: GNU Fortran and G77. (line 6)
- * FPP: Preprocessing and conditional compilation.
- (line 6)
- * FPUT: FPUT. (line 6)
- * FPUTC: FPUTC. (line 6)
- * FRACTION: FRACTION. (line 6)
- * FREE: FREE. (line 6)
- * Front-end optimization: Code Gen Options. (line 443)
- * FSEEK: FSEEK. (line 6)
- * FSTAT: FSTAT. (line 6)
- * FTELL: FTELL. (line 6)
- * function elimination: Error and Warning Options.
- (line 234)
- * 'g77': GNU Fortran and G77. (line 6)
- * 'g77' calling convention: Code Gen Options. (line 28)
- * 'g77' calling convention <1>: Code Gen Options. (line 113)
- * GAMMA: GAMMA. (line 6)
- * Gamma function: GAMMA. (line 6)
- * Gamma function, logarithm of: LOG_GAMMA. (line 6)
- * GCC: GNU Fortran and GCC. (line 6)
- * Generating C prototypes from external procedures: Interoperability Options.
- (line 25)
- * Generating C prototypes from Fortran BIND(C) enteties: Interoperability Options.
- (line 7)
- * GERROR: GERROR. (line 6)
- * GETARG: GETARG. (line 6)
- * GETCWD: GETCWD. (line 6)
- * GETENV: GETENV. (line 6)
- * GETGID: GETGID. (line 6)
- * GETLOG: GETLOG. (line 6)
- * GETPID: GETPID. (line 6)
- * GETUID: GETUID. (line 6)
- * GET_COMMAND: GET_COMMAND. (line 6)
- * GET_COMMAND_ARGUMENT: GET_COMMAND_ARGUMENT.
- (line 6)
- * GET_ENVIRONMENT_VARIABLE: GET_ENVIRONMENT_VARIABLE.
- (line 6)
- * GMTIME: GMTIME. (line 6)
- * GNU Compiler Collection: GNU Fortran and GCC. (line 6)
- * GNU Fortran command options: Invoking GNU Fortran.
- (line 6)
- * Hollerith constants: Hollerith constants support.
- (line 6)
- * HOSTNM: HOSTNM. (line 6)
- * HUGE: HUGE. (line 6)
- * hyperbolic cosine: COSH. (line 6)
- * hyperbolic function, cosine: COSH. (line 6)
- * hyperbolic function, cosine, inverse: ACOSH. (line 6)
- * hyperbolic function, sine: SINH. (line 6)
- * hyperbolic function, sine, inverse: ASINH. (line 6)
- * hyperbolic function, tangent: TANH. (line 6)
- * hyperbolic function, tangent, inverse: ATANH. (line 6)
- * hyperbolic sine: SINH. (line 6)
- * hyperbolic tangent: TANH. (line 6)
- * HYPOT: HYPOT. (line 6)
- * I/O item lists: I/O item lists. (line 6)
- * I/O specifiers: Extended I/O specifiers.
- (line 6)
- * IABS: ABS. (line 6)
- * IACHAR: IACHAR. (line 6)
- * IALL: IALL. (line 6)
- * IAND: IAND. (line 6)
- * IANY: IANY. (line 6)
- * IARGC: IARGC. (line 6)
- * IBCLR: IBCLR. (line 6)
- * IBITS: IBITS. (line 6)
- * IBSET: IBSET. (line 6)
- * ICHAR: ICHAR. (line 6)
- * IDATE: IDATE. (line 6)
- * IDIM: DIM. (line 6)
- * IDINT: INT. (line 6)
- * IDNINT: NINT. (line 6)
- * IEEE, ISNAN: ISNAN. (line 6)
- * IEOR: IEOR. (line 6)
- * IERRNO: IERRNO. (line 6)
- * IFIX: INT. (line 6)
- * IIABS: ABS. (line 6)
- * IIAND: IAND. (line 6)
- * IIBCLR: IBCLR. (line 6)
- * IIBITS: IBITS. (line 6)
- * IIBSET: IBSET. (line 6)
- * IIEOR: IEOR. (line 6)
- * IIOR: IOR. (line 6)
- * IISHFT: ISHFT. (line 6)
- * IISHFTC: ISHFTC. (line 6)
- * IMAG: AIMAG. (line 6)
- * images, cosubscript to image index conversion: IMAGE_INDEX. (line 6)
- * images, index of this image: THIS_IMAGE. (line 6)
- * images, number of: NUM_IMAGES. (line 6)
- * IMAGE_INDEX: IMAGE_INDEX. (line 6)
- * IMAGPART: AIMAG. (line 6)
- * IMOD: MOD. (line 6)
- * 'IMPORT' statement: Fortran 2003 status. (line 119)
- * IMVBITS: MVBITS. (line 6)
- * 'INCLUDE' directive: Directory Options. (line 6)
- * inclusion, directory search paths for: Directory Options. (line 14)
- * INDEX: INDEX intrinsic. (line 6)
- * INOT: NOT. (line 6)
- * input/output, asynchronous: Asynchronous I/O. (line 6)
- * INT: INT. (line 6)
- * INT2: INT2. (line 6)
- * INT8: INT8. (line 6)
- * integer kind: SELECTED_INT_KIND. (line 6)
- * Interoperability: Mixed-Language Programming.
- (line 6)
- * intrinsic: Error and Warning Options.
- (line 206)
- * intrinsic <1>: Error and Warning Options.
- (line 213)
- * intrinsic Modules: Intrinsic Modules. (line 6)
- * intrinsic procedures: Intrinsic Procedures.
- (line 6)
- * intrinsics, integer: Type variants for integer intrinsics.
- (line 6)
- * intrinsics, math: Extended math intrinsics.
- (line 6)
- * intrinsics, trigonometric functions: Extended math intrinsics.
- (line 6)
- * Introduction: Top. (line 6)
- * inverse hyperbolic cosine: ACOSH. (line 6)
- * inverse hyperbolic sine: ASINH. (line 6)
- * inverse hyperbolic tangent: ATANH. (line 6)
- * 'IOMSG=' specifier: Fortran 2003 status. (line 90)
- * IOR: IOR. (line 6)
- * 'IOSTAT', end of file: IS_IOSTAT_END. (line 6)
- * 'IOSTAT', end of record: IS_IOSTAT_EOR. (line 6)
- * IPARITY: IPARITY. (line 6)
- * IRAND: IRAND. (line 6)
- * ISATTY: ISATTY. (line 6)
- * ISHFT: ISHFT. (line 6)
- * ISHFTC: ISHFTC. (line 6)
- * ISIGN: SIGN. (line 6)
- * ISNAN: ISNAN. (line 6)
- * 'ISO_FORTRAN_ENV' statement: Fortran 2003 status. (line 127)
- * IS_IOSTAT_END: IS_IOSTAT_END. (line 6)
- * IS_IOSTAT_EOR: IS_CONTIGUOUS. (line 6)
- * IS_IOSTAT_EOR <1>: IS_IOSTAT_EOR. (line 6)
- * ITIME: ITIME. (line 6)
- * JIABS: ABS. (line 6)
- * JIAND: IAND. (line 6)
- * JIBCLR: IBCLR. (line 6)
- * JIBITS: IBITS. (line 6)
- * JIBSET: IBSET. (line 6)
- * JIEOR: IEOR. (line 6)
- * JIOR: IOR. (line 6)
- * JISHFT: ISHFT. (line 6)
- * JISHFTC: ISHFTC. (line 6)
- * JMOD: MOD. (line 6)
- * JMVBITS: MVBITS. (line 6)
- * JNOT: NOT. (line 6)
- * KIABS: ABS. (line 6)
- * KIAND: IAND. (line 6)
- * KIBCLR: IBCLR. (line 6)
- * KIBITS: IBITS. (line 6)
- * KIBSET: IBSET. (line 6)
- * KIEOR: IEOR. (line 6)
- * KILL: KILL. (line 6)
- * kind: KIND Type Parameters.
