123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704 |
- This is gfortran.info, produced by makeinfo version 5.2 from
- gfortran.texi.
- Copyright (C) 1999-2017 Free Software Foundation, Inc.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover Texts
- being (a) (see below), and with the Back-Cover Texts being (b) (see
- below). A copy of the license is included in the section entitled "GNU
- Free Documentation License".
- (a) The FSF's Front-Cover Text is:
- A GNU Manual
- (b) The FSF's Back-Cover Text is:
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise funds
- for GNU development.
- INFO-DIR-SECTION Software development
- START-INFO-DIR-ENTRY
- * gfortran: (gfortran). The GNU Fortran Compiler.
- END-INFO-DIR-ENTRY
- This file documents the use and the internals of the GNU Fortran
- compiler, ('gfortran').
- Published by the Free Software Foundation 51 Franklin Street, Fifth
- Floor Boston, MA 02110-1301 USA
- Copyright (C) 1999-2017 Free Software Foundation, Inc.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover Texts
- being (a) (see below), and with the Back-Cover Texts being (b) (see
- below). A copy of the license is included in the section entitled "GNU
- Free Documentation License".
- (a) The FSF's Front-Cover Text is:
- A GNU Manual
- (b) The FSF's Back-Cover Text is:
- You have freedom to copy and modify this GNU Manual, like GNU
- software. Copies published by the Free Software Foundation raise funds
- for GNU development.
- File: gfortran.info, Node: Top, Next: Introduction, Up: (dir)
- Introduction
- ************
- This manual documents the use of 'gfortran', the GNU Fortran compiler.
- You can find in this manual how to invoke 'gfortran', as well as its
- features and incompatibilities.
- * Menu:
- * Introduction::
- Part I: Invoking GNU Fortran
- * Invoking GNU Fortran:: Command options supported by 'gfortran'.
- * Runtime:: Influencing runtime behavior with environment variables.
- Part II: Language Reference
- * Fortran 2003 and 2008 status:: Fortran 2003 and 2008 features supported by GNU Fortran.
- * Compiler Characteristics:: User-visible implementation details.
- * Extensions:: Language extensions implemented by GNU Fortran.
- * Mixed-Language Programming:: Interoperability with C
- * Coarray Programming::
- * Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
- * Intrinsic Modules:: Intrinsic modules supported by GNU Fortran.
- * Contributing:: How you can help.
- * Copying:: GNU General Public License says
- how you can copy and share GNU Fortran.
- * GNU Free Documentation License::
- How you can copy and share this manual.
- * Funding:: How to help assure continued work for free software.
- * Option Index:: Index of command line options
- * Keyword Index:: Index of concepts
- File: gfortran.info, Node: Introduction, Next: Invoking GNU Fortran, Prev: Top, Up: Top
- 1 Introduction
- **************
- The GNU Fortran compiler front end was designed initially as a free
- replacement for, or alternative to, the Unix 'f95' command; 'gfortran'
- is the command you will use to invoke the compiler.
- * Menu:
- * About GNU Fortran:: What you should know about the GNU Fortran compiler.
- * GNU Fortran and GCC:: You can compile Fortran, C, or other programs.
- * Preprocessing and conditional compilation:: The Fortran preprocessor
- * GNU Fortran and G77:: Why we chose to start from scratch.
- * Project Status:: Status of GNU Fortran, roadmap, proposed extensions.
- * Standards:: Standards supported by GNU Fortran.
- File: gfortran.info, Node: About GNU Fortran, Next: GNU Fortran and GCC, Up: Introduction
- 1.1 About GNU Fortran
- =====================
- The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards
- completely, parts of the Fortran 2003 and Fortran 2008 standards, and
- several vendor extensions. The development goal is to provide the
- following features:
- * Read a user's program, stored in a file and containing instructions
- written in Fortran 77, Fortran 90, Fortran 95, Fortran 2003 or
- Fortran 2008. This file contains "source code".
- * Translate the user's program into instructions a computer can carry
- out more quickly than it takes to translate the instructions in the
- first place. The result after compilation of a program is "machine
- code", code designed to be efficiently translated and processed by
- a machine such as your computer. Humans usually are not as good
- writing machine code as they are at writing Fortran (or C++, Ada,
- or Java), because it is easy to make tiny mistakes writing machine
- code.
- * Provide the user with information about the reasons why the
- compiler is unable to create a binary from the source code.
- Usually this will be the case if the source code is flawed. The
- Fortran 90 standard requires that the compiler can point out
- mistakes to the user. An incorrect usage of the language causes an
- "error message".
- The compiler will also attempt to diagnose cases where the user's
- program contains a correct usage of the language, but instructs the
- computer to do something questionable. This kind of diagnostics
- message is called a "warning message".
- * Provide optional information about the translation passes from the
- source code to machine code. This can help a user of the compiler
- to find the cause of certain bugs which may not be obvious in the
- source code, but may be more easily found at a lower level compiler
- output. It also helps developers to find bugs in the compiler
- itself.
- * Provide information in the generated machine code that can make it
- easier to find bugs in the program (using a debugging tool, called
- a "debugger", such as the GNU Debugger 'gdb').
- * Locate and gather machine code already generated to perform actions
- requested by statements in the user's program. This machine code
- is organized into "modules" and is located and "linked" to the user
- program.
- The GNU Fortran compiler consists of several components:
- * A version of the 'gcc' command (which also might be installed as
- the system's 'cc' command) that also understands and accepts
- Fortran source code. The 'gcc' command is the "driver" program for
- all the languages in the GNU Compiler Collection (GCC); With 'gcc',
- you can compile the source code of any language for which a front
- end is available in GCC.
- * The 'gfortran' command itself, which also might be installed as the
- system's 'f95' command. 'gfortran' is just another driver program,
- but specifically for the Fortran compiler only. The difference
- with 'gcc' is that 'gfortran' will automatically link the correct
- libraries to your program.
- * A collection of run-time libraries. These libraries contain the
- machine code needed to support capabilities of the Fortran language
- that are not directly provided by the machine code generated by the
- 'gfortran' compilation phase, such as intrinsic functions and
- subroutines, and routines for interaction with files and the
- operating system.
- * The Fortran compiler itself, ('f951'). This is the GNU Fortran
- parser and code generator, linked to and interfaced with the GCC
- backend library. 'f951' "translates" the source code to assembler
- code. You would typically not use this program directly; instead,
- the 'gcc' or 'gfortran' driver programs will call it for you.
- File: gfortran.info, Node: GNU Fortran and GCC, Next: Preprocessing and conditional compilation, Prev: About GNU Fortran, Up: Introduction
- 1.2 GNU Fortran and GCC
- =======================
- GNU Fortran is a part of GCC, the "GNU Compiler Collection". GCC
- consists of a collection of front ends for various languages, which
- translate the source code into a language-independent form called
- "GENERIC". This is then processed by a common middle end which provides
- optimization, and then passed to one of a collection of back ends which
- generate code for different computer architectures and operating
- systems.
- Functionally, this is implemented with a driver program ('gcc') which
- provides the command-line interface for the compiler. It calls the
- relevant compiler front-end program (e.g., 'f951' for Fortran) for each
- file in the source code, and then calls the assembler and linker as
- appropriate to produce the compiled output. In a copy of GCC which has
- been compiled with Fortran language support enabled, 'gcc' will
- recognize files with '.f', '.for', '.ftn', '.f90', '.f95', '.f03' and
- '.f08' extensions as Fortran source code, and compile it accordingly. A
- 'gfortran' driver program is also provided, which is identical to 'gcc'
- except that it automatically links the Fortran runtime libraries into
- the compiled program.
- Source files with '.f', '.for', '.fpp', '.ftn', '.F', '.FOR', '.FPP',
- and '.FTN' extensions are treated as fixed form. Source files with
- '.f90', '.f95', '.f03', '.f08', '.F90', '.F95', '.F03' and '.F08'
- extensions are treated as free form. The capitalized versions of either
- form are run through preprocessing. Source files with the lower case
- '.fpp' extension are also run through preprocessing.
- This manual specifically documents the Fortran front end, which
- handles the programming language's syntax and semantics. The aspects of
- GCC which relate to the optimization passes and the back-end code
- generation are documented in the GCC manual; see *note Introduction:
- (gcc)Top. The two manuals together provide a complete reference for the
- GNU Fortran compiler.
- File: gfortran.info, Node: Preprocessing and conditional compilation, Next: GNU Fortran and G77, Prev: GNU Fortran and GCC, Up: Introduction
- 1.3 Preprocessing and conditional compilation
- =============================================
- Many Fortran compilers including GNU Fortran allow passing the source
- code through a C preprocessor (CPP; sometimes also called the Fortran
- preprocessor, FPP) to allow for conditional compilation. In the case of
- GNU Fortran, this is the GNU C Preprocessor in the traditional mode. On
- systems with case-preserving file names, the preprocessor is
- automatically invoked if the filename extension is '.F', '.FOR', '.FTN',
- '.fpp', '.FPP', '.F90', '.F95', '.F03' or '.F08'. To manually invoke
- the preprocessor on any file, use '-cpp', to disable preprocessing on
- files where the preprocessor is run automatically, use '-nocpp'.
- If a preprocessed file includes another file with the Fortran
- 'INCLUDE' statement, the included file is not preprocessed. To
- preprocess included files, use the equivalent preprocessor statement
- '#include'.
- If GNU Fortran invokes the preprocessor, '__GFORTRAN__' is defined
- and '__GNUC__', '__GNUC_MINOR__' and '__GNUC_PATCHLEVEL__' can be used
- to determine the version of the compiler. See *note Overview: (cpp)Top.
- for details.
- While CPP is the de-facto standard for preprocessing Fortran code,
- Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
- Conditional Compilation, which is not widely used and not directly
- supported by the GNU Fortran compiler. You can use the program coco to
- preprocess such files (<http://www.daniellnagle.com/coco.html>).
- File: gfortran.info, Node: GNU Fortran and G77, Next: Project Status, Prev: Preprocessing and conditional compilation, Up: Introduction
- 1.4 GNU Fortran and G77
- =======================
- The GNU Fortran compiler is the successor to 'g77', the Fortran 77 front
- end included in GCC prior to version 4. It is an entirely new program
- that has been designed to provide Fortran 95 support and extensibility
- for future Fortran language standards, as well as providing backwards
- compatibility for Fortran 77 and nearly all of the GNU language
- extensions supported by 'g77'.
- File: gfortran.info, Node: Project Status, Next: Standards, Prev: GNU Fortran and G77, Up: Introduction
- 1.5 Project Status
- ==================
- As soon as 'gfortran' can parse all of the statements correctly, it
- will be in the "larva" state. When we generate code, the "puppa"
- state. When 'gfortran' is done, we'll see if it will be a
- beautiful butterfly, or just a big bug....
- -Andy Vaught, April 2000
- The start of the GNU Fortran 95 project was announced on the GCC
- homepage in March 18, 2000 (even though Andy had already been working on
- it for a while, of course).
- The GNU Fortran compiler is able to compile nearly all
- standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
- including a number of standard and non-standard extensions, and can be
- used on real-world programs. In particular, the supported extensions
- include OpenMP, Cray-style pointers, some old vendor extensions, and
- several Fortran 2003 and Fortran 2008 features, including TR 15581.
- However, it is still under development and has a few remaining rough
- edges. There also is initial support for OpenACC. Note that this is an
- experimental feature, incomplete, and subject to change in future
- versions of GCC. See <https://gcc.gnu.org/wiki/OpenACC> for more
- information.
- At present, the GNU Fortran compiler passes the NIST Fortran 77 Test
- Suite (http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html), and
- produces acceptable results on the LAPACK Test Suite
- (http://www.netlib.org/lapack/faq.html#1.21). It also provides
- respectable performance on the Polyhedron Fortran compiler benchmarks
- (http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite)
- and the Livermore Fortran Kernels test
- (http://www.netlib.org/benchmark/livermore). It has been used to
- compile a number of large real-world programs, including the HARMONIE
- and HIRLAM weather forecasting code (http://hirlam.org/) and the Tonto
- quantum chemistry package
- (http://physical-chemistry.scb.uwa.edu.au/tonto/wiki/index.php/Main_Page);
- see <https://gcc.gnu.org/wiki/GfortranApps> for an extended list.
- Among other things, the GNU Fortran compiler is intended as a
- replacement for G77. At this point, nearly all programs that could be
- compiled with G77 can be compiled with GNU Fortran, although there are a
- few minor known regressions.
- The primary work remaining to be done on GNU Fortran falls into three
- categories: bug fixing (primarily regarding the treatment of invalid
- code and providing useful error messages), improving the compiler
- optimizations and the performance of compiled code, and extending the
- compiler to support future standards--in particular, Fortran 2003 and
- Fortran 2008.
- File: gfortran.info, Node: Standards, Prev: Project Status, Up: Introduction
- 1.6 Standards
- =============
- * Menu:
- * Varying Length Character Strings::
- The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As
- such, it can also compile essentially all standard-compliant Fortran 90
- and Fortran 77 programs. It also supports the ISO/IEC TR-15581
- enhancements to allocatable arrays.