- (line 6)
- * KIND: KIND. (line 6)
- * kind <1>: KIND. (line 6)
- * kind, character: SELECTED_CHAR_KIND. (line 6)
- * kind, integer: SELECTED_INT_KIND. (line 6)
- * kind, old-style: Old-style kind specifications.
- (line 6)
- * kind, real: SELECTED_REAL_KIND. (line 6)
- * KIOR: IOR. (line 6)
- * KISHFT: ISHFT. (line 6)
- * KISHFTC: ISHFTC. (line 6)
- * KMOD: MOD. (line 6)
- * KMVBITS: MVBITS. (line 6)
- * KNOT: NOT. (line 6)
- * L2 vector norm: NORM2. (line 6)
- * language, dialect options: Fortran Dialect Options.
- (line 6)
- * LBOUND: LBOUND. (line 6)
- * LCOBOUND: LCOBOUND. (line 6)
- * LEADZ: LEADZ. (line 6)
- * left shift, combined: DSHIFTL. (line 6)
- * LEN: LEN. (line 6)
- * LEN_TRIM: LEN_TRIM. (line 6)
- * lexical comparison of strings: LGE. (line 6)
- * lexical comparison of strings <1>: LGT. (line 6)
- * lexical comparison of strings <2>: LLE. (line 6)
- * lexical comparison of strings <3>: LLT. (line 6)
- * LGAMMA: LOG_GAMMA. (line 6)
- * LGE: LGE. (line 6)
- * LGT: LGT. (line 6)
- * libf2c calling convention: Code Gen Options. (line 28)
- * libf2c calling convention <1>: Code Gen Options. (line 113)
- * libgfortran initialization, set_args: _gfortran_set_args. (line 6)
- * libgfortran initialization, set_convert: _gfortran_set_convert.
- (line 6)
- * libgfortran initialization, set_fpe: _gfortran_set_fpe. (line 6)
- * libgfortran initialization, set_max_subrecord_length: _gfortran_set_max_subrecord_length.
- (line 6)
- * libgfortran initialization, set_options: _gfortran_set_options.
- (line 6)
- * libgfortran initialization, set_record_marker: _gfortran_set_record_marker.
- (line 6)
- * limits, largest number: HUGE. (line 6)
- * limits, smallest number: TINY. (line 6)
- * LINK: LINK. (line 6)
- * linking, static: Link Options. (line 6)
- * LLE: LLE. (line 6)
- * LLT: LLT. (line 6)
- * LNBLNK: LNBLNK. (line 6)
- * LOC: %LOC as an rvalue. (line 6)
- * LOC <1>: LOC. (line 6)
- * location of a variable in memory: LOC. (line 6)
- * LOG: LOG. (line 6)
- * LOG10: LOG10. (line 6)
- * logarithm function: LOG. (line 6)
- * logarithm function with base 10: LOG10. (line 6)
- * logarithm function, inverse: EXP. (line 6)
- * LOGICAL: LOGICAL. (line 6)
- * logical and, bitwise: AND. (line 6)
- * logical and, bitwise <1>: IAND. (line 6)
- * logical exclusive or, bitwise: IEOR. (line 6)
- * logical exclusive or, bitwise <1>: XOR. (line 6)
- * logical not, bitwise: NOT. (line 6)
- * logical or, bitwise: IOR. (line 6)
- * logical or, bitwise <1>: OR. (line 6)
- * logical, bitwise: Bitwise logical operators.
- (line 6)
- * logical, variable representation: Internal representation of LOGICAL variables.
- (line 6)
- * login name: GETLOG. (line 6)
- * LOG_GAMMA: LOG_GAMMA. (line 6)
- * LONG: LONG. (line 6)
- * loop interchange, Fortran: Code Gen Options. (line 456)
- * loop interchange, warning: Error and Warning Options.
- (line 130)
- * LSHIFT: LSHIFT. (line 6)
- * LSTAT: LSTAT. (line 6)
- * LTIME: LTIME. (line 6)
- * MALLOC: MALLOC. (line 6)
- * 'MAP': UNION and MAP. (line 6)
- * mask, left justified: MASKL. (line 6)
- * mask, right justified: MASKR. (line 6)
- * MASKL: MASKL. (line 6)
- * MASKR: MASKR. (line 6)
- * MATMUL: MATMUL. (line 6)
- * matrix multiplication: MATMUL. (line 6)
- * matrix, transpose: TRANSPOSE. (line 6)
- * MAX: MAX. (line 6)
- * MAX, MIN, NaN: MAX and MIN intrinsics with REAL NaN arguments.
- (line 6)
- * MAX0: MAX. (line 6)
- * MAX1: MAX. (line 6)
- * MAXEXPONENT: MAXEXPONENT. (line 6)
- * maximum value: MAX. (line 6)
- * maximum value <1>: MAXVAL. (line 6)
- * MAXLOC: MAXLOC. (line 6)
- * MAXVAL: MAXVAL. (line 6)
- * MCLOCK: MCLOCK. (line 6)
- * MCLOCK8: MCLOCK8. (line 6)
- * memory checking: Code Gen Options. (line 144)
- * MERGE: MERGE. (line 6)
- * MERGE_BITS: MERGE_BITS. (line 6)
- * messages, error: Error and Warning Options.
- (line 6)
- * messages, warning: Error and Warning Options.
- (line 6)
- * MIN: MIN. (line 6)
- * MIN0: MIN. (line 6)
- * MIN1: MIN. (line 6)
- * MINEXPONENT: MINEXPONENT. (line 6)
- * minimum value: MIN. (line 6)
- * minimum value <1>: MINVAL. (line 6)
- * MINLOC: MINLOC. (line 6)
- * MINVAL: MINVAL. (line 6)
- * Mixed-language programming: Mixed-Language Programming.
- (line 6)
- * MOD: MOD. (line 6)
- * model representation, base: RADIX. (line 6)
- * model representation, epsilon: EPSILON. (line 6)
- * model representation, largest number: HUGE. (line 6)
- * model representation, maximum exponent: MAXEXPONENT. (line 6)
- * model representation, minimum exponent: MINEXPONENT. (line 6)
- * model representation, precision: PRECISION. (line 6)
- * model representation, radix: RADIX. (line 6)
- * model representation, range: RANGE. (line 6)
- * model representation, significant digits: DIGITS. (line 6)
- * model representation, smallest number: TINY. (line 6)
- * module entities: Fortran Dialect Options.
- (line 124)
- * module search path: Directory Options. (line 14)
- * module search path <1>: Directory Options. (line 29)
- * module search path <2>: Directory Options. (line 36)
- * MODULO: MODULO. (line 6)
- * modulo: MODULO. (line 6)
- * MOVE_ALLOC: MOVE_ALLOC. (line 6)
- * moving allocation: MOVE_ALLOC. (line 6)
- * multiply array elements: PRODUCT. (line 6)
- * MVBITS: MVBITS. (line 6)
- * 'NAME': OPEN( ... NAME=). (line 6)
- * Namelist: Extensions to namelist.
- (line 6)
- * natural logarithm function: LOG. (line 6)
- * NEAREST: NEAREST. (line 6)
- * newline: NEW_LINE. (line 6)
- * NEW_LINE: NEW_LINE. (line 6)
- * NINT: NINT. (line 6)
- * norm, Euclidean: NORM2. (line 6)
- * NORM2: NORM2. (line 6)
- * 'NOSHARED': Extended I/O specifiers.
- (line 6)
- * NOT: NOT. (line 6)
- * NULL: NULL. (line 6)
- * NUM_IMAGES: NUM_IMAGES. (line 6)
- * open, action: Files opened without an explicit ACTION= specifier.
- (line 6)
- * OpenACC: Fortran Dialect Options.
- (line 171)
- * OpenACC <1>: OpenACC. (line 6)
- * OpenMP: Fortran Dialect Options.
- (line 178)
- * OpenMP <1>: OpenMP. (line 6)
- * operators, unary: Unary operators. (line 6)
- * operators, xor: .XOR. operator. (line 6)
- * options inquiry function: COMPILER_OPTIONS. (line 6)
- * options, code generation: Code Gen Options. (line 6)
- * options, debugging: Debugging Options. (line 6)
- * options, dialect: Fortran Dialect Options.
- (line 6)
- * options, directory search: Directory Options. (line 6)
- * options, errors: Error and Warning Options.
- (line 6)
- * options, Fortran dialect: Fortran Dialect Options.
- (line 11)
- * options, 'gfortran' command: Invoking GNU Fortran.
- (line 6)
- * options, linking: Link Options. (line 6)
- * options, negative forms: Invoking GNU Fortran.
- (line 13)
- * options, preprocessor: Preprocessing Options.
- (line 6)
- * options, real kind type promotion: Fortran Dialect Options.
- (line 257)
- * options, run-time: Code Gen Options. (line 6)
- * options, runtime: Runtime Options. (line 6)
- * options, warnings: Error and Warning Options.
- (line 6)
- * OR: OR. (line 6)
- * output, newline: NEW_LINE. (line 6)
- * PACK: PACK. (line 6)
- * PARAMETER: Legacy PARAMETER statements.
- (line 6)
- * PARITY: PARITY. (line 6)
- * Parity: PARITY. (line 6)
- * parity: POPPAR. (line 6)
- * paths, search: Directory Options. (line 14)
- * paths, search <1>: Directory Options. (line 29)
- * paths, search <2>: Directory Options. (line 36)
- * PERROR: PERROR. (line 6)
- * pointer checking: Code Gen Options. (line 144)
- * pointer, C address of pointers: C_F_PROCPOINTER. (line 6)
- * pointer, C address of procedures: C_FUNLOC. (line 6)
- * pointer, C association status: C_ASSOCIATED. (line 6)
- * pointer, convert C to Fortran: C_F_POINTER. (line 6)
- * pointer, Cray: Cray pointers. (line 6)
- * pointer, cray: FREE. (line 6)
- * pointer, cray <1>: MALLOC. (line 6)
- * pointer, disassociated: NULL. (line 6)
- * pointer, status: ASSOCIATED. (line 6)
- * pointer, status <1>: NULL. (line 6)
- * POPCNT: POPCNT. (line 6)
- * POPPAR: POPPAR. (line 6)
- * positive difference: DIM. (line 6)
- * PRECISION: PRECISION. (line 6)
- * Preprocessing: Preprocessing and conditional compilation.
- (line 6)
- * preprocessing, assertion: Preprocessing Options.
- (line 113)
- * preprocessing, assertion <1>: Preprocessing Options.
- (line 119)
- * preprocessing, define macros: Preprocessing Options.
- (line 151)
- * preprocessing, define macros <1>: Preprocessing Options.
- (line 154)
- * preprocessing, include path: Preprocessing Options.
- (line 69)
- * preprocessing, include path <1>: Preprocessing Options.
- (line 76)
- * preprocessing, include path <2>: Preprocessing Options.
- (line 80)
- * preprocessing, include path <3>: Preprocessing Options.
- (line 85)
- * preprocessing, include path <4>: Preprocessing Options.
- (line 89)
- * preprocessing, include path <5>: Preprocessing Options.
- (line 96)
- * preprocessing, keep comments: Preprocessing Options.
- (line 122)
- * preprocessing, keep comments <1>: Preprocessing Options.
- (line 137)
- * preprocessing, no linemarkers: Preprocessing Options.
- (line 179)
- * preprocessing, undefine macros: Preprocessing Options.
- (line 185)
- * preprocessor: Preprocessing Options.
- (line 6)
- * preprocessor, debugging: Preprocessing Options.
- (line 26)
- * preprocessor, debugging <1>: Preprocessing Options.
- (line 35)
- * preprocessor, debugging <2>: Preprocessing Options.
- (line 41)
- * preprocessor, debugging <3>: Preprocessing Options.
- (line 44)
- * preprocessor, debugging <4>: Preprocessing Options.
- (line 51)
- * preprocessor, disable: Preprocessing Options.
- (line 12)
- * preprocessor, enable: Preprocessing Options.
- (line 12)
- * preprocessor, include file handling: Preprocessing and conditional compilation.
- (line 6)
- * preprocessor, working directory: Preprocessing Options.
- (line 55)
- * PRESENT: PRESENT. (line 6)
- * private: Fortran Dialect Options.