- GNU Fortran also have a partial support for ISO/IEC 1539-1:2004
- (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical
- Specification 'Further Interoperability of Fortran with C' (ISO/IEC TS
- 29113:2012). Full support of those standards and future Fortran
- standards is planned. The current status of the support is can be found
- in the *note Fortran 2003 status::, *note Fortran 2008 status::, *note
- TS 29113 status:: and *note TS 18508 status:: sections of the
- documentation.
- Additionally, the GNU Fortran compilers supports the OpenMP
- specification (version 4.0 and most of the features of the 4.5 version,
- <http://openmp.org/wp/openmp-specifications/>). There also is initial
- support for the OpenACC specification (targeting version 2.0,
- <http://www.openacc.org/>). Note that this is an experimental feature,
- incomplete, and subject to change in future versions of GCC. See
- <https://gcc.gnu.org/wiki/OpenACC> for more information.
- File: gfortran.info, Node: Varying Length Character Strings, Up: Standards
- 1.6.1 Varying Length Character Strings
- --------------------------------------
- The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
- varying length character strings. While GNU Fortran currently does not
- support such strings directly, there exist two Fortran implementations
- for them, which work with GNU Fortran. They can be found at
- <http://www.fortran.com/iso_varying_string.f95> and at
- <ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/>.
- Deferred-length character strings of Fortran 2003 supports part of
- the features of 'ISO_VARYING_STRING' and should be considered as
- replacement. (Namely, allocatable or pointers of the type
- 'character(len=:)'.)
- File: gfortran.info, Node: Invoking GNU Fortran, Next: Runtime, Prev: Introduction, Up: Top
- 2 GNU Fortran Command Options
- *****************************
- The 'gfortran' command supports all the options supported by the 'gcc'
- command. Only options specific to GNU Fortran are documented here.
- *Note GCC Command Options: (gcc)Invoking GCC, for information on the
- non-Fortran-specific aspects of the 'gcc' command (and, therefore, the
- 'gfortran' command).
- All GCC and GNU Fortran options are accepted both by 'gfortran' and
- by 'gcc' (as well as any other drivers built at the same time, such as
- 'g++'), since adding GNU Fortran to the GCC distribution enables
- acceptance of GNU Fortran options by all of the relevant drivers.
- In some cases, options have positive and negative forms; the negative
- form of '-ffoo' would be '-fno-foo'. This manual documents only one of
- these two forms, whichever one is not the default.
- * Menu:
- * Option Summary:: Brief list of all 'gfortran' options,
- without explanations.
- * Fortran Dialect Options:: Controlling the variant of Fortran language
- compiled.
- * Preprocessing Options:: Enable and customize preprocessing.
- * Error and Warning Options:: How picky should the compiler be?
- * Debugging Options:: Symbol tables, measurements, and debugging dumps.
- * Directory Options:: Where to find module files
- * Link Options :: Influencing the linking step
- * Runtime Options:: Influencing runtime behavior
- * Code Gen Options:: Specifying conventions for function calls, data layout
- and register usage.
- * Environment Variables:: Environment variables that affect 'gfortran'.
- File: gfortran.info, Node: Option Summary, Next: Fortran Dialect Options, Up: Invoking GNU Fortran
- 2.1 Option summary
- ==================
- Here is a summary of all the options specific to GNU Fortran, grouped by
- type. Explanations are in the following sections.
- _Fortran Language Options_
- *Note Options controlling Fortran dialect: Fortran Dialect Options.
- -fall-intrinsics -fbackslash -fcray-pointer -fd-lines-as-code
- -fd-lines-as-comments
- -fdec -fdec-structure -fdec-intrinsic-ints -fdec-static -fdec-math
- -fdefault-double-8 -fdefault-integer-8
- -fdefault-real-8 -fdollar-ok -ffixed-line-length-N
- -ffixed-line-length-none -ffree-form -ffree-line-length-N
- -ffree-line-length-none -fimplicit-none -finteger-4-integer-8
- -fmax-identifier-length -fmodule-private -ffixed-form -fno-range-check
- -fopenacc -fopenmp -freal-4-real-10 -freal-4-real-16 -freal-4-real-8
- -freal-8-real-10 -freal-8-real-16 -freal-8-real-4 -std=STD
- -ftest-forall-temp
- _Preprocessing Options_
- *Note Enable and customize preprocessing: Preprocessing Options.
- -A-QUESTION[=ANSWER]
- -AQUESTION=ANSWER -C -CC -DMACRO[=DEFN]
- -H -P
- -UMACRO -cpp -dD -dI -dM -dN -dU -fworking-directory
- -imultilib DIR
- -iprefix FILE -iquote -isysroot DIR -isystem DIR -nocpp
- -nostdinc
- -undef
- _Error and Warning Options_
- *Note Options to request or suppress errors and warnings: Error and
- Warning Options.
- -Waliasing -Wall -Wampersand -Wargument-mismatch -Warray-bounds
- -Wc-binding-type -Wcharacter-truncation
- -Wconversion -Wfunction-elimination -Wimplicit-interface
- -Wimplicit-procedure -Wintrinsic-shadow -Wuse-without-only -Wintrinsics-std
- -Wline-truncation -Wno-align-commons -Wno-tabs -Wreal-q-constant
- -Wsurprising -Wunderflow -Wunused-parameter -Wrealloc-lhs -Wrealloc-lhs-all
- -Wtarget-lifetime -fmax-errors=N -fsyntax-only -pedantic -pedantic-errors
- _Debugging Options_
- *Note Options for debugging your program or GNU Fortran: Debugging
- Options.
- -fbacktrace -fdump-fortran-optimized -fdump-fortran-original
- -fdump-parse-tree -ffpe-trap=LIST -ffpe-summary=LIST
- _Directory Options_
- *Note Options for directory search: Directory Options.
- -IDIR -JDIR -fintrinsic-modules-path DIR
- _Link Options_
- *Note Options for influencing the linking step: Link Options.
- -static-libgfortran
- _Runtime Options_
- *Note Options for influencing runtime behavior: Runtime Options.
- -fconvert=CONVERSION -fmax-subrecord-length=LENGTH
- -frecord-marker=LENGTH -fsign-zero
- _Code Generation Options_
- *Note Options for code generation conventions: Code Gen Options.
- -faggressive-function-elimination -fblas-matmul-limit=N
- -fbounds-check -ftail-call-workaround -ftail-call-workaround=N
- -fcheck-array-temporaries
- -fcheck=<ALL|ARRAY-TEMPS|BOUNDS|DO|MEM|POINTER|RECURSION>
- -fcoarray=<NONE|SINGLE|LIB> -fexternal-blas -ff2c
- -ffrontend-optimize
- -finit-character=N -finit-integer=N -finit-local-zero
- -finit-derived
- -finit-logical=<TRUE|FALSE>
- -finit-real=<ZERO|INF|-INF|NAN|SNAN>
- -finline-matmul-limit=N
- -fmax-array-constructor=N -fmax-stack-var-size=N
- -fno-align-commons
- -fno-automatic -fno-protect-parens -fno-underscoring
- -fsecond-underscore -fpack-derived -frealloc-lhs -frecursive
- -frepack-arrays -fshort-enums -fstack-arrays
- File: gfortran.info, Node: Fortran Dialect Options, Next: Preprocessing Options, Prev: Option Summary, Up: Invoking GNU Fortran
- 2.2 Options controlling Fortran dialect
- =======================================
- The following options control the details of the Fortran dialect
- accepted by the compiler:
- '-ffree-form'
- '-ffixed-form'
- Specify the layout used by the source file. The free form layout
- was introduced in Fortran 90. Fixed form was traditionally used in
- older Fortran programs. When neither option is specified, the
- source form is determined by the file extension.
- '-fall-intrinsics'
- This option causes all intrinsic procedures (including the
- GNU-specific extensions) to be accepted. This can be useful with
- '-std=f95' to force standard-compliance but get access to the full
- range of intrinsics available with 'gfortran'. As a consequence,
- '-Wintrinsics-std' will be ignored and no user-defined procedure
- with the same name as any intrinsic will be called except when it
- is explicitly declared 'EXTERNAL'.
- '-fd-lines-as-code'
- '-fd-lines-as-comments'
- Enable special treatment for lines beginning with 'd' or 'D' in
- fixed form sources. If the '-fd-lines-as-code' option is given
- they are treated as if the first column contained a blank. If the
- '-fd-lines-as-comments' option is given, they are treated as
- comment lines.
- '-fdec'
- DEC compatibility mode. Enables extensions and other features that
- mimic the default behavior of older compilers (such as DEC). These
- features are non-standard and should be avoided at all costs. For
- details on GNU Fortran's implementation of these extensions see the
- full documentation.
- Other flags enabled by this switch are: '-fdollar-ok'
- '-fcray-pointer' '-fdec-structure' '-fdec-intrinsic-ints'
- '-fdec-static' '-fdec-math'
- If '-fd-lines-as-code'/'-fd-lines-as-comments' are unset, then
- '-fdec' also sets '-fd-lines-as-comments'.
- '-fdec-structure'
- Enable DEC 'STRUCTURE' and 'RECORD' as well as 'UNION', 'MAP', and
- dot ('.') as a member separator (in addition to '%'). This is
- provided for compatibility only; Fortran 90 derived types should be
- used instead where possible.
- '-fdec-intrinsic-ints'
- Enable B/I/J/K kind variants of existing integer functions (e.g.
- BIAND, IIAND, JIAND, etc...). For a complete list of intrinsics
- see the full documentation.
- '-fdec-math'
- Enable legacy math intrinsics such as COTAN and degree-valued
- trigonometric functions (e.g. TAND, ATAND, etc...) for
- compatability with older code.
- '-fdec-static'
- Enable DEC-style STATIC and AUTOMATIC attributes to explicitly
- specify the storage of variables and other objects.
- '-fdollar-ok'
- Allow '$' as a valid non-first character in a symbol name. Symbols
- that start with '$' are rejected since it is unclear which rules to
- apply to implicit typing as different vendors implement different
- rules. Using '$' in 'IMPLICIT' statements is also rejected.
- '-fbackslash'
- Change the interpretation of backslashes in string literals from a
- single backslash character to "C-style" escape characters. The
- following combinations are expanded '\a', '\b', '\f', '\n', '\r',
- '\t', '\v', '\\', and '\0' to the ASCII characters alert,
- backspace, form feed, newline, carriage return, horizontal tab,
- vertical tab, backslash, and NUL, respectively. Additionally,
- '\x'NN, '\u'NNNN and '\U'NNNNNNNN (where each N is a hexadecimal
- digit) are translated into the Unicode characters corresponding to
- the specified code points. All other combinations of a character
- preceded by \ are unexpanded.
- '-fmodule-private'
- Set the default accessibility of module entities to 'PRIVATE'.
- Use-associated entities will not be accessible unless they are
- explicitly declared as 'PUBLIC'.
- '-ffixed-line-length-N'
- Set column after which characters are ignored in typical fixed-form
- lines in the source file, and through which spaces are assumed (as
- if padded to that length) after the ends of short fixed-form lines.
- Popular values for N include 72 (the standard and the default), 80
- (card image), and 132 (corresponding to "extended-source" options
- in some popular compilers). N may also be 'none', meaning that the
- entire line is meaningful and that continued character constants
- never have implicit spaces appended to them to fill out the line.
- '-ffixed-line-length-0' means the same thing as
- '-ffixed-line-length-none'.
- '-ffree-line-length-N'
- Set column after which characters are ignored in typical free-form
- lines in the source file. The default value is 132. N may be
- 'none', meaning that the entire line is meaningful.
- '-ffree-line-length-0' means the same thing as
- '-ffree-line-length-none'.
- '-fmax-identifier-length=N'
- Specify the maximum allowed identifier length. Typical values are
- 31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008).
- '-fimplicit-none'
- Specify that no implicit typing is allowed, unless overridden by
- explicit 'IMPLICIT' statements. This is the equivalent of adding
- 'implicit none' to the start of every procedure.
- '-fcray-pointer'
- Enable the Cray pointer extension, which provides C-like pointer
- functionality.
- '-fopenacc'
- Enable the OpenACC extensions. This includes OpenACC '!$acc'
- directives in free form and 'c$acc', '*$acc' and '!$acc' directives
- in fixed form, '!$' conditional compilation sentinels in free form
- and 'c$', '*$' and '!$' sentinels in fixed form, and when linking
- arranges for the OpenACC runtime library to be linked in.
- Note that this is an experimental feature, incomplete, and subject
- to change in future versions of GCC. See <https://gcc.gnu.org/wiki/OpenACC>
- for more information.
- '-fopenmp'
- Enable the OpenMP extensions. This includes OpenMP '!$omp'
- directives in free form and 'c$omp', '*$omp' and '!$omp' directives
- in fixed form, '!$' conditional compilation sentinels in free form
- and 'c$', '*$' and '!$' sentinels in fixed form, and when linking
- arranges for the OpenMP runtime library to be linked in. The
- option '-fopenmp' implies '-frecursive'.
- '-fno-range-check'
- Disable range checking on results of simplification of constant
- expressions during compilation. For example, GNU Fortran will give
- an error at compile time when simplifying 'a = 1. / 0'. With this
- option, no error will be given and 'a' will be assigned the value
- '+Infinity'. If an expression evaluates to a value outside of the
- relevant range of ['-HUGE()':'HUGE()'], then the expression will be
- replaced by '-Inf' or '+Inf' as appropriate. Similarly, 'DATA
- i/Z'FFFFFFFF'/' will result in an integer overflow on most systems,
- but with '-fno-range-check' the value will "wrap around" and 'i'
- will be initialized to -1 instead.