- (line 124)
- * procedure pointer, convert C to Fortran: C_LOC. (line 6)
- * process ID: GETPID. (line 6)
- * PRODUCT: PRODUCT. (line 6)
- * product, double-precision: DPROD. (line 6)
- * product, matrix: MATMUL. (line 6)
- * product, vector: DOT_PRODUCT. (line 6)
- * program termination: EXIT. (line 6)
- * program termination, with core dump: ABORT. (line 6)
- * 'PROTECTED' statement: Fortran 2003 status. (line 113)
- * 'Q' edit descriptor: Q edit descriptor. (line 6)
- * 'Q' exponent-letter: 'Q' exponent-letter. (line 6)
- * RADIX: RADIX. (line 6)
- * radix, real: SELECTED_REAL_KIND. (line 6)
- * RAN: RAN. (line 6)
- * RAND: RAND. (line 6)
- * random number generation: IRAND. (line 6)
- * random number generation <1>: RAN. (line 6)
- * random number generation <2>: RAND. (line 6)
- * random number generation <3>: RANDOM_NUMBER. (line 6)
- * random number generation, initialization: RANDOM_INIT. (line 6)
- * random number generation, seeding: RANDOM_SEED. (line 6)
- * random number generation, seeding <1>: SRAND. (line 6)
- * RANDOM_INIT: RANDOM_INIT. (line 6)
- * RANDOM_NUMBER: RANDOM_NUMBER. (line 6)
- * RANDOM_SEED: RANDOM_SEED. (line 6)
- * RANGE: RANGE. (line 6)
- * range checking: Code Gen Options. (line 144)
- * RANK: RANK. (line 6)
- * rank: RANK. (line 6)
- * re-association of parenthesized expressions: Code Gen Options.
- (line 420)
- * read character, stream mode: FGET. (line 6)
- * read character, stream mode <1>: FGETC. (line 6)
- * 'READONLY': Extended I/O specifiers.
- (line 6)
- * REAL: REAL. (line 6)
- * real kind: SELECTED_REAL_KIND. (line 6)
- * real number, exponent: EXPONENT. (line 6)
- * real number, fraction: FRACTION. (line 6)
- * real number, nearest different: NEAREST. (line 6)
- * real number, relative spacing: RRSPACING. (line 6)
- * real number, relative spacing <1>: SPACING. (line 6)
- * real number, scale: SCALE. (line 6)
- * real number, set exponent: SET_EXPONENT. (line 6)
- * Reallocate the LHS in assignments: Code Gen Options. (line 429)
- * Reallocate the LHS in assignments, notification: Error and Warning Options.
- (line 239)
- * REALPART: REAL. (line 6)
- * 'RECORD': STRUCTURE and RECORD.
- (line 6)
- * record marker: File format of unformatted sequential files.
- (line 6)
- * Reduction, XOR: PARITY. (line 6)
- * remainder: MOD. (line 6)
- * RENAME: RENAME. (line 6)
- * repacking arrays: Code Gen Options. (line 288)
- * REPEAT: REPEAT. (line 6)
- * RESHAPE: RESHAPE. (line 6)
- * 'REWIND': Read/Write after EOF marker.
- (line 6)
- * right shift, combined: DSHIFTR. (line 6)
- * root: SQRT. (line 6)
- * rounding, ceiling: ANINT. (line 6)
- * rounding, ceiling <1>: CEILING. (line 6)
- * rounding, floor: AINT. (line 6)
- * rounding, floor <1>: FLOOR. (line 6)
- * rounding, nearest whole number: NINT. (line 6)
- * RRSPACING: RRSPACING. (line 6)
- * RSHIFT: RSHIFT. (line 6)
- * run-time checking: Code Gen Options. (line 144)
- * SAME_TYPE_AS: SAME_TYPE_AS. (line 6)
- * 'SAVE' statement: Code Gen Options. (line 15)
- * SCALE: SCALE. (line 6)
- * SCAN: SCAN. (line 6)
- * search path: Directory Options. (line 6)
- * search paths, for included files: Directory Options. (line 14)
- * SECNDS: SECNDS. (line 6)
- * SECOND: SECOND. (line 6)
- * seeding a random number generator: RANDOM_SEED. (line 6)
- * seeding a random number generator <1>: SRAND. (line 6)
- * SELECTED_CHAR_KIND: SELECTED_CHAR_KIND. (line 6)
- * SELECTED_INT_KIND: SELECTED_INT_KIND. (line 6)
- * SELECTED_REAL_KIND: SELECTED_REAL_KIND. (line 6)
- * sequential, unformatted: File format of unformatted sequential files.
- (line 6)
- * SET_EXPONENT: SET_EXPONENT. (line 6)
- * SHAPE: SHAPE. (line 6)
- * 'SHARE': Extended I/O specifiers.
- (line 6)
- * 'SHARED': Extended I/O specifiers.
- (line 6)
- * shift, left: DSHIFTL. (line 6)
- * shift, left <1>: SHIFTL. (line 6)
- * shift, right: DSHIFTR. (line 6)
- * shift, right <1>: SHIFTR. (line 6)
- * shift, right with fill: SHIFTA. (line 6)
- * SHIFTA: SHIFTA. (line 6)
- * SHIFTL: SHIFTL. (line 6)
- * SHIFTR: SHIFTR. (line 6)
- * SHORT: INT2. (line 6)
- * SIGN: SIGN. (line 6)
- * sign copying: SIGN. (line 6)
- * SIGNAL: SIGNAL. (line 6)
- * SIN: SIN. (line 6)
- * SIND: SIND. (line 6)
- * sine: SIN. (line 6)
- * sine, degrees: SIND. (line 6)
- * sine, hyperbolic: SINH. (line 6)
- * sine, hyperbolic, inverse: ASINH. (line 6)
- * sine, inverse: ASIN. (line 6)
- * sine, inverse, degrees: ASIND. (line 6)
- * SINH: SINH. (line 6)
- * SIZE: SIZE. (line 6)
- * size of a variable, in bits: BIT_SIZE. (line 6)
- * size of an expression: C_SIZEOF. (line 6)
- * size of an expression <1>: SIZEOF. (line 6)
- * SIZEOF: SIZEOF. (line 6)
- * SLEEP: SLEEP. (line 6)
- * SNGL: REAL. (line 6)
- * SPACING: SPACING. (line 6)
- * SPREAD: SPREAD. (line 6)
- * SQRT: SQRT. (line 6)
- * square-root: SQRT. (line 6)
- * SRAND: SRAND. (line 6)
- * Standards: Standards. (line 6)
- * STAT: STAT. (line 6)
- * statement, 'ENUM': Fortran 2003 status. (line 92)
- * statement, 'ENUMERATOR': Fortran 2003 status. (line 92)
- * statement, 'FLUSH': Fortran 2003 status. (line 88)
- * statement, 'IMPORT': Fortran 2003 status. (line 119)
- * statement, 'ISO_FORTRAN_ENV': Fortran 2003 status. (line 127)
- * statement, 'PROTECTED': Fortran 2003 status. (line 113)
- * statement, 'SAVE': Code Gen Options. (line 15)
- * statement, 'USE, INTRINSIC': Fortran 2003 status. (line 127)
- * statement, 'VALUE': Fortran 2003 status. (line 115)
- * statement, 'VOLATILE': Fortran 2003 status. (line 117)
- * 'STATIC': AUTOMATIC and STATIC attributes.