- '-fdefault-integer-8'
- Set the default integer and logical types to an 8 byte wide type.
- This option also affects the kind of integer constants like '42'.
- Unlike '-finteger-4-integer-8', it does not promote variables with
- explicit kind declaration.
- '-fdefault-real-8'
- Set the default real type to an 8 byte wide type. This option also
- affects the kind of non-double real constants like '1.0', and does
- promote the default width of 'DOUBLE PRECISION' to 16 bytes if
- possible, unless '-fdefault-double-8' is given, too. Unlike
- '-freal-4-real-8', it does not promote variables with explicit kind
- declaration.
- '-fdefault-double-8'
- Set the 'DOUBLE PRECISION' type to an 8 byte wide type. Do nothing
- if this is already the default. If '-fdefault-real-8' is given,
- 'DOUBLE PRECISION' would instead be promoted to 16 bytes if
- possible, and '-fdefault-double-8' can be used to prevent this.
- The kind of real constants like '1.d0' will not be changed by
- '-fdefault-real-8' though, so also '-fdefault-double-8' does not
- affect it.
- '-finteger-4-integer-8'
- Promote all 'INTEGER(KIND=4)' entities to an 'INTEGER(KIND=8)'
- entities. If 'KIND=8' is unavailable, then an error will be
- issued. This option should be used with care and may not be
- suitable for your codes. Areas of possible concern include calls
- to external procedures, alignment in 'EQUIVALENCE' and/or 'COMMON',
- generic interfaces, BOZ literal constant conversion, and I/O.
- Inspection of the intermediate representation of the translated
- Fortran code, produced by '-fdump-tree-original', is suggested.
- '-freal-4-real-8'
- '-freal-4-real-10'
- '-freal-4-real-16'
- '-freal-8-real-4'
- '-freal-8-real-10'
- '-freal-8-real-16'
- Promote all 'REAL(KIND=M)' entities to 'REAL(KIND=N)' entities. If
- 'REAL(KIND=N)' is unavailable, then an error will be issued. All
- other real kind types are unaffected by this option. These options
- should be used with care and may not be suitable for your codes.
- Areas of possible concern include calls to external procedures,
- alignment in 'EQUIVALENCE' and/or 'COMMON', generic interfaces, BOZ
- literal constant conversion, and I/O. Inspection of the
- intermediate representation of the translated Fortran code,
- produced by '-fdump-tree-original', is suggested.
- '-std=STD'
- Specify the standard to which the program is expected to conform,
- which may be one of 'f95', 'f2003', 'f2008', 'gnu', or 'legacy'.
- The default value for STD is 'gnu', which specifies a superset of
- the Fortran 95 standard that includes all of the extensions
- supported by GNU Fortran, although warnings will be given for
- obsolete extensions not recommended for use in new code. The
- 'legacy' value is equivalent but without the warnings for obsolete
- extensions, and may be useful for old non-standard programs. The
- 'f95', 'f2003' and 'f2008' values specify strict conformance to the
- Fortran 95, Fortran 2003 and Fortran 2008 standards, respectively;
- errors are given for all extensions beyond the relevant language
- standard, and warnings are given for the Fortran 77 features that
- are permitted but obsolescent in later standards. '-std=f2008ts'
- allows the Fortran 2008 standard including the additions of the
- Technical Specification (TS) 29113 on Further Interoperability of
- Fortran with C and TS 18508 on Additional Parallel Features in
- Fortran.
- '-ftest-forall-temp'
- Enhance test coverage by forcing most forall assignments to use
- temporary.
- File: gfortran.info, Node: Preprocessing Options, Next: Error and Warning Options, Prev: Fortran Dialect Options, Up: Invoking GNU Fortran
- 2.3 Enable and customize preprocessing
- ======================================
- Preprocessor related options. See section *note Preprocessing and
- conditional compilation:: for more detailed information on preprocessing
- in 'gfortran'.
- '-cpp'
- '-nocpp'
- Enable preprocessing. The preprocessor is automatically invoked if
- the file extension is '.fpp', '.FPP', '.F', '.FOR', '.FTN', '.F90',
- '.F95', '.F03' or '.F08'. Use this option to manually enable
- preprocessing of any kind of Fortran file.
- To disable preprocessing of files with any of the above listed
- extensions, use the negative form: '-nocpp'.
- The preprocessor is run in traditional mode. Any restrictions of
- the file-format, especially the limits on line length, apply for
- preprocessed output as well, so it might be advisable to use the
- '-ffree-line-length-none' or '-ffixed-line-length-none' options.
- '-dM'
- Instead of the normal output, generate a list of ''#define''
- directives for all the macros defined during the execution of the
- preprocessor, including predefined macros. This gives you a way of
- finding out what is predefined in your version of the preprocessor.
- Assuming you have no file 'foo.f90', the command
- touch foo.f90; gfortran -cpp -E -dM foo.f90
- will show all the predefined macros.
- '-dD'
- Like '-dM' except in two respects: it does not include the
- predefined macros, and it outputs both the '#define' directives and
- the result of preprocessing. Both kinds of output go to the
- standard output file.
- '-dN'
- Like '-dD', but emit only the macro names, not their expansions.
- '-dU'
- Like 'dD' except that only macros that are expanded, or whose
- definedness is tested in preprocessor directives, are output; the
- output is delayed until the use or test of the macro; and
- ''#undef'' directives are also output for macros tested but
- undefined at the time.
- '-dI'
- Output ''#include'' directives in addition to the result of
- preprocessing.
- '-fworking-directory'
- Enable generation of linemarkers in the preprocessor output that
- will let the compiler know the current working directory at the
- time of preprocessing. When this option is enabled, the
- preprocessor will emit, after the initial linemarker, a second
- linemarker with the current working directory followed by two
- slashes. GCC will use this directory, when it is present in the
- preprocessed input, as the directory emitted as the current working
- directory in some debugging information formats. This option is
- implicitly enabled if debugging information is enabled, but this
- can be inhibited with the negated form '-fno-working-directory'.
- If the '-P' flag is present in the command line, this option has no
- effect, since no '#line' directives are emitted whatsoever.
- '-idirafter DIR'
- Search DIR for include files, but do it after all directories
- specified with '-I' and the standard system directories have been
- exhausted. DIR is treated as a system include directory. If dir
- begins with '=', then the '=' will be replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
- '-imultilib DIR'
- Use DIR as a subdirectory of the directory containing
- target-specific C++ headers.
- '-iprefix PREFIX'
- Specify PREFIX as the prefix for subsequent '-iwithprefix' options.
- If the PREFIX represents a directory, you should include the final
- ''/''.
- '-isysroot DIR'
- This option is like the '--sysroot' option, but applies only to
- header files. See the '--sysroot' option for more information.
- '-iquote DIR'
- Search DIR only for header files requested with '#include "file"';
- they are not searched for '#include <file>', before all directories
- specified by '-I' and before the standard system directories. If
- DIR begins with '=', then the '=' will be replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
- '-isystem DIR'
- Search DIR for header files, after all directories specified by
- '-I' but before the standard system directories. Mark it as a
- system directory, so that it gets the same special treatment as is
- applied to the standard system directories. If DIR begins with
- '=', then the '=' will be replaced by the sysroot prefix; see
- '--sysroot' and '-isysroot'.
- '-nostdinc'
- Do not search the standard system directories for header files.
- Only the directories you have specified with '-I' options (and the
- directory of the current file, if appropriate) are searched.
- '-undef'
- Do not predefine any system-specific or GCC-specific macros. The
- standard predefined macros remain defined.
- '-APREDICATE=ANSWER'
- Make an assertion with the predicate PREDICATE and answer ANSWER.
- This form is preferred to the older form -A predicate(answer),
- which is still supported, because it does not use shell special
- characters.
- '-A-PREDICATE=ANSWER'
- Cancel an assertion with the predicate PREDICATE and answer ANSWER.
- '-C'
- Do not discard comments. All comments are passed through to the
- output file, except for comments in processed directives, which are
- deleted along with the directive.
- You should be prepared for side effects when using '-C'; it causes
- the preprocessor to treat comments as tokens in their own right.
- For example, comments appearing at the start of what would be a
- directive line have the effect of turning that line into an
- ordinary source line, since the first token on the line is no
- longer a ''#''.
- Warning: this currently handles C-Style comments only. The
- preprocessor does not yet recognize Fortran-style comments.
- '-CC'
- Do not discard comments, including during macro expansion. This is
- like '-C', except that comments contained within macros are also
- passed through to the output file where the macro is expanded.
- In addition to the side-effects of the '-C' option, the '-CC'
- option causes all C++-style comments inside a macro to be converted
- to C-style comments. This is to prevent later use of that macro
- from inadvertently commenting out the remainder of the source line.
- The '-CC' option is generally used to support lint comments.
- Warning: this currently handles C- and C++-Style comments only.
- The preprocessor does not yet recognize Fortran-style comments.
- '-DNAME'
- Predefine name as a macro, with definition '1'.
- '-DNAME=DEFINITION'
- The contents of DEFINITION are tokenized and processed as if they
- appeared during translation phase three in a ''#define'' directive.
- In particular, the definition will be truncated by embedded newline
- characters.
- If you are invoking the preprocessor from a shell or shell-like
- program you may need to use the shell's quoting syntax to protect
- characters such as spaces that have a meaning in the shell syntax.
- If you wish to define a function-like macro on the command line,
- write its argument list with surrounding parentheses before the
- equals sign (if any). Parentheses are meaningful to most shells,
- so you will need to quote the option. With sh and csh,
- '-D'name(args...)=definition'' works.
- '-D' and '-U' options are processed in the order they are given on
- the command line. All -imacros file and -include file options are
- processed after all -D and -U options.
- '-H'
- Print the name of each header file used, in addition to other
- normal activities. Each name is indented to show how deep in the
- ''#include'' stack it is.
- '-P'
- Inhibit generation of linemarkers in the output from the
- preprocessor. This might be useful when running the preprocessor
- on something that is not C code, and will be sent to a program
- which might be confused by the linemarkers.
- '-UNAME'
- Cancel any previous definition of NAME, either built in or provided
- with a '-D' option.
- File: gfortran.info, Node: Error and Warning Options, Next: Debugging Options, Prev: Preprocessing Options, Up: Invoking GNU Fortran
- 2.4 Options to request or suppress errors and warnings
- ======================================================
- Errors are diagnostic messages that report that the GNU Fortran compiler
- cannot compile the relevant piece of source code. The compiler will
- continue to process the program in an attempt to report further errors
- to aid in debugging, but will not produce any compiled output.
- Warnings are diagnostic messages that report constructions which are
- not inherently erroneous but which are risky or suggest there is likely
- to be a bug in the program. Unless '-Werror' is specified, they do not
- prevent compilation of the program.
- You can request many specific warnings with options beginning '-W',
- for example '-Wimplicit' to request warnings on implicit declarations.
- Each of these specific warning options also has a negative form
- beginning '-Wno-' to turn off warnings; for example, '-Wno-implicit'.
- This manual lists only one of the two forms, whichever is not the
- default.
- These options control the amount and kinds of errors and warnings
- produced by GNU Fortran:
- '-fmax-errors=N'
- Limits the maximum number of error messages to N, at which point
- GNU Fortran bails out rather than attempting to continue processing
- the source code. If N is 0, there is no limit on the number of
- error messages produced.
- '-fsyntax-only'
- Check the code for syntax errors, but do not actually compile it.
- This will generate module files for each module present in the
- code, but no other output file.
- '-Wpedantic'
- '-pedantic'
- Issue warnings for uses of extensions to Fortran 95. '-pedantic'
- also applies to C-language constructs where they occur in GNU
- Fortran source files, such as use of '\e' in a character constant
- within a directive like '#include'.
- Valid Fortran 95 programs should compile properly with or without
- this option. However, without this option, certain GNU extensions
- and traditional Fortran features are supported as well. With this
- option, many of them are rejected.
- Some users try to use '-pedantic' to check programs for
- conformance. They soon find that it does not do quite what they
- want--it finds some nonstandard practices, but not all. However,
- improvements to GNU Fortran in this area are welcome.
- This should be used in conjunction with '-std=f95', '-std=f2003' or
- '-std=f2008'.
- '-pedantic-errors'
- Like '-pedantic', except that errors are produced rather than
- warnings.
- '-Wall'
- Enables commonly used warning options pertaining to usage that we
- recommend avoiding and that we believe are easy to avoid. This
- currently includes '-Waliasing', '-Wampersand', '-Wconversion',
- '-Wsurprising', '-Wc-binding-type', '-Wintrinsics-std', '-Wtabs',
- '-Wintrinsic-shadow', '-Wline-truncation', '-Wtarget-lifetime',
- '-Winteger-division', '-Wreal-q-constant', '-Wunused' and
- '-Wundefined-do-loop'.
- '-Waliasing'
- Warn about possible aliasing of dummy arguments. Specifically, it
- warns if the same actual argument is associated with a dummy
- argument with 'INTENT(IN)' and a dummy argument with 'INTENT(OUT)'
- in a call with an explicit interface.