- (line 6)
- * storage size: STORAGE_SIZE. (line 6)
- * STORAGE_SIZE: STORAGE_SIZE. (line 6)
- * 'STREAM' I/O: Fortran 2003 status. (line 102)
- * stream mode, read character: FGET. (line 6)
- * stream mode, read character <1>: FGETC. (line 6)
- * stream mode, write character: FPUT. (line 6)
- * stream mode, write character <1>: FPUTC. (line 6)
- * string, adjust left: ADJUSTL. (line 6)
- * string, adjust right: ADJUSTR. (line 6)
- * string, comparison: LGE. (line 6)
- * string, comparison <1>: LGT. (line 6)
- * string, comparison <2>: LLE. (line 6)
- * string, comparison <3>: LLT. (line 6)
- * string, concatenate: REPEAT. (line 6)
- * string, find missing set: VERIFY. (line 6)
- * string, find non-blank character: LNBLNK. (line 6)
- * string, find subset: SCAN. (line 6)
- * string, find substring: INDEX intrinsic. (line 6)
- * string, length: LEN. (line 6)
- * string, length, without trailing whitespace: LEN_TRIM. (line 6)
- * string, remove trailing whitespace: TRIM. (line 6)
- * string, repeat: REPEAT. (line 6)
- * strings, varying length: Varying Length Character Strings.
- (line 6)
- * 'STRUCTURE': STRUCTURE and RECORD.
- (line 6)
- * structure packing: Code Gen Options. (line 282)
- * subrecord: File format of unformatted sequential files.
- (line 6)
- * subscript checking: Code Gen Options. (line 144)
- * substring position: INDEX intrinsic. (line 6)
- * SUM: SUM. (line 6)
- * sum array elements: SUM. (line 6)
- * suppressing warnings: Error and Warning Options.
- (line 6)
- * symbol names: Fortran Dialect Options.
- (line 106)
- * symbol names, transforming: Code Gen Options. (line 57)
- * symbol names, transforming <1>: Code Gen Options. (line 113)
- * symbol names, underscores: Code Gen Options. (line 57)
- * symbol names, underscores <1>: Code Gen Options. (line 113)
- * SYMLNK: SYMLNK. (line 6)
- * syntax checking: Error and Warning Options.
- (line 33)
- * SYSTEM: SYSTEM. (line 6)
- * system, error handling: GERROR. (line 6)
- * system, error handling <1>: IERRNO. (line 6)
- * system, error handling <2>: PERROR. (line 6)
- * system, group ID: GETGID. (line 6)
- * system, host name: HOSTNM. (line 6)
- * system, login name: GETLOG. (line 6)
- * system, process ID: GETPID. (line 6)
- * system, signal handling: SIGNAL. (line 6)
- * system, system call: EXECUTE_COMMAND_LINE.
- (line 6)
- * system, system call <1>: SYSTEM. (line 6)
- * system, terminal: ISATTY. (line 6)
- * system, terminal <1>: TTYNAM. (line 6)
- * system, user ID: GETUID. (line 6)
- * system, working directory: CHDIR. (line 6)
- * system, working directory <1>: GETCWD. (line 6)
- * SYSTEM_CLOCK: SYSTEM_CLOCK. (line 6)
- * tabulators: Error and Warning Options.
- (line 188)
- * TAN: TAN. (line 6)
- * TAND: TAND. (line 6)
- * tangent: TAN. (line 6)
- * tangent, degrees: TAND. (line 6)
- * tangent, hyperbolic: TANH. (line 6)
- * tangent, hyperbolic, inverse: ATANH. (line 6)
- * tangent, inverse: ATAN. (line 6)
- * tangent, inverse <1>: ATAN2. (line 6)
- * tangent, inverse, degrees: ATAND. (line 6)
- * tangent, inverse, degrees <1>: ATAN2D. (line 6)
- * TANH: TANH. (line 6)
- * terminate program: EXIT. (line 6)
- * terminate program, with core dump: ABORT. (line 6)
- * THIS_IMAGE: THIS_IMAGE. (line 6)
- * thread-safety, threads: Thread-safety of the runtime library.
- (line 6)
- * TIME: TIME. (line 6)
- * time, clock ticks: MCLOCK. (line 6)
- * time, clock ticks <1>: MCLOCK8. (line 6)
- * time, clock ticks <2>: SYSTEM_CLOCK. (line 6)
- * time, conversion to GMT info: GMTIME. (line 6)
- * time, conversion to local time info: LTIME. (line 6)
- * time, conversion to string: CTIME. (line 6)
- * time, current: DATE_AND_TIME. (line 6)
- * time, current <1>: FDATE. (line 6)
- * time, current <2>: ITIME. (line 6)
- * time, current <3>: TIME. (line 6)
- * time, current <4>: TIME8. (line 6)
- * time, elapsed: CPU_TIME. (line 6)
- * time, elapsed <1>: DTIME. (line 6)
- * time, elapsed <2>: ETIME. (line 6)
- * time, elapsed <3>: SECNDS. (line 6)
- * time, elapsed <4>: SECOND. (line 6)
- * TIME8: TIME8. (line 6)
- * TINY: TINY. (line 6)
- * TR 15581: Fortran 2003 status. (line 97)
- * trace: Debugging Options. (line 86)
- * TRAILZ: TRAILZ. (line 6)
- * TRANSFER: TRANSFER. (line 6)
- * transforming symbol names: Code Gen Options. (line 57)
- * transforming symbol names <1>: Code Gen Options. (line 113)
- * TRANSPOSE: TRANSPOSE. (line 6)
- * transpose: TRANSPOSE. (line 6)
- * trigonometric function, cosine: COS. (line 6)
- * trigonometric function, cosine, degrees: COSD. (line 6)
- * trigonometric function, cosine, inverse: ACOS. (line 6)
- * trigonometric function, cosine, inverse, degrees: ACOSD. (line 6)
- * trigonometric function, cotangent: COTAN. (line 6)
- * trigonometric function, cotangent, degrees: COTAND. (line 6)
- * trigonometric function, sine: SIN. (line 6)
- * trigonometric function, sine, degrees: SIND. (line 6)
- * trigonometric function, sine, inverse: ASIN. (line 6)
- * trigonometric function, sine, inverse, degrees: ASIND. (line 6)
- * trigonometric function, tangent: TAN. (line 6)
- * trigonometric function, tangent, degrees: TAND. (line 6)
- * trigonometric function, tangent, inverse: ATAN. (line 6)
- * trigonometric function, tangent, inverse <1>: ATAN2. (line 6)
- * trigonometric function, tangent, inverse, degrees: ATAND. (line 6)
- * trigonometric function, tangent, inverse, degrees <1>: ATAN2D.
- (line 6)
- * TRIM: TRIM. (line 6)
- * TTYNAM: TTYNAM. (line 6)
- * type alias print: TYPE as an alias for PRINT.
- (line 6)
- * type cast: TRANSFER. (line 6)
- * UBOUND: UBOUND. (line 6)
- * UCOBOUND: UCOBOUND. (line 6)
- * UMASK: UMASK. (line 6)
- * underflow: Error and Warning Options.
- (line 201)
- * underscore: Code Gen Options. (line 57)
- * underscore <1>: Code Gen Options. (line 113)
- * unformatted sequential: File format of unformatted sequential files.
- (line 6)
- * 'UNION': UNION and MAP. (line 6)
- * UNLINK: UNLINK. (line 6)
- * UNPACK: UNPACK. (line 6)
- * unused dummy argument: Error and Warning Options.
- (line 217)
- * unused parameter: Error and Warning Options.
- (line 221)
- * 'USE, INTRINSIC' statement: Fortran 2003 status. (line 127)
- * user id: GETUID. (line 6)
- * 'VALUE' statement: Fortran 2003 status. (line 115)
- * variable attributes: AUTOMATIC and STATIC attributes.
- (line 6)
- * Varying length character strings: Varying Length Character Strings.
- (line 6)
- * Varying length strings: Varying Length Character Strings.
- (line 6)
- * vector product: DOT_PRODUCT. (line 6)
- * VERIFY: VERIFY. (line 6)
- * version of the compiler: COMPILER_VERSION. (line 6)
- * 'VOLATILE': Volatile COMMON blocks.
- (line 6)
- * 'VOLATILE' statement: Fortran 2003 status. (line 117)
- * warning, C binding type: Error and Warning Options.
- (line 101)
- * warnings, aliasing: Error and Warning Options.
- (line 71)
- * warnings, alignment of 'COMMON' blocks: Error and Warning Options.
- (line 228)
- * warnings, all: Error and Warning Options.
- (line 62)
- * warnings, ampersand: Error and Warning Options.
- (line 88)
- * warnings, array temporaries: Error and Warning Options.
- (line 96)
- * warnings, character truncation: Error and Warning Options.
- (line 108)
- * warnings, conversion: Error and Warning Options.
- (line 117)
- * warnings, conversion <1>: Error and Warning Options.
- (line 121)
- * warnings, division of integers: Error and Warning Options.
- (line 144)
- * warnings, extra: Error and Warning Options.
- (line 125)
- * warnings, function elimination: Error and Warning Options.
- (line 234)
- * warnings, implicit interface: Error and Warning Options.
- (line 134)
- * warnings, implicit procedure: Error and Warning Options.
- (line 140)
- * warnings, integer division: Error and Warning Options.
- (line 144)
- * warnings, intrinsic: Error and Warning Options.
- (line 206)
- * warnings, intrinsics of other standards: Error and Warning Options.
- (line 148)
- * warnings, line truncation: Error and Warning Options.
- (line 111)
- * warnings, loop interchange: Error and Warning Options.
- (line 130)
- * warnings, non-standard intrinsics: Error and Warning Options.
- (line 148)
- * warnings, overwrite recursive: Error and Warning Options.
- (line 155)
- * warnings, 'q' exponent-letter: Error and Warning Options.
- (line 162)
- * warnings, suppressing: Error and Warning Options.
- (line 6)
- * warnings, suspicious code: Error and Warning Options.
- (line 166)
- * warnings, tabs: Error and Warning Options.
- (line 188)
- * warnings, to errors: Error and Warning Options.
- (line 280)
- * warnings, undefined do loop: Error and Warning Options.
- (line 196)
- * warnings, underflow: Error and Warning Options.
- (line 201)
- * warnings, unused dummy argument: Error and Warning Options.
- (line 217)
- * warnings, unused parameter: Error and Warning Options.
- (line 221)
- * warnings, use statements: Error and Warning Options.
- (line 213)
- * write character, stream mode: FPUT. (line 6)
- * write character, stream mode <1>: FPUTC. (line 6)
- * XOR: XOR. (line 6)
- * XOR reduction: PARITY. (line 6)
- * ZABS: ABS. (line 6)
- * ZCOS: COS. (line 6)
- * ZCOSD: COSD. (line 6)
- * zero bits: LEADZ. (line 6)
- * zero bits <1>: TRAILZ. (line 6)
- * ZEXP: EXP. (line 6)
- * ZLOG: LOG. (line 6)
- * ZSIN: SIN. (line 6)
- * ZSIND: SIND. (line 6)
- * ZSQRT: SQRT. (line 6)
- Tag Table:
- Node: Top1950
- Node: Introduction3367
- Node: About GNU Fortran4116
- Node: GNU Fortran and GCC8117
- Node: Preprocessing and conditional compilation10231
- Node: GNU Fortran and G7712320
- Node: Project Status12893
- Node: Standards15470
- Node: Varying Length Character Strings16695
- Node: Invoking GNU Fortran17447
- Node: Option Summary19281
- Node: Fortran Dialect Options23452
- Node: Preprocessing Options37417
- Node: Error and Warning Options45658
- Node: Debugging Options57588
- Node: Directory Options62360
- Node: Link Options63795
- Node: Runtime Options64421
- Node: Code Gen Options66328
- Node: Interoperability Options87457
- Node: Environment Variables89535
- Node: Runtime90148
- Node: TMPDIR91319
- Node: GFORTRAN_STDIN_UNIT91989
- Node: GFORTRAN_STDOUT_UNIT92371
- Node: GFORTRAN_STDERR_UNIT92772
- Node: GFORTRAN_UNBUFFERED_ALL93174
- Node: GFORTRAN_UNBUFFERED_PRECONNECTED93705
- Node: GFORTRAN_SHOW_LOCUS94349
- Node: GFORTRAN_OPTIONAL_PLUS94845
- Node: GFORTRAN_LIST_SEPARATOR95323
- Node: GFORTRAN_CONVERT_UNIT95931
- Node: GFORTRAN_ERROR_BACKTRACE98786
- Node: GFORTRAN_FORMATTED_BUFFER_SIZE99382
- Node: GFORTRAN_UNFORMATTED_BUFFER_SIZE99830
- Node: Fortran standards status100259
- Node: Fortran 2003 status100511
- Node: Fortran 2008 status105666
- Node: Fortran 2018 status111044
- Node: Compiler Characteristics113402
- Node: KIND Type Parameters114185
- Node: Internal representation of LOGICAL variables115613
- Node: Evaluation of logical expressions116470
- Node: MAX and MIN intrinsics with REAL NaN arguments117321
- Node: Thread-safety of the runtime library118142
- Node: Data consistency and durability120547
- Node: Files opened without an explicit ACTION= specifier123660
- Node: File operations on symbolic links124351
- Node: File format of unformatted sequential files125471
- Node: Asynchronous I/O127843