- The following example will trigger the warning.
- interface
- subroutine bar(a,b)
- integer, intent(in) :: a
- integer, intent(out) :: b
- end subroutine
- end interface
- integer :: a
- call bar(a,a)
- '-Wampersand'
- Warn about missing ampersand in continued character constants. The
- warning is given with '-Wampersand', '-pedantic', '-std=f95',
- '-std=f2003' and '-std=f2008'. Note: With no ampersand given in a
- continued character constant, GNU Fortran assumes continuation at
- the first non-comment, non-whitespace character after the ampersand
- that initiated the continuation.
- '-Wargument-mismatch'
- Warn about type, rank, and other mismatches between formal
- parameters and actual arguments to functions and subroutines.
- These warnings are recommended and thus enabled by default.
- '-Warray-temporaries'
- Warn about array temporaries generated by the compiler. The
- information generated by this warning is sometimes useful in
- optimization, in order to avoid such temporaries.
- '-Wc-binding-type'
- Warn if the a variable might not be C interoperable. In
- particular, warn if the variable has been declared using an
- intrinsic type with default kind instead of using a kind parameter
- defined for C interoperability in the intrinsic 'ISO_C_Binding'
- module. This option is implied by '-Wall'.
- '-Wcharacter-truncation'
- Warn when a character assignment will truncate the assigned string.
- '-Wline-truncation'
- Warn when a source code line will be truncated. This option is
- implied by '-Wall'. For free-form source code, the default is
- '-Werror=line-truncation' such that truncations are reported as
- error.
- '-Wconversion'
- Warn about implicit conversions that are likely to change the value
- of the expression after conversion. Implied by '-Wall'.
- '-Wconversion-extra'
- Warn about implicit conversions between different types and kinds.
- This option does _not_ imply '-Wconversion'.
- '-Wextra'
- Enables some warning options for usages of language features which
- may be problematic. This currently includes '-Wcompare-reals' and
- '-Wunused-parameter'.
- '-Wimplicit-interface'
- Warn if a procedure is called without an explicit interface. Note
- this only checks that an explicit interface is present. It does
- not check that the declared interfaces are consistent across
- program units.
- '-Wimplicit-procedure'
- Warn if a procedure is called that has neither an explicit
- interface nor has been declared as 'EXTERNAL'.
- '-Winteger-division'
- Warn if a constant integer division truncates it result. As an
- example, 3/5 evaluates to 0.
- '-Wintrinsics-std'
- Warn if 'gfortran' finds a procedure named like an intrinsic not
- available in the currently selected standard (with '-std') and
- treats it as 'EXTERNAL' procedure because of this.
- '-fall-intrinsics' can be used to never trigger this behavior and
- always link to the intrinsic regardless of the selected standard.
- '-Wreal-q-constant'
- Produce a warning if a real-literal-constant contains a 'q'
- exponent-letter.
- '-Wsurprising'
- Produce a warning when "suspicious" code constructs are
- encountered. While technically legal these usually indicate that
- an error has been made.
- This currently produces a warning under the following
- circumstances:
- * An INTEGER SELECT construct has a CASE that can never be
- matched as its lower value is greater than its upper value.
- * A LOGICAL SELECT construct has three CASE statements.
- * A TRANSFER specifies a source that is shorter than the
- destination.
- * The type of a function result is declared more than once with
- the same type. If '-pedantic' or standard-conforming mode is
- enabled, this is an error.
- * A 'CHARACTER' variable is declared with negative length.
- '-Wtabs'
- By default, tabs are accepted as whitespace, but tabs are not
- members of the Fortran Character Set. For continuation lines, a
- tab followed by a digit between 1 and 9 is supported. '-Wtabs'
- will cause a warning to be issued if a tab is encountered. Note,
- '-Wtabs' is active for '-pedantic', '-std=f95', '-std=f2003',
- '-std=f2008', '-std=f2008ts' and '-Wall'.
- '-Wundefined-do-loop'
- Warn if a DO loop with step either 1 or -1 yields an underflow or
- an overflow during iteration of an induction variable of the loop.
- This option is implied by '-Wall'.
- '-Wunderflow'
- Produce a warning when numerical constant expressions are
- encountered, which yield an UNDERFLOW during compilation. Enabled
- by default.
- '-Wintrinsic-shadow'
- Warn if a user-defined procedure or module procedure has the same
- name as an intrinsic; in this case, an explicit interface or
- 'EXTERNAL' or 'INTRINSIC' declaration might be needed to get calls
- later resolved to the desired intrinsic/procedure. This option is
- implied by '-Wall'.
- '-Wuse-without-only'
- Warn if a 'USE' statement has no 'ONLY' qualifier and thus
- implicitly imports all public entities of the used module.
- '-Wunused-dummy-argument'
- Warn about unused dummy arguments. This option is implied by
- '-Wall'.
- '-Wunused-parameter'
- Contrary to 'gcc''s meaning of '-Wunused-parameter', 'gfortran''s
- implementation of this option does not warn about unused dummy
- arguments (see '-Wunused-dummy-argument'), but about unused
- 'PARAMETER' values. '-Wunused-parameter' is implied by '-Wextra'
- if also '-Wunused' or '-Wall' is used.
- '-Walign-commons'
- By default, 'gfortran' warns about any occasion of variables being
- padded for proper alignment inside a 'COMMON' block. This warning
- can be turned off via '-Wno-align-commons'. See also
- '-falign-commons'.
- '-Wfunction-elimination'
- Warn if any calls to functions are eliminated by the optimizations
- enabled by the '-ffrontend-optimize' option.
- '-Wrealloc-lhs'
- Warn when the compiler might insert code to for allocation or
- reallocation of an allocatable array variable of intrinsic type in
- intrinsic assignments. In hot loops, the Fortran 2003 reallocation
- feature may reduce the performance. If the array is already
- allocated with the correct shape, consider using a whole-array
- array-spec (e.g. '(:,:,:)') for the variable on the left-hand side
- to prevent the reallocation check. Note that in some cases the
- warning is shown, even if the compiler will optimize reallocation
- checks away. For instance, when the right-hand side contains the
- same variable multiplied by a scalar. See also '-frealloc-lhs'.
- '-Wrealloc-lhs-all'
- Warn when the compiler inserts code to for allocation or
- reallocation of an allocatable variable; this includes scalars and
- derived types.
- '-Wcompare-reals'
- Warn when comparing real or complex types for equality or
- inequality. This option is implied by '-Wextra'.
- '-Wtarget-lifetime'
- Warn if the pointer in a pointer assignment might be longer than
- the its target. This option is implied by '-Wall'.
- '-Wzerotrip'
- Warn if a 'DO' loop is known to execute zero times at compile time.
- This option is implied by '-Wall'.
- '-Werror'
- Turns all warnings into errors.
- *Note Options to Request or Suppress Errors and Warnings:
- (gcc)Warning Options, for information on more options offered by the GBE
- shared by 'gfortran', 'gcc' and other GNU compilers.
- Some of these have no effect when compiling programs written in
- Fortran.
- File: gfortran.info, Node: Debugging Options, Next: Directory Options, Prev: Error and Warning Options, Up: Invoking GNU Fortran
- 2.5 Options for debugging your program or GNU Fortran
- =====================================================
- GNU Fortran has various special options that are used for debugging
- either your program or the GNU Fortran compiler.
- '-fdump-fortran-original'
- Output the internal parse tree after translating the source program
- into internal representation. Only really useful for debugging the
- GNU Fortran compiler itself.
- '-fdump-fortran-optimized'
- Output the parse tree after front-end optimization. Only really
- useful for debugging the GNU Fortran compiler itself.
- '-fdump-parse-tree'
- Output the internal parse tree after translating the source program
- into internal representation. Only really useful for debugging the
- GNU Fortran compiler itself. This option is deprecated; use
- '-fdump-fortran-original' instead.
- '-ffpe-trap=LIST'
- Specify a list of floating point exception traps to enable. On
- most systems, if a floating point exception occurs and the trap for
- that exception is enabled, a SIGFPE signal will be sent and the
- program being aborted, producing a core file useful for debugging.
- LIST is a (possibly empty) comma-separated list of the following
- exceptions: 'invalid' (invalid floating point operation, such as
- 'SQRT(-1.0)'), 'zero' (division by zero), 'overflow' (overflow in a
- floating point operation), 'underflow' (underflow in a floating
- point operation), 'inexact' (loss of precision during operation),
- and 'denormal' (operation performed on a denormal value). The
- first five exceptions correspond to the five IEEE 754 exceptions,
- whereas the last one ('denormal') is not part of the IEEE 754
- standard but is available on some common architectures such as x86.
- The first three exceptions ('invalid', 'zero', and 'overflow')
- often indicate serious errors, and unless the program has
- provisions for dealing with these exceptions, enabling traps for
- these three exceptions is probably a good idea.
- Many, if not most, floating point operations incur loss of
- precision due to rounding, and hence the 'ffpe-trap=inexact' is
- likely to be uninteresting in practice.
- By default no exception traps are enabled.
- '-ffpe-summary=LIST'
- Specify a list of floating-point exceptions, whose flag status is
- printed to 'ERROR_UNIT' when invoking 'STOP' and 'ERROR STOP'.
- LIST can be either 'none', 'all' or a comma-separated list of the
- following exceptions: 'invalid', 'zero', 'overflow', 'underflow',
- 'inexact' and 'denormal'. (See '-ffpe-trap' for a description of
- the exceptions.)
- By default, a summary for all exceptions but 'inexact' is shown.
- '-fno-backtrace'
- When a serious runtime error is encountered or a deadly signal is
- emitted (segmentation fault, illegal instruction, bus error,
- floating-point exception, and the other POSIX signals that have the
- action 'core'), the Fortran runtime library tries to output a
- backtrace of the error. '-fno-backtrace' disables the backtrace
- generation. This option only has influence for compilation of the
- Fortran main program.
- *Note Options for Debugging Your Program or GCC: (gcc)Debugging
- Options, for more information on debugging options.
- File: gfortran.info, Node: Directory Options, Next: Link Options, Prev: Debugging Options, Up: Invoking GNU Fortran
- 2.6 Options for directory search
- ================================
- These options affect how GNU Fortran searches for files specified by the
- 'INCLUDE' directive and where it searches for previously compiled
- modules.
- It also affects the search paths used by 'cpp' when used to
- preprocess Fortran source.
- '-IDIR'
- These affect interpretation of the 'INCLUDE' directive (as well as
- of the '#include' directive of the 'cpp' preprocessor).
- Also note that the general behavior of '-I' and 'INCLUDE' is pretty
- much the same as of '-I' with '#include' in the 'cpp' preprocessor,
- with regard to looking for 'header.gcc' files and other such
- things.
- This path is also used to search for '.mod' files when previously
- compiled modules are required by a 'USE' statement.
- *Note Options for Directory Search: (gcc)Directory Options, for
- information on the '-I' option.
- '-JDIR'
- This option specifies where to put '.mod' files for compiled
- modules. It is also added to the list of directories to searched
- by an 'USE' statement.
- The default is the current directory.
- '-fintrinsic-modules-path DIR'
- This option specifies the location of pre-compiled intrinsic
- modules, if they are not in the default location expected by the
- compiler.
- File: gfortran.info, Node: Link Options, Next: Runtime Options, Prev: Directory Options, Up: Invoking GNU Fortran
- 2.7 Influencing the linking step
- ================================
- These options come into play when the compiler links object files into
- an executable output file. They are meaningless if the compiler is not
- doing a link step.
- '-static-libgfortran'
- On systems that provide 'libgfortran' as a shared and a static
- library, this option forces the use of the static version. If no
- shared version of 'libgfortran' was built when the compiler was
- configured, this option has no effect.
- File: gfortran.info, Node: Runtime Options, Next: Code Gen Options, Prev: Link Options, Up: Invoking GNU Fortran
- 2.8 Influencing runtime behavior
- ================================
- These options affect the runtime behavior of programs compiled with GNU
- Fortran.
- '-fconvert=CONVERSION'
- Specify the representation of data for unformatted files. Valid
- values for conversion are: 'native', the default; 'swap', swap
- between big- and little-endian; 'big-endian', use big-endian
- representation for unformatted files; 'little-endian', use
- little-endian representation for unformatted files.
- _This option has an effect only when used in the main program. The
- 'CONVERT' specifier and the GFORTRAN_CONVERT_UNIT environment
- variable override the default specified by '-fconvert'._
- '-frecord-marker=LENGTH'
- Specify the length of record markers for unformatted files. Valid
- values for LENGTH are 4 and 8. Default is 4. _This is different
- from previous versions of 'gfortran'_, which specified a default
- record marker length of 8 on most systems. If you want to read or
- write files compatible with earlier versions of 'gfortran', use
- '-frecord-marker=8'.
- '-fmax-subrecord-length=LENGTH'
- Specify the maximum length for a subrecord. The maximum permitted
- value for length is 2147483639, which is also the default. Only
- really useful for use by the gfortran testsuite.
- '-fsign-zero'
- When enabled, floating point numbers of value zero with the sign
- bit set are written as negative number in formatted output and
- treated as negative in the 'SIGN' intrinsic. '-fno-sign-zero' does
- not print the negative sign of zero values (or values rounded to
- zero for I/O) and regards zero as positive number in the 'SIGN'
- intrinsic for compatibility with Fortran 77. The default is
- '-fsign-zero'.
- File: gfortran.info, Node: Code Gen Options, Next: Environment Variables, Prev: Runtime Options, Up: Invoking GNU Fortran
- 2.9 Options for code generation conventions
- ===========================================
- These machine-independent options control the interface conventions used
- in code generation.
- Most of them have both positive and negative forms; the negative form
- of '-ffoo' would be '-fno-foo'. In the table below, only one of the
- forms is listed--the one which is not the default. You can figure out
- the other form by either removing 'no-' or adding it.
- '-fno-automatic'
- Treat each program unit (except those marked as RECURSIVE) as if
- the 'SAVE' statement were specified for every local variable and
- array referenced in it. Does not affect common blocks. (Some
- Fortran compilers provide this option under the name '-static' or
- '-save'.) The default, which is '-fautomatic', uses the stack for
- local variables smaller than the value given by
- '-fmax-stack-var-size'. Use the option '-frecursive' to use no
- static memory.
- '-ff2c'
- Generate code designed to be compatible with code generated by
- 'g77' and 'f2c'.
- The calling conventions used by 'g77' (originally implemented in
- 'f2c') require functions that return type default 'REAL' to
- actually return the C type 'double', and functions that return type
- 'COMPLEX' to return the values via an extra argument in the calling
- sequence that points to where to store the return value. Under the
- default GNU calling conventions, such functions simply return their
- results as they would in GNU C--default 'REAL' functions return the
- C type 'float', and 'COMPLEX' functions return the GNU C type
- 'complex'. Additionally, this option implies the
- '-fsecond-underscore' option, unless '-fno-second-underscore' is
- explicitly requested.
- This does not affect the generation of code that interfaces with
- the 'libgfortran' library.
- _Caution:_ It is not a good idea to mix Fortran code compiled with
- '-ff2c' with code compiled with the default '-fno-f2c' calling
- conventions as, calling 'COMPLEX' or default 'REAL' functions
- between program parts which were compiled with different calling
- conventions will break at execution time.
- _Caution:_ This will break code which passes intrinsic functions of
- type default 'REAL' or 'COMPLEX' as actual arguments, as the
- library implementations use the '-fno-f2c' calling conventions.
- '-fno-underscoring'
- Do not transform names of entities specified in the Fortran source
- file by appending underscores to them.
- With '-funderscoring' in effect, GNU Fortran appends one underscore
- to external names with no underscores. This is done to ensure
- compatibility with code produced by many UNIX Fortran compilers.
- _Caution_: The default behavior of GNU Fortran is incompatible with
- 'f2c' and 'g77', please use the '-ff2c' option if you want object
- files compiled with GNU Fortran to be compatible with object code
- created with these tools.
- Use of '-fno-underscoring' is not recommended unless you are
- experimenting with issues such as integration of GNU Fortran into
- existing system environments (vis-a`-vis existing libraries, tools,
- and so on).
- For example, with '-funderscoring', and assuming that 'j()' and
- 'max_count()' are external functions while 'my_var' and 'lvar' are
- local variables, a statement like
- I = J() + MAX_COUNT (MY_VAR, LVAR)
- is implemented as something akin to:
- i = j_() + max_count__(&my_var__, &lvar);
- With '-fno-underscoring', the same statement is implemented as:
- i = j() + max_count(&my_var, &lvar);
- Use of '-fno-underscoring' allows direct specification of
- user-defined names while debugging and when interfacing GNU Fortran
- code with other languages.
- Note that just because the names match does _not_ mean that the
- interface implemented by GNU Fortran for an external name matches
- the interface implemented by some other language for that same
- name. That is, getting code produced by GNU Fortran to link to
- code produced by some other compiler using this or any other method
- can be only a small part of the overall solution--getting the code
- generated by both compilers to agree on issues other than naming
- can require significant effort, and, unlike naming disagreements,
- linkers normally cannot detect disagreements in these other areas.
- Also, note that with '-fno-underscoring', the lack of appended
- underscores introduces the very real possibility that a
- user-defined external name will conflict with a name in a system
- library, which could make finding unresolved-reference bugs quite
- difficult in some cases--they might occur at program run time, and
- show up only as buggy behavior at run time.
- In future versions of GNU Fortran we hope to improve naming and
- linking issues so that debugging always involves using the names as
- they appear in the source, even if the names as seen by the linker
- are mangled to prevent accidental linking between procedures with
- incompatible interfaces.
- '-fsecond-underscore'
- By default, GNU Fortran appends an underscore to external names.
- If this option is used GNU Fortran appends two underscores to names
- with underscores and one underscore to external names with no
- underscores. GNU Fortran also appends two underscores to internal
- names with underscores to avoid naming collisions with external
- names.
- This option has no effect if '-fno-underscoring' is in effect. It
- is implied by the '-ff2c' option.
- Otherwise, with this option, an external name such as 'MAX_COUNT'
- is implemented as a reference to the link-time external symbol
- 'max_count__', instead of 'max_count_'. This is required for
- compatibility with 'g77' and 'f2c', and is implied by use of the
- '-ff2c' option.
- '-fcoarray=<KEYWORD>'
- 'none'
- Disable coarray support; using coarray declarations and
- image-control statements will produce a compile-time error.
- (Default)
- 'single'
- Single-image mode, i.e. 'num_images()' is always one.
- 'lib'
- Library-based coarray parallelization; a suitable GNU Fortran
- coarray library needs to be linked.
- '-fcheck=<KEYWORD>'
- Enable the generation of run-time checks; the argument shall be a
- comma-delimited list of the following keywords. Prefixing a check
- with 'no-' disables it if it was activated by a previous
- specification.
- 'all'
- Enable all run-time test of '-fcheck'.
- 'array-temps'
- Warns at run time when for passing an actual argument a
- temporary array had to be generated. The information
- generated by this warning is sometimes useful in optimization,
- in order to avoid such temporaries.
- Note: The warning is only printed once per location.
- 'bounds'
- Enable generation of run-time checks for array subscripts and
- against the declared minimum and maximum values. It also
- checks array indices for assumed and deferred shape arrays
- against the actual allocated bounds and ensures that all
- string lengths are equal for character array constructors
- without an explicit typespec.
- Some checks require that '-fcheck=bounds' is set for the
- compilation of the main program.
- Note: In the future this may also include other forms of
- checking, e.g., checking substring references.
- 'do'
- Enable generation of run-time checks for invalid modification
- of loop iteration variables.
- 'mem'
- Enable generation of run-time checks for memory allocation.
- Note: This option does not affect explicit allocations using
- the 'ALLOCATE' statement, which will be always checked.
- 'pointer'
- Enable generation of run-time checks for pointers and
- allocatables.
- 'recursion'
- Enable generation of run-time checks for recursively called
- subroutines and functions which are not marked as recursive.
- See also '-frecursive'. Note: This check does not work for
- OpenMP programs and is disabled if used together with
- '-frecursive' and '-fopenmp'.
- Example: Assuming you have a file 'foo.f90', the command
- gfortran -fcheck=all,no-array-temps foo.f90
- will compile the file with all checks enabled as specified above
- except warnings for generated array temporaries.
- '-fbounds-check'
- Deprecated alias for '-fcheck=bounds'.
- '-ftail-call-workaround'
- '-ftail-call-workaround=N'
- Some C interfaces to Fortran codes violate the gfortran ABI by
- omitting the hidden character length arguments as described in
- *Note Argument passing conventions::. This can lead to crashes
- because pushing arguments for tail calls can overflow the stack.
- To provide a workaround for existing binary packages, this option
- disables tail call optimization for gfortran procedures with
- character arguments. With '-ftail-call-workaround=2' tail call
- optimization is disabled in all gfortran procedures with character
- arguments, with '-ftail-call-workaround=1' or equivalent
- '-ftail-call-workaround' only in gfortran procedures with character
- arguments that call implicitly prototyped procedures.
- Using this option can lead to problems including crashes due to
- insufficient stack space.
- It is _very strongly_ recommended to fix the code in question. The
- '-fc-prototypes-external' option can be used to generate prototypes
- which conform to gfortran's ABI, for inclusion in the source code.
- Support for this option will likely be withdrawn in a future
- release of gfortran.
- The negative form, '-fno-tail-call-workaround' or equivalent
- '-ftail-call-workaround=0', can be used to disable this option.
- Default is currently '-ftail-call-workaround', this will change in
- future releases.
- '-fcheck-array-temporaries'
- Deprecated alias for '-fcheck=array-temps'.
- '-fmax-array-constructor=N'
- This option can be used to increase the upper limit permitted in
- array constructors. The code below requires this option to expand
- the array at compile time.
- program test
- implicit none
- integer j
- integer, parameter :: n = 100000
- integer, parameter :: i(n) = (/ (2*j, j = 1, n) /)
- print '(10(I0,1X))', i
- end program test
- _Caution: This option can lead to long compile times and
- excessively large object files._
- The default value for N is 65535.
- '-fmax-stack-var-size=N'
- This option specifies the size in bytes of the largest array that
- will be put on the stack; if the size is exceeded static memory is
- used (except in procedures marked as RECURSIVE). Use the option
- '-frecursive' to allow for recursive procedures which do not have a
- RECURSIVE attribute or for parallel programs. Use '-fno-automatic'
- to never use the stack.
- This option currently only affects local arrays declared with
- constant bounds, and may not apply to all character variables.
- Future versions of GNU Fortran may improve this behavior.
- The default value for N is 32768.
- '-fstack-arrays'
- Adding this option will make the Fortran compiler put all local
- arrays, even those of unknown size onto stack memory. If your
- program uses very large local arrays it is possible that you will
- have to extend your runtime limits for stack memory on some
- operating systems. This flag is enabled by default at optimization
- level '-Ofast'.
- '-fpack-derived'
- This option tells GNU Fortran to pack derived type members as
- closely as possible. Code compiled with this option is likely to
- be incompatible with code compiled without this option, and may
- execute slower.
- '-frepack-arrays'
- In some circumstances GNU Fortran may pass assumed shape array
- sections via a descriptor describing a noncontiguous area of
- memory. This option adds code to the function prologue to repack
- the data into a contiguous block at runtime.
- This should result in faster accesses to the array. However it can
- introduce significant overhead to the function call, especially
- when the passed data is noncontiguous.
- '-fshort-enums'
- This option is provided for interoperability with C code that was
- compiled with the '-fshort-enums' option. It will make GNU Fortran
- choose the smallest 'INTEGER' kind a given enumerator set will fit
- in, and give all its enumerators this kind.
- '-fexternal-blas'
- This option will make 'gfortran' generate calls to BLAS functions
- for some matrix operations like 'MATMUL', instead of using our own
- algorithms, if the size of the matrices involved is larger than a
- given limit (see '-fblas-matmul-limit'). This may be profitable if
- an optimized vendor BLAS library is available. The BLAS library
- will have to be specified at link time.
- '-fblas-matmul-limit=N'
- Only significant when '-fexternal-blas' is in effect. Matrix
- multiplication of matrices with size larger than (or equal to) N
- will be performed by calls to BLAS functions, while others will be
- handled by 'gfortran' internal algorithms. If the matrices
- involved are not square, the size comparison is performed using the
- geometric mean of the dimensions of the argument and result
- matrices.
- The default value for N is 30.
- '-finline-matmul-limit=N'
- When front-end optimiztion is active, some calls to the 'MATMUL'
- intrinsic function will be inlined. This may result in code size
- increase if the size of the matrix cannot be determined at compile
- time, as code for both cases is generated. Setting
- '-finline-matmul-limit=0' will disable inlining in all cases.
- Setting this option with a value of N will produce inline code for
- matrices with size up to N. If the matrices involved are not
- square, the size comparison is performed using the geometric mean
- of the dimensions of the argument and result matrices.
- The default value for N is 30. The '-fblas-matmul-limit' can be
- used to change this value.
- '-frecursive'
- Allow indirect recursion by forcing all local arrays to be
- allocated on the stack. This flag cannot be used together with
- '-fmax-stack-var-size=' or '-fno-automatic'.
- '-finit-local-zero'
- '-finit-derived'
- '-finit-integer=N'
- '-finit-real=<ZERO|INF|-INF|NAN|SNAN>'
- '-finit-logical=<TRUE|FALSE>'
- '-finit-character=N'
- The '-finit-local-zero' option instructs the compiler to initialize
- local 'INTEGER', 'REAL', and 'COMPLEX' variables to zero, 'LOGICAL'
- variables to false, and 'CHARACTER' variables to a string of null
- bytes. Finer-grained initialization options are provided by the
- '-finit-integer=N', '-finit-real=<ZERO|INF|-INF|NAN|SNAN>' (which
- also initializes the real and imaginary parts of local 'COMPLEX'
- variables), '-finit-logical=<TRUE|FALSE>', and '-finit-character=N'
- (where N is an ASCII character value) options. Components of
- derived type variables will be initialized according to these flags
- only with '-finit-derived'. These options do not initialize
- * allocatable arrays
- * variables that appear in an 'EQUIVALENCE' statement.
- (These limitations may be removed in future releases).