- Node: Extensions128543
- Node: Extensions implemented in GNU Fortran129148
- Node: Old-style kind specifications131124
- Node: Old-style variable initialization132226
- Node: Extensions to namelist133538
- Node: X format descriptor without count field135841
- Node: Commas in FORMAT specifications136368
- Node: Missing period in FORMAT specifications137119
- Node: Default widths for F, G and I format descriptors137715
- Node: I/O item lists138420
- Node: 'Q' exponent-letter138816
- Node: BOZ literal constants139416
- Node: Real array indices140995
- Node: Unary operators141294
- Node: Implicitly convert LOGICAL and INTEGER values141708
- Node: Hollerith constants support142667
- Node: Character conversion144891
- Node: Cray pointers145785
- Node: CONVERT specifier151286
- Node: OpenMP153281
- Node: OpenACC155539
- Node: Argument list functions156679
- Node: Read/Write after EOF marker158322
- Node: STRUCTURE and RECORD158925
- Node: UNION and MAP164012
- Node: Type variants for integer intrinsics166980
- Node: AUTOMATIC and STATIC attributes168982
- Node: Extended math intrinsics170516
- Node: Form feed as whitespace172312
- Node: TYPE as an alias for PRINT172858
- Node: %LOC as an rvalue173323
- Node: .XOR. operator173970
- Node: Bitwise logical operators174370
- Node: Extended I/O specifiers175922
- Node: Legacy PARAMETER statements179642
- Node: Default exponents180247
- Node: Extensions not implemented in GNU Fortran180599
- Node: ENCODE and DECODE statements181566
- Node: Variable FORMAT expressions182897
- Node: Alternate complex function syntax184002
- Node: Volatile COMMON blocks184552
- Node: OPEN( ... NAME=)185054
- Node: Q edit descriptor185482
- Node: Mixed-Language Programming186434
- Node: Interoperability with C187014
- Node: Intrinsic Types188348
- Node: Derived Types and struct189344
- Node: Interoperable Global Variables190702
- Node: Interoperable Subroutines and Functions191977
- Node: Working with Pointers195771
- Node: Further Interoperability of Fortran with C200247
- Node: GNU Fortran Compiler Directives203819
- Node: ATTRIBUTES directive204195
- Node: UNROLL directive207383
- Node: BUILTIN directive207916
- Node: IVDEP directive208758
- Node: VECTOR directive209577
- Node: NOVECTOR directive209975
- Node: Non-Fortran Main Program210360
- Node: _gfortran_set_args212548
- Node: _gfortran_set_options213486
- Node: _gfortran_set_convert217132
- Node: _gfortran_set_record_marker218000
- Node: _gfortran_set_fpe218810
- Node: _gfortran_set_max_subrecord_length220008
- Node: Naming and argument-passing conventions220931
- Node: Naming conventions221650
- Node: Argument passing conventions223122
- Node: Coarray Programming228427
- Node: Type and enum ABI Documentation228674
- Node: caf_token_t228972
- Node: caf_register_t229208
- Node: caf_deregister_t230419
- Node: caf_reference_t230921
- Node: caf_team_t235245
- Node: Function ABI Documentation235544
- Node: _gfortran_caf_init237994
- Node: _gfortran_caf_finish239420
- Node: _gfortran_caf_this_image240359
- Node: _gfortran_caf_num_images241114
- Node: _gfortran_caf_image_status242225
- Node: _gfortran_caf_failed_images243345
- Node: _gfortran_caf_stopped_images244515
- Node: _gfortran_caf_register245688
- Node: _gfortran_caf_deregister249870
- Node: _gfortran_caf_is_present251476
- Node: _gfortran_caf_send252555
- Node: _gfortran_caf_get255745
- Node: _gfortran_caf_sendget258826
- Node: _gfortran_caf_send_by_ref262737
- Node: _gfortran_caf_get_by_ref266346
- Node: _gfortran_caf_sendget_by_ref269865
- Node: _gfortran_caf_lock274161
- Node: _gfortran_caf_unlock275947
- Node: _gfortran_caf_event_post277428
- Node: _gfortran_caf_event_wait278877
- Node: _gfortran_caf_event_query280984
- Node: _gfortran_caf_sync_all282315
- Node: _gfortran_caf_sync_images283243
- Node: _gfortran_caf_sync_memory284778
- Node: _gfortran_caf_error_stop285770
- Node: _gfortran_caf_error_stop_str286374
- Node: _gfortran_caf_fail_image287079
- Node: _gfortran_caf_atomic_define287615
- Node: _gfortran_caf_atomic_ref288930
- Node: _gfortran_caf_atomic_cas290234
- Node: _gfortran_caf_atomic_op291995
- Node: _gfortran_caf_co_broadcast294097
- Node: _gfortran_caf_co_max295202
- Node: _gfortran_caf_co_min296828
- Node: _gfortran_caf_co_sum298448
- Node: _gfortran_caf_co_reduce299988
- Node: Intrinsic Procedures302632
- Node: Introduction to Intrinsics319891
- Node: ABORT322241
- Node: ABS322986
- Node: ACCESS324936
- Node: ACHAR326836
- Node: ACOS328040
- Node: ACOSD329326
- Node: ACOSH330638
- Node: ADJUSTL331634
- Node: ADJUSTR332576
- Node: AIMAG333526
- Node: AINT334955
- Node: ALARM336561
- Node: ALL338193
- Node: ALLOCATED340117
- Node: AND341256
- Node: ANINT342991
- Node: ANY344488
- Node: ASIN346414
- Node: ASIND347689
- Node: ASINH348987
- Node: ASSOCIATED349993
- Node: ATAN353004
- Node: ATAND354477
- Node: ATAN2355970
- Node: ATAN2D357835
- Node: ATANH359810
- Node: ATOMIC_ADD360816
- Node: ATOMIC_AND362348
- Node: ATOMIC_CAS363936
- Node: ATOMIC_DEFINE365795
- Node: ATOMIC_FETCH_ADD367514
- Node: ATOMIC_FETCH_AND369314
- Node: ATOMIC_FETCH_OR371104
- Node: ATOMIC_FETCH_XOR372881
- Node: ATOMIC_OR374664
- Node: ATOMIC_REF376249
- Node: ATOMIC_XOR378145
- Node: BACKTRACE379730
- Node: BESSEL_J0380310
- Node: BESSEL_J1381326
- Node: BESSEL_JN382343
- Node: BESSEL_Y0384168
- Node: BESSEL_Y1385123
- Node: BESSEL_YN386078
- Node: BGE387909
- Node: BGT388601
- Node: BIT_SIZE389251
- Node: BLE390073
- Node: BLT390755
- Node: BTEST391393