- Note that the '-finit-real=nan' option initializes 'REAL' and
- 'COMPLEX' variables with a quiet NaN. For a signalling NaN use
- '-finit-real=snan'; note, however, that compile-time optimizations
- may convert them into quiet NaN and that trapping needs to be
- enabled (e.g. via '-ffpe-trap').
- Finally, note that enabling any of the '-finit-*' options will
- silence warnings that would have been emitted by '-Wuninitialized'
- for the affected local variables.
- '-falign-commons'
- By default, 'gfortran' enforces proper alignment of all variables
- in a 'COMMON' block by padding them as needed. On certain
- platforms this is mandatory, on others it increases performance.
- If a 'COMMON' block is not declared with consistent data types
- everywhere, this padding can cause trouble, and
- '-fno-align-commons' can be used to disable automatic alignment.
- The same form of this option should be used for all files that
- share a 'COMMON' block. To avoid potential alignment issues in
- 'COMMON' blocks, it is recommended to order objects from largest to
- smallest.
- '-fno-protect-parens'
- By default the parentheses in expression are honored for all
- optimization levels such that the compiler does not do any
- re-association. Using '-fno-protect-parens' allows the compiler to
- reorder 'REAL' and 'COMPLEX' expressions to produce faster code.
- Note that for the re-association optimization '-fno-signed-zeros'
- and '-fno-trapping-math' need to be in effect. The parentheses
- protection is enabled by default, unless '-Ofast' is given.
- '-frealloc-lhs'
- An allocatable left-hand side of an intrinsic assignment is
- automatically (re)allocated if it is either unallocated or has a
- different shape. The option is enabled by default except when
- '-std=f95' is given. See also '-Wrealloc-lhs'.
- '-faggressive-function-elimination'
- Functions with identical argument lists are eliminated within
- statements, regardless of whether these functions are marked 'PURE'
- or not. For example, in
- a = f(b,c) + f(b,c)
- there will only be a single call to 'f'. This option only works if
- '-ffrontend-optimize' is in effect.
- '-ffrontend-optimize'
- This option performs front-end optimization, based on manipulating
- parts the Fortran parse tree. Enabled by default by any '-O'
- option. Optimizations enabled by this option include inlining
- calls to 'MATMUL', elimination of identical function calls within
- expressions, removing unnecessary calls to 'TRIM' in comparisons
- and assignments and replacing 'TRIM(a)' with 'a(1:LEN_TRIM(a))'.
- It can be deselected by specifying '-fno-frontend-optimize'.
- *Note Options for Code Generation Conventions: (gcc)Code Gen Options,
- for information on more options offered by the GBE shared by 'gfortran',
- 'gcc', and other GNU compilers.
- File: gfortran.info, Node: Environment Variables, Prev: Code Gen Options, Up: Invoking GNU Fortran
- 2.10 Environment variables affecting 'gfortran'
- ===============================================
- The 'gfortran' compiler currently does not make use of any environment
- variables to control its operation above and beyond those that affect
- the operation of 'gcc'.
- *Note Environment Variables Affecting GCC: (gcc)Environment
- Variables, for information on environment variables.
- *Note Runtime::, for environment variables that affect the run-time
- behavior of programs compiled with GNU Fortran.
- File: gfortran.info, Node: Runtime, Next: Fortran 2003 and 2008 status, Prev: Invoking GNU Fortran, Up: Top
- 3 Runtime: Influencing runtime behavior with environment variables
- ******************************************************************
- The behavior of the 'gfortran' can be influenced by environment
- variables.
- Malformed environment variables are silently ignored.
- * Menu:
- * TMPDIR:: Directory for scratch files
- * GFORTRAN_STDIN_UNIT:: Unit number for standard input
- * GFORTRAN_STDOUT_UNIT:: Unit number for standard output
- * GFORTRAN_STDERR_UNIT:: Unit number for standard error
- * GFORTRAN_UNBUFFERED_ALL:: Do not buffer I/O for all units.
- * GFORTRAN_UNBUFFERED_PRECONNECTED:: Do not buffer I/O for preconnected units.
- * GFORTRAN_SHOW_LOCUS:: Show location for runtime errors
- * GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
- * GFORTRAN_DEFAULT_RECL:: Default record length for new files
- * GFORTRAN_LIST_SEPARATOR:: Separator for list output
- * GFORTRAN_CONVERT_UNIT:: Set endianness for unformatted I/O
- * GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
- File: gfortran.info, Node: TMPDIR, Next: GFORTRAN_STDIN_UNIT, Up: Runtime
- 3.1 'TMPDIR'--Directory for scratch files
- =========================================
- When opening a file with 'STATUS='SCRATCH'', GNU Fortran tries to create
- the file in one of the potential directories by testing each directory
- in the order below.
- 1. The environment variable 'TMPDIR', if it exists.
- 2. On the MinGW target, the directory returned by the 'GetTempPath'
- function. Alternatively, on the Cygwin target, the 'TMP' and
- 'TEMP' environment variables, if they exist, in that order.
- 3. The 'P_tmpdir' macro if it is defined, otherwise the directory
- '/tmp'.
- File: gfortran.info, Node: GFORTRAN_STDIN_UNIT, Next: GFORTRAN_STDOUT_UNIT, Prev: TMPDIR, Up: Runtime
- 3.2 'GFORTRAN_STDIN_UNIT'--Unit number for standard input
- =========================================================
- This environment variable can be used to select the unit number
- preconnected to standard input. This must be a positive integer. The
- default value is 5.
- File: gfortran.info, Node: GFORTRAN_STDOUT_UNIT, Next: GFORTRAN_STDERR_UNIT, Prev: GFORTRAN_STDIN_UNIT, Up: Runtime
- 3.3 'GFORTRAN_STDOUT_UNIT'--Unit number for standard output
- ===========================================================
- This environment variable can be used to select the unit number
- preconnected to standard output. This must be a positive integer. The
- default value is 6.
- File: gfortran.info, Node: GFORTRAN_STDERR_UNIT, Next: GFORTRAN_UNBUFFERED_ALL, Prev: GFORTRAN_STDOUT_UNIT, Up: Runtime
- 3.4 'GFORTRAN_STDERR_UNIT'--Unit number for standard error
- ==========================================================
- This environment variable can be used to select the unit number
- preconnected to standard error. This must be a positive integer. The
- default value is 0.
- File: gfortran.info, Node: GFORTRAN_UNBUFFERED_ALL, Next: GFORTRAN_UNBUFFERED_PRECONNECTED, Prev: GFORTRAN_STDERR_UNIT, Up: Runtime
- 3.5 'GFORTRAN_UNBUFFERED_ALL'--Do not buffer I/O on all units
- =============================================================
- This environment variable controls whether all I/O is unbuffered. If
- the first letter is 'y', 'Y' or '1', all I/O is unbuffered. This will
- slow down small sequential reads and writes. If the first letter is
- 'n', 'N' or '0', I/O is buffered. This is the default.
- File: gfortran.info, Node: GFORTRAN_UNBUFFERED_PRECONNECTED, Next: GFORTRAN_SHOW_LOCUS, Prev: GFORTRAN_UNBUFFERED_ALL, Up: Runtime
- 3.6 'GFORTRAN_UNBUFFERED_PRECONNECTED'--Do not buffer I/O on preconnected units
- ===============================================================================
- The environment variable named 'GFORTRAN_UNBUFFERED_PRECONNECTED'
- controls whether I/O on a preconnected unit (i.e. STDOUT or STDERR) is
- unbuffered. If the first letter is 'y', 'Y' or '1', I/O is unbuffered.
- This will slow down small sequential reads and writes. If the first
- letter is 'n', 'N' or '0', I/O is buffered. This is the default.
- File: gfortran.info, Node: GFORTRAN_SHOW_LOCUS, Next: GFORTRAN_OPTIONAL_PLUS, Prev: GFORTRAN_UNBUFFERED_PRECONNECTED, Up: Runtime
- 3.7 'GFORTRAN_SHOW_LOCUS'--Show location for runtime errors
- ===========================================================
- If the first letter is 'y', 'Y' or '1', filename and line numbers for
- runtime errors are printed. If the first letter is 'n', 'N' or '0', do
- not print filename and line numbers for runtime errors. The default is
- to print the location.
- File: gfortran.info, Node: GFORTRAN_OPTIONAL_PLUS, Next: GFORTRAN_DEFAULT_RECL, Prev: GFORTRAN_SHOW_LOCUS, Up: Runtime
- 3.8 'GFORTRAN_OPTIONAL_PLUS'--Print leading + where permitted
- =============================================================
- If the first letter is 'y', 'Y' or '1', a plus sign is printed where
- permitted by the Fortran standard. If the first letter is 'n', 'N' or
- '0', a plus sign is not printed in most cases. Default is not to print
- plus signs.
- File: gfortran.info, Node: GFORTRAN_DEFAULT_RECL, Next: GFORTRAN_LIST_SEPARATOR, Prev: GFORTRAN_OPTIONAL_PLUS, Up: Runtime
- 3.9 'GFORTRAN_DEFAULT_RECL'--Default record length for new files
- ================================================================
- This environment variable specifies the default record length, in bytes,
- for files which are opened without a 'RECL' tag in the 'OPEN' statement.
- This must be a positive integer. The default value is 1073741824 bytes
- (1 GB).
- File: gfortran.info, Node: GFORTRAN_LIST_SEPARATOR, Next: GFORTRAN_CONVERT_UNIT, Prev: GFORTRAN_DEFAULT_RECL, Up: Runtime
- 3.10 'GFORTRAN_LIST_SEPARATOR'--Separator for list output
- =========================================================
- This environment variable specifies the separator when writing
- list-directed output. It may contain any number of spaces and at most
- one comma. If you specify this on the command line, be sure to quote
- spaces, as in
- $ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out
- when 'a.out' is the compiled Fortran program that you want to run.
- Default is a single space.
- File: gfortran.info, Node: GFORTRAN_CONVERT_UNIT, Next: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_LIST_SEPARATOR, Up: Runtime
- 3.11 'GFORTRAN_CONVERT_UNIT'--Set endianness for unformatted I/O
- ================================================================
- By setting the 'GFORTRAN_CONVERT_UNIT' variable, it is possible to
- change the representation of data for unformatted files. The syntax for
- the 'GFORTRAN_CONVERT_UNIT' variable is:
- GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
- mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
- exception: mode ':' unit_list | unit_list ;
- unit_list: unit_spec | unit_list unit_spec ;
- unit_spec: INTEGER | INTEGER '-' INTEGER ;
- The variable consists of an optional default mode, followed by a list
- of optional exceptions, which are separated by semicolons from the
- preceding default and each other. Each exception consists of a format
- and a comma-separated list of units. Valid values for the modes are the
- same as for the 'CONVERT' specifier:
- 'NATIVE' Use the native format. This is the default.
- 'SWAP' Swap between little- and big-endian.
- 'LITTLE_ENDIAN' Use the little-endian format for unformatted files.
- 'BIG_ENDIAN' Use the big-endian format for unformatted files.
- A missing mode for an exception is taken to mean 'BIG_ENDIAN'.
- Examples of values for 'GFORTRAN_CONVERT_UNIT' are:
- ''big_endian'' Do all unformatted I/O in big_endian mode.
- ''little_endian;native:10-20,25'' Do all unformatted I/O in
- little_endian mode, except for units 10 to 20 and 25, which are in
- native format.
- ''10-20'' Units 10 to 20 are big-endian, the rest is native.
- Setting the environment variables should be done on the command line
- or via the 'export' command for 'sh'-compatible shells and via 'setenv'
- for 'csh'-compatible shells.
- Example for 'sh':
- $ gfortran foo.f90
- $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
- Example code for 'csh':
- % gfortran foo.f90
- % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
- % ./a.out
- Using anything but the native representation for unformatted data
- carries a significant speed overhead. If speed in this area matters to
- you, it is best if you use this only for data that needs to be portable.
- *Note CONVERT specifier::, for an alternative way to specify the data
- representation for unformatted files. *Note Runtime Options::, for
- setting a default data representation for the whole program. The
- 'CONVERT' specifier overrides the '-fconvert' compile options.
- _Note that the values specified via the GFORTRAN_CONVERT_UNIT
- environment variable will override the CONVERT specifier in the open
- statement_. This is to give control over data formats to users who do
- not have the source code of their program available.
- File: gfortran.info, Node: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_CONVERT_UNIT, Up: Runtime
- 3.12 'GFORTRAN_ERROR_BACKTRACE'--Show backtrace on run-time errors
- ==================================================================
- If the 'GFORTRAN_ERROR_BACKTRACE' variable is set to 'y', 'Y' or '1'
- (only the first letter is relevant) then a backtrace is printed when a
- serious run-time error occurs. To disable the backtracing, set the
- variable to 'n', 'N', '0'. Default is to print a backtrace unless the
- '-fno-backtrace' compile option was used.
- File: gfortran.info, Node: Fortran 2003 and 2008 status, Next: Compiler Characteristics, Prev: Runtime, Up: Top
- 4 Fortran 2003 and 2008 Status
- ******************************
- * Menu:
- * Fortran 2003 status::
- * Fortran 2008 status::
- * TS 29113 status::
- * TS 18508 status::
- File: gfortran.info, Node: Fortran 2003 status, Next: Fortran 2008 status, Up: Fortran 2003 and 2008 status
- 4.1 Fortran 2003 status
- =======================
- GNU Fortran supports several Fortran 2003 features; an incomplete list
- can be found below. See also the wiki page
- (https://gcc.gnu.org/wiki/Fortran2003) about Fortran 2003.
- * Procedure pointers including procedure-pointer components with
- 'PASS' attribute.
- * Procedures which are bound to a derived type (type-bound
- procedures) including 'PASS', 'PROCEDURE' and 'GENERIC', and
- operators bound to a type.
- * Abstract interfaces and type extension with the possibility to
- override type-bound procedures or to have deferred binding.
- * Polymorphic entities ("'CLASS'") for derived types and unlimited
- polymorphism ("'CLASS(*)'") - including 'SAME_TYPE_AS',
- 'EXTENDS_TYPE_OF' and 'SELECT TYPE' for scalars and arrays and
- finalization.
- * Generic interface names, which have the same name as derived types,
- are now supported. This allows one to write constructor functions.
- Note that Fortran does not support static constructor functions.
- For static variables, only default initialization or
- structure-constructor initialization are available.
- * The 'ASSOCIATE' construct.
- * Interoperability with C including enumerations,
- * In structure constructors the components with default values may be
- omitted.
- * Extensions to the 'ALLOCATE' statement, allowing for a
- type-specification with type parameter and for allocation and
- initialization from a 'SOURCE=' expression; 'ALLOCATE' and
- 'DEALLOCATE' optionally return an error message string via
- 'ERRMSG='.
- * Reallocation on assignment: If an intrinsic assignment is used, an
- allocatable variable on the left-hand side is automatically
- allocated (if unallocated) or reallocated (if the shape is
- different). Currently, scalar deferred character length left-hand
- sides are correctly handled but arrays are not yet fully
- implemented.
- * Deferred-length character variables and scalar deferred-length
- character components of derived types are supported. (Note that
- array-valued compoents are not yet implemented.)
- * Transferring of allocations via 'MOVE_ALLOC'.
- * The 'PRIVATE' and 'PUBLIC' attributes may be given individually to
- derived-type components.
- * In pointer assignments, the lower bound may be specified and the
- remapping of elements is supported.
- * For pointers an 'INTENT' may be specified which affect the
- association status not the value of the pointer target.
- * Intrinsics 'command_argument_count', 'get_command',
- 'get_command_argument', and 'get_environment_variable'.
- * Support for Unicode characters (ISO 10646) and UTF-8, including the
- 'SELECTED_CHAR_KIND' and 'NEW_LINE' intrinsic functions.
- * Support for binary, octal and hexadecimal (BOZ) constants in the
- intrinsic functions 'INT', 'REAL', 'CMPLX' and 'DBLE'.
- * Support for namelist variables with allocatable and pointer
- attribute and nonconstant length type parameter.
- * Array constructors using square brackets. That is, '[...]' rather
- than '(/.../)'. Type-specification for array constructors like '(/
- some-type :: ... /)'.
- * Extensions to the specification and initialization expressions,
- including the support for intrinsics with real and complex
- arguments.
- * Support for the asynchronous input/output syntax; however, the data
- transfer is currently always synchronously performed.
- * 'FLUSH' statement.
- * 'IOMSG=' specifier for I/O statements.
- * Support for the declaration of enumeration constants via the 'ENUM'
- and 'ENUMERATOR' statements. Interoperability with 'gcc' is
- guaranteed also for the case where the '-fshort-enums' command line
- option is given.
- * TR 15581:
- * 'ALLOCATABLE' dummy arguments.
- * 'ALLOCATABLE' function results
- * 'ALLOCATABLE' components of derived types
- * The 'OPEN' statement supports the 'ACCESS='STREAM'' specifier,
- allowing I/O without any record structure.
- * Namelist input/output for internal files.
- * Minor I/O features: Rounding during formatted output, using of a
- decimal comma instead of a decimal point, setting whether a plus
- sign should appear for positive numbers. On systems where 'strtod'
- honours the rounding mode, the rounding mode is also supported for
- input.
- * The 'PROTECTED' statement and attribute.
- * The 'VALUE' statement and attribute.
- * The 'VOLATILE' statement and attribute.
- * The 'IMPORT' statement, allowing to import host-associated derived
- types.
- * The intrinsic modules 'ISO_FORTRAN_ENVIRONMENT' is supported, which
- contains parameters of the I/O units, storage sizes. Additionally,
- procedures for C interoperability are available in the
- 'ISO_C_BINDING' module.
- * 'USE' statement with 'INTRINSIC' and 'NON_INTRINSIC' attribute;
- supported intrinsic modules: 'ISO_FORTRAN_ENV', 'ISO_C_BINDING',
- 'OMP_LIB' and 'OMP_LIB_KINDS', and 'OPENACC'.
- * Renaming of operators in the 'USE' statement.
- File: gfortran.info, Node: Fortran 2008 status, Next: TS 29113 status, Prev: Fortran 2003 status, Up: Fortran 2003 and 2008 status
- 4.2 Fortran 2008 status
- =======================
- The latest version of the Fortran standard is ISO/IEC 1539-1:2010,
- informally known as Fortran 2008. The official version is available
- from International Organization for Standardization (ISO) or its
- national member organizations. The the final draft (FDIS) can be
- downloaded free of charge from
- <http://www.nag.co.uk/sc22wg5/links.html>. Fortran is developed by the
- Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1
- of the International Organization for Standardization and the
- International Electrotechnical Commission (IEC). This group is known as
- WG5 (http://www.nag.co.uk/sc22wg5/).
- The GNU Fortran compiler supports several of the new features of
- Fortran 2008; the wiki (https://gcc.gnu.org/wiki/Fortran2008Status) has
- some information about the current Fortran 2008 implementation status.
- In particular, the following is implemented.
- * The '-std=f2008' option and support for the file extensions '.f08'
- and '.F08'.
- * The 'OPEN' statement now supports the 'NEWUNIT=' option, which
- returns a unique file unit, thus preventing inadvertent use of the
- same unit in different parts of the program.
- * The 'g0' format descriptor and unlimited format items.
- * The mathematical intrinsics 'ASINH', 'ACOSH', 'ATANH', 'ERF',
- 'ERFC', 'GAMMA', 'LOG_GAMMA', 'BESSEL_J0', 'BESSEL_J1',
- 'BESSEL_JN', 'BESSEL_Y0', 'BESSEL_Y1', 'BESSEL_YN', 'HYPOT',
- 'NORM2', and 'ERFC_SCALED'.
- * Using complex arguments with 'TAN', 'SINH', 'COSH', 'TANH', 'ASIN',
- 'ACOS', and 'ATAN' is now possible; 'ATAN'(Y,X) is now an alias for
- 'ATAN2'(Y,X).
- * Support of the 'PARITY' intrinsic functions.
- * The following bit intrinsics: 'LEADZ' and 'TRAILZ' for counting the
- number of leading and trailing zero bits, 'POPCNT' and 'POPPAR' for
- counting the number of one bits and returning the parity; 'BGE',
- 'BGT', 'BLE', and 'BLT' for bitwise comparisons; 'DSHIFTL' and
- 'DSHIFTR' for combined left and right shifts, 'MASKL' and 'MASKR'
- for simple left and right justified masks, 'MERGE_BITS' for a
- bitwise merge using a mask, 'SHIFTA', 'SHIFTL' and 'SHIFTR' for
- shift operations, and the transformational bit intrinsics 'IALL',
- 'IANY' and 'IPARITY'.
- * Support of the 'EXECUTE_COMMAND_LINE' intrinsic subroutine.
- * Support for the 'STORAGE_SIZE' intrinsic inquiry function.
- * The 'INT{8,16,32}' and 'REAL{32,64,128}' kind type parameters and
- the array-valued named constants 'INTEGER_KINDS', 'LOGICAL_KINDS',
- 'REAL_KINDS' and 'CHARACTER_KINDS' of the intrinsic module
- 'ISO_FORTRAN_ENV'.
- * The module procedures 'C_SIZEOF' of the intrinsic module
- 'ISO_C_BINDINGS' and 'COMPILER_VERSION' and 'COMPILER_OPTIONS' of
- 'ISO_FORTRAN_ENV'.
- * Coarray support for serial programs with '-fcoarray=single' flag
- and experimental support for multiple images with the
- '-fcoarray=lib' flag.
- * Submodules are supported. It should noted that 'MODULEs' do not
- produce the smod file needed by the descendent 'SUBMODULEs' unless
- they contain at least one 'MODULE PROCEDURE' interface. The reason
- for this is that 'SUBMODULEs' are useless without 'MODULE
- PROCEDUREs'. See http://j3-fortran.org/doc/meeting/207/15-209.txt
- for a discussion and a draft interpretation. Adopting this
- interpretation has the advantage that code that does not use
- submodules does not generate smod files.
- * The 'DO CONCURRENT' construct is supported.
- * The 'BLOCK' construct is supported.
- * The 'STOP' and the new 'ERROR STOP' statements now support all
- constant expressions. Both show the signals which were signaling
- at termination.
- * Support for the 'CONTIGUOUS' attribute.
- * Support for 'ALLOCATE' with 'MOLD'.
- * Support for the 'IMPURE' attribute for procedures, which allows for
- 'ELEMENTAL' procedures without the restrictions of 'PURE'.
- * Null pointers (including 'NULL()') and not-allocated variables can
- be used as actual argument to optional non-pointer, non-allocatable
- dummy arguments, denoting an absent argument.
- * Non-pointer variables with 'TARGET' attribute can be used as actual
- argument to 'POINTER' dummies with 'INTENT(IN)'.
- * Pointers including procedure pointers and those in a derived type
- (pointer components) can now be initialized by a target instead of
- only by 'NULL'.
- * The 'EXIT' statement (with construct-name) can be now be used to
- leave not only the 'DO' but also the 'ASSOCIATE', 'BLOCK', 'IF',
- 'SELECT CASE' and 'SELECT TYPE' constructs.
- * Internal procedures can now be used as actual argument.
- * Minor features: obsolesce diagnostics for 'ENTRY' with
- '-std=f2008'; a line may start with a semicolon; for internal and
- module procedures 'END' can be used instead of 'END SUBROUTINE' and
- 'END FUNCTION'; 'SELECTED_REAL_KIND' now also takes a 'RADIX'
- argument; intrinsic types are supported for
- 'TYPE'(INTRINSIC-TYPE-SPEC); multiple type-bound procedures can be
- declared in a single 'PROCEDURE' statement; implied-shape arrays
- are supported for named constants ('PARAMETER').
- File: gfortran.info, Node: TS 29113 status, Next: TS 18508 status, Prev: Fortran 2008 status, Up: Fortran 2003 and 2008 status
- 4.3 Technical Specification 29113 Status
- ========================================
- GNU Fortran supports some of the new features of the Technical
- Specification (TS) 29113 on Further Interoperability of Fortran with C.
- The wiki (https://gcc.gnu.org/wiki/TS29113Status) has some information
- about the current TS 29113 implementation status. In particular, the
- following is implemented.
- See also *note Further Interoperability of Fortran with C::.
- * The '-std=f2008ts' option.
- * The 'OPTIONAL' attribute is allowed for dummy arguments of 'BIND(C)
- procedures.'
- * The 'RANK' intrinsic is supported.
- * GNU Fortran's implementation for variables with 'ASYNCHRONOUS'
- attribute is compatible with TS 29113.
- * Assumed types ('TYPE(*)').
- * Assumed-rank ('DIMENSION(..)'). However, the array descriptor of
- the TS is not yet supported.
- File: gfortran.info, Node: TS 18508 status, Prev: TS 29113 status, Up: Fortran 2003 and 2008 status
- 4.4 Technical Specification 18508 Status
- ========================================
- GNU Fortran supports the following new features of the Technical
- Specification 18508 on Additional Parallel Features in Fortran:
- * The new atomic ADD, CAS, FETCH and ADD/OR/XOR, OR and XOR
- intrinsics.
- * The 'CO_MIN' and 'CO_MAX' and 'SUM' reduction intrinsics. And the
- 'CO_BROADCAST' and 'CO_REDUCE' intrinsic, except that those do not
- support polymorphic types or types with allocatable, pointer or
- polymorphic components.
- * Events ('EVENT POST', 'EVENT WAIT', 'EVENT_QUERY')
- * Failed images ('FAIL IMAGE', 'IMAGE_STATUS', 'FAILED_IMAGES',
- 'STOPPED_IMAGES')
- File: gfortran.info, Node: Compiler Characteristics, Next: Extensions, Prev: Fortran 2003 and 2008 status, Up: Top
- 5 Compiler Characteristics
- **************************
- This chapter describes certain characteristics of the GNU Fortran
- compiler, that are not specified by the Fortran standard, but which
- might in some way or another become visible to the programmer.
- * Menu:
- * KIND Type Parameters::
- * Internal representation of LOGICAL variables::
- * Thread-safety of the runtime library::
- * Data consistency and durability::
- * Files opened without an explicit ACTION= specifier::
- * File operations on symbolic links::
- File: gfortran.info, Node: KIND Type Parameters, Next: Internal representation of LOGICAL variables, Up: Compiler Characteristics
- 5.1 KIND Type Parameters
- ========================
- The 'KIND' type parameters supported by GNU Fortran for the primitive
- data types are:
- 'INTEGER'
- 1, 2, 4, 8*, 16*, default: 4**
- 'LOGICAL'
- 1, 2, 4, 8*, 16*, default: 4**
- 'REAL'
- 4, 8, 10*, 16*, default: 4***
- 'COMPLEX'
- 4, 8, 10*, 16*, default: 4***
- 'DOUBLE PRECISION'
- 4, 8, 10*, 16*, default: 8***
- 'CHARACTER'
- 1, 4, default: 1
- * not available on all systems
- ** unless '-fdefault-integer-8' is used
- *** unless '-fdefault-real-8' is used (see *note Fortran Dialect
- Options::)
- The 'KIND' value matches the storage size in bytes, except for 'COMPLEX'
- where the storage size is twice as much (or both real and imaginary part
- are a real value of the given size). It is recommended to use the *note
- SELECTED_CHAR_KIND::, *note SELECTED_INT_KIND:: and *note
- SELECTED_REAL_KIND:: intrinsics or the 'INT8', 'INT16', 'INT32',
- 'INT64', 'REAL32', 'REAL64', and 'REAL128' parameters of the
- 'ISO_FORTRAN_ENV' module instead of the concrete values. The available
- kind parameters can be found in the constant arrays 'CHARACTER_KINDS',
- 'INTEGER_KINDS', 'LOGICAL_KINDS' and 'REAL_KINDS' in the *note
- ISO_FORTRAN_ENV:: module. For C interoperability, the kind parameters
- of the *note ISO_C_BINDING:: module should be used.
- File: gfortran.info, Node: Internal representation of LOGICAL variables, Next: Thread-safety of the runtime library, Prev: KIND Type Parameters, Up: Compiler Characteristics
- 5.2 Internal representation of LOGICAL variables
- ================================================
- The Fortran standard does not specify how variables of 'LOGICAL' type
- are represented, beyond requiring that 'LOGICAL' variables of default
- kind have the same storage size as default 'INTEGER' and 'REAL'
- variables. The GNU Fortran internal representation is as follows.
- A 'LOGICAL(KIND=N)' variable is represented as an 'INTEGER(KIND=N)'
- variable, however, with only two permissible values: '1' for '.TRUE.'
- and '0' for '.FALSE.'. Any other integer value results in undefined
- behavior.
- See also *note Argument passing conventions:: and *note
- Interoperability with C::.
- File: gfortran.info, Node: Thread-safety of the runtime library, Next: Data consistency and durability, Prev: Internal representation of LOGICAL variables, Up: Compiler Characteristics
- 5.3 Thread-safety of the runtime library
- ========================================
- GNU Fortran can be used in programs with multiple threads, e.g. by using
- OpenMP, by calling OS thread handling functions via the 'ISO_C_BINDING'
- facility, or by GNU Fortran compiled library code being called from a
- multi-threaded program.
- The GNU Fortran runtime library, ('libgfortran'), supports being
- called concurrently from multiple threads with the following exceptions.
- During library initialization, the C 'getenv' function is used, which
- need not be thread-safe. Similarly, the 'getenv' function is used to
- implement the 'GET_ENVIRONMENT_VARIABLE' and 'GETENV' intrinsics. It is
- the responsibility of the user to ensure that the environment is not
- being updated concurrently when any of these actions are taking place.
- The 'EXECUTE_COMMAND_LINE' and 'SYSTEM' intrinsics are implemented
- with the 'system' function, which need not be thread-safe. It is the
- responsibility of the user to ensure that 'system' is not called
- concurrently.
- For platforms not supporting thread-safe POSIX functions, further
- functionality might not be thread-safe. For details, please consult the
- documentation for your operating system.
- The GNU Fortran runtime library uses various C library functions that
- depend on the locale, such as 'strtod' and 'snprintf'. In order to work
- correctly in locale-aware programs that set the locale using
- 'setlocale', the locale is reset to the default "C" locale while
- executing a formatted 'READ' or 'WRITE' statement. On targets
- supporting the POSIX 2008 per-thread locale functions (e.g.
- 'newlocale', 'uselocale', 'freelocale'), these are used and thus the
- global locale set using 'setlocale' or the per-thread locales in other
- threads are not affected. However, on targets lacking this
- functionality, the global LC_NUMERIC locale is set to "C" during the
- formatted I/O. Thus, on such targets it's not safe to call 'setlocale'
- concurrently from another thread while a Fortran formatted I/O operation
- is in progress. Also, other threads doing something dependent on the
- LC_NUMERIC locale might not work correctly if a formatted I/O operation
- is in progress in another thread.
- File: gfortran.info, Node: Data consistency and durability, Next: Files opened without an explicit ACTION= specifier, Prev: Thread-safety of the runtime library, Up: Compiler Characteristics
- 5.4 Data consistency and durability
- ===================================
- This section contains a brief overview of data and metadata consistency
- and durability issues when doing I/O.
- With respect to durability, GNU Fortran makes no effort to ensure
- that data is committed to stable storage. If this is required, the GNU
- Fortran programmer can use the intrinsic 'FNUM' to retrieve the low
- level file descriptor corresponding to an open Fortran unit. Then,
- using e.g. the 'ISO_C_BINDING' feature, one can call the underlying
- system call to flush dirty data to stable storage, such as 'fsync' on
- POSIX, '_commit' on MingW, or 'fcntl(fd, F_FULLSYNC, 0)' on Mac OS X.
- The following example shows how to call fsync:
- ! Declare the interface for POSIX fsync function
- interface
- function fsync (fd) bind(c,name="fsync")
- use iso_c_binding, only: c_int
- integer(c_int), value :: fd
- integer(c_int) :: fsync
- end function fsync
- end interface
- ! Variable declaration
- integer :: ret
- ! Opening unit 10
- open (10,file="foo")
- ! ...
- ! Perform I/O on unit 10
- ! ...
- ! Flush and sync
- flush(10)
- ret = fsync(fnum(10))
- ! Handle possible error
- if (ret /= 0) stop "Error calling FSYNC"
- With respect to consistency, for regular files GNU Fortran uses
- buffered I/O in order to improve performance. This buffer is flushed
- automatically when full and in some other situations, e.g. when closing
- a unit. It can also be explicitly flushed with the 'FLUSH' statement.
- Also, the buffering can be turned off with the 'GFORTRAN_UNBUFFERED_ALL'
- and 'GFORTRAN_UNBUFFERED_PRECONNECTED' environment variables. Special
- files, such as terminals and pipes, are always unbuffered. Sometimes,
- however, further things may need to be done in order to allow other
- processes to see data that GNU Fortran has written, as follows.
- The Windows platform supports a relaxed metadata consistency model,
- where file metadata is written to the directory lazily. This means
- that, for instance, the 'dir' command can show a stale size for a file.
- One can force a directory metadata update by closing the unit, or by
- calling '_commit' on the file descriptor. Note, though, that '_commit'
- will force all dirty data to stable storage, which is often a very slow
- operation.
- The Network File System (NFS) implements a relaxed consistency model
- called open-to-close consistency. Closing a file forces dirty data and
- metadata to be flushed to the server, and opening a file forces the
- client to contact the server in order to revalidate cached data.
- 'fsync' will also force a flush of dirty data and metadata to the
- server. Similar to 'open' and 'close', acquiring and releasing 'fcntl'
- file locks, if the server supports them, will also force cache
- validation and flushing dirty data and metadata.
- File: gfortran.info, Node: Files opened without an explicit ACTION= specifier, Next: File operations on symbolic links, Prev: Data consistency and durability, Up: Compiler Characteristics
- 5.5 Files opened without an explicit ACTION= specifier
- ======================================================
- The Fortran standard says that if an 'OPEN' statement is executed
- without an explicit 'ACTION=' specifier, the default value is processor
- dependent. GNU Fortran behaves as follows:
- 1. Attempt to open the file with 'ACTION='READWRITE''
- 2. If that fails, try to open with 'ACTION='READ''
- 3. If that fails, try to open with 'ACTION='WRITE''
- 4. If that fails, generate an error
- File: gfortran.info, Node: File operations on symbolic links, Prev: Files opened without an explicit ACTION= specifier, Up: Compiler Characteristics
- 5.6 File operations on symbolic links
- =====================================
- This section documents the behavior of GNU Fortran for file operations
- on symbolic links, on systems that support them.
- * Results of INQUIRE statements of the "inquire by file" form will
- relate to the target of the symbolic link. For example,
- 'INQUIRE(FILE="foo",EXIST=ex)' will set EX to .TRUE. if FOO is a
- symbolic link pointing to an existing file, and .FALSE. if FOO
- points to an non-existing file ("dangling" symbolic link).
- * Using the 'OPEN' statement with a 'STATUS="NEW"' specifier on a
- symbolic link will result in an error condition, whether the
- symbolic link points to an existing target or is dangling.
- * If a symbolic link was connected, using the 'CLOSE' statement with
- a 'STATUS="DELETE"' specifier will cause the symbolic link itself
- to be deleted, not its target.
- File: gfortran.info, Node: Extensions, Next: Mixed-Language Programming, Prev: Compiler Characteristics, Up: Top
- 6 Extensions
- ************
- The two sections below detail the extensions to standard Fortran that
- are implemented in GNU Fortran, as well as some of the popular or
- historically important extensions that are not (or not yet) implemented.
- For the latter case, we explain the alternatives available to GNU
- Fortran users, including replacement by standard-conforming code or GNU
- extensions.
- * Menu:
- * Extensions implemented in GNU Fortran::
- * Extensions not implemented in GNU Fortran::
- File: gfortran.info, Node: Extensions implemented in GNU Fortran, Next: Extensions not implemented in GNU Fortran, Up: Extensions
- 6.1 Extensions implemented in GNU Fortran
- =========================================
- GNU Fortran implements a number of extensions over standard Fortran.
- This chapter contains information on their syntax and meaning. There
- are currently two categories of GNU Fortran extensions, those that
- provide functionality beyond that provided by any standard, and those
- that are supported by GNU Fortran purely for backward compatibility with
- legacy compilers. By default, '-std=gnu' allows the compiler to accept
- both types of extensions, but to warn about the use of the latter.
- Specifying either '-std=f95', '-std=f2003' or '-std=f2008' disables both
- types of extensions, and '-std=legacy' allows both without warning. The
- special compile flag '-fdec' enables additional compatibility extensions
- along with those enabled by '-std=legacy'.
- * Menu:
- * Old-style kind specifications::
- * Old-style variable initialization::
- * Extensions to namelist::
- * X format descriptor without count field::
- * Commas in FORMAT specifications::
- * Missing period in FORMAT specifications::
- * I/O item lists::
- * 'Q' exponent-letter::
- * BOZ literal constants::
- * Real array indices::
- * Unary operators::
- * Implicitly convert LOGICAL and INTEGER values::
- * Hollerith constants support::
- * Cray pointers::
- * CONVERT specifier::
- * OpenMP::
- * OpenACC::
- * Argument list functions::
- * Read/Write after EOF marker::
- * STRUCTURE and RECORD::
- * UNION and MAP::
- * Type variants for integer intrinsics::
- * AUTOMATIC and STATIC attributes::
- * Extended math intrinsics::
- * Form feed as whitespace::
- * TYPE as an alias for PRINT::
- * %LOC as an rvalue::
- * .XOR. operator::
- * Bitwise logical operators::
- * Extended I/O specifiers::
- * Legacy PARAMETER statements::
- * Default exponents::
- File: gfortran.info, Node: Old-style kind specifications, Next: Old-style variable initialization, Up: Extensions implemented in GNU Fortran
- 6.1.1 Old-style kind specifications
- -----------------------------------
- GNU Fortran allows old-style kind specifications in declarations. These
- look like:
- TYPESPEC*size x,y,z
- where 'TYPESPEC' is a basic type ('INTEGER', 'REAL', etc.), and where
- 'size' is a byte count corresponding to the storage size of a valid kind
- for that type. (For 'COMPLEX' variables, 'size' is the total size of
- the real and imaginary parts.) The statement then declares 'x', 'y' and
- 'z' to be of type 'TYPESPEC' with the appropriate kind. This is
- equivalent to the standard-conforming declaration
- TYPESPEC(k) x,y,z
- where 'k' is the kind parameter suitable for the intended precision. As
- kind parameters are implementation-dependent, use the 'KIND',
- 'SELECTED_INT_KIND' and 'SELECTED_REAL_KIND' intrinsics to retrieve the
- correct value, for instance 'REAL*8 x' can be replaced by:
- INTEGER, PARAMETER :: dbl = KIND(1.0d0)
- REAL(KIND=dbl) :: x
- File: gfortran.info, Node: Old-style variable initialization, Next: Extensions to namelist, Prev: Old-style kind specifications, Up: Extensions implemented in GNU Fortran
- 6.1.2 Old-style variable initialization
- ---------------------------------------
- GNU Fortran allows old-style initialization of variables of the form:
- INTEGER i/1/,j/2/
- REAL x(2,2) /3*0.,1./
- The syntax for the initializers is as for the 'DATA' statement, but
- unlike in a 'DATA' statement, an initializer only applies to the
- variable immediately preceding the initialization. In other words,
- something like 'INTEGER I,J/2,3/' is not valid. This style of
- initialization is only allowed in declarations without double colons