- Node: C_ASSOCIATED392880
- Node: C_F_POINTER394091
- Node: C_F_PROCPOINTER395526
- Node: C_FUNLOC397033
- Node: C_LOC398404
- Node: C_SIZEOF399683
- Node: CEILING401091
- Node: CHAR402099
- Node: CHDIR403368
- Node: CHMOD404542
- Node: CMPLX406457
- Node: CO_BROADCAST407900
- Node: CO_MAX409721
- Node: CO_MIN411628
- Node: CO_REDUCE413521
- Node: CO_SUM417092
- Node: COMMAND_ARGUMENT_COUNT419072
- Node: COMPILER_OPTIONS419989
- Node: COMPILER_VERSION421014
- Node: COMPLEX421977
- Node: CONJG423116
- Node: COS424110
- Node: COSD425565
- Node: COSH427014
- Node: COTAN428197
- Node: COTAND429336
- Node: COUNT430515
- Node: CPU_TIME432540
- Node: CSHIFT433897
- Node: CTIME435557
- Node: DATE_AND_TIME437065
- Node: DBLE439545
- Node: DCMPLX440340
- Node: DIGITS441522
- Node: DIM442489
- Node: DOT_PRODUCT443948
- Node: DPROD445591
- Node: DREAL446518
- Node: DSHIFTL447184
- Node: DSHIFTR448517
- Node: DTIME449851
- Node: EOSHIFT452666
- Node: EPSILON454739
- Node: ERF455466
- Node: ERFC456247
- Node: ERFC_SCALED457057
- Node: ETIME457750
- Node: EVENT_QUERY459989
- Node: EXECUTE_COMMAND_LINE461578
- Node: EXIT464358
- Node: EXP465236
- Node: EXPONENT466489
- Node: EXTENDS_TYPE_OF467253
- Node: FDATE468111
- Node: FGET469597
- Node: FGETC471424
- Node: FINDLOC473234
- Node: FLOOR475727
- Node: FLUSH476718
- Node: FNUM478597
- Node: FPUT479322
- Node: FPUTC480956
- Node: FRACTION482737
- Node: FREE483641
- Node: FSEEK484484
- Node: FSTAT486790
- Node: FTELL487876
- Node: GAMMA488858
- Node: GERROR489848
- Node: GETARG490570
- Node: GET_COMMAND492341
- Node: GET_COMMAND_ARGUMENT493715
- Node: GETCWD495762
- Node: GETENV496742
- Node: GET_ENVIRONMENT_VARIABLE498174
- Node: GETGID500337
- Node: GETLOG500874
- Node: GETPID501736
- Node: GETUID502466
- Node: GMTIME502982
- Node: HOSTNM504742
- Node: HUGE505663
- Node: HYPOT506385
- Node: IACHAR507211
- Node: IALL508379
- Node: IAND509864
- Node: IANY511646
- Node: IARGC513140
- Node: IBCLR514159
- Node: IBITS515407
- Node: IBSET516911
- Node: ICHAR518154
- Node: IDATE520324
- Node: IEOR521624
- Node: IERRNO523299
- Node: IMAGE_INDEX523847
- Node: INDEX intrinsic524869
- Node: INT526395
- Node: INT2528239
- Node: INT8529007
- Node: IOR529722
- Node: IPARITY531373
- Node: IRAND532921
- Node: IS_CONTIGUOUS534280
- Node: IS_IOSTAT_END535446
- Node: IS_IOSTAT_EOR536553
- Node: ISATTY537682
- Node: ISHFT538465
- Node: ISHFTC540034
- Node: ISNAN541841
- Node: ITIME542608
- Node: KILL543906
- Node: KIND545042
- Node: LBOUND545940
- Node: LCOBOUND547278
- Node: LEADZ548413
- Node: LEN549274
- Node: LEN_TRIM550570
- Node: LGE551558
- Node: LGT553071
- Node: LINK554549
- Node: LLE555588
- Node: LLT557088
- Node: LNBLNK558559
- Node: LOC559337
- Node: LOG560069
- Node: LOG10561604
- Node: LOG_GAMMA562594
- Node: LOGICAL563696
- Node: LONG564508
- Node: LSHIFT565266
- Node: LSTAT566375
- Node: LTIME567574
- Node: MALLOC569256
- Node: MASKL570718
- Node: MASKR571485
- Node: MATMUL572255
- Node: MAX573415
- Node: MAXEXPONENT574950
- Node: MAXLOC575767
- Node: MAXVAL578384
- Node: MCLOCK580034
- Node: MCLOCK8581057
- Node: MERGE582287
- Node: MERGE_BITS583039
- Node: MIN584078
- Node: MINEXPONENT585616
- Node: MINLOC586247
- Node: MINVAL588895
- Node: MOD590548
- Node: MODULO592873
- Node: MOVE_ALLOC594338
- Node: MVBITS595371
- Node: NEAREST597023
- Node: NEW_LINE598123
- Node: NINT598896
- Node: NORM2600317
- Node: NOT601459
- Node: NULL602629
- Node: NUM_IMAGES603537
- Node: OR605238
- Node: PACK606961
- Node: PARITY609005
- Node: PERROR610226
- Node: POPCNT610851
- Node: POPPAR611722
- Node: PRECISION612775
- Node: PRESENT613707
- Node: PRODUCT614819
- Node: RADIX616353
- Node: RAN617164
- Node: RAND617620
- Node: RANDOM_INIT618953
- Node: RANDOM_NUMBER621019
- Node: RANDOM_SEED622266
- Node: RANGE624736
- Node: RANK625416
- Node: REAL626197
- Node: RENAME628138
- Node: REPEAT629160
- Node: RESHAPE629888
- Node: RRSPACING631355
- Node: RSHIFT632048
- Node: SAME_TYPE_AS633216
- Node: SCALE634048
- Node: SCAN634829
- Node: SECNDS636387
- Node: SECOND637479
- Node: SELECTED_CHAR_KIND638355
- Node: SELECTED_INT_KIND639950
- Node: SELECTED_REAL_KIND641127
- Node: SET_EXPONENT643803
- Node: SHAPE644800
- Node: SHIFTA646224
- Node: SHIFTL647215
- Node: SHIFTR648075
- Node: SIGN648936
- Node: SIGNAL650277
- Node: SIN651783
- Node: SIND653047
- Node: SINH654376
- Node: SIZE655294
- Node: SIZEOF656613
- Node: SLEEP658268
- Node: SPACING658829
- Node: SPREAD659843
- Node: SQRT660994
- Node: SRAND662326
- Node: STAT663560
- Node: STORAGE_SIZE666727
- Node: SUM667606
- Node: SYMLNK669098
- Node: SYSTEM670233
- Node: SYSTEM_CLOCK671488
- Node: TAN674336
- Node: TAND675407
- Node: TANH676491
- Node: THIS_IMAGE677666
- Node: TIME679966
- Node: TIME8681137
- Node: TINY682336
- Node: TRAILZ682937
- Node: TRANSFER683755
- Node: TRANSPOSE685791
- Node: TRIM686481
- Node: TTYNAM687339
- Node: UBOUND688257
- Node: UCOBOUND689647
- Node: UMASK690784
- Node: UNLINK691466
- Node: UNPACK692446
- Node: VERIFY693741
- Node: XOR695470
- Node: Intrinsic Modules697280
- Node: ISO_FORTRAN_ENV697569
- Node: ISO_C_BINDING701972
- Node: IEEE modules705678
- Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS706821
- Node: OpenACC Module OPENACC708837
- Node: Contributing709764
- Node: Contributors710618
- Node: Projects712249
- Node: Proposed Extensions713056
- Node: Copying715066
- Node: GNU Free Documentation License752610
- Node: Funding777733
- Node: Option Index780259
- Node: Keyword Index799320
- End Tag Table
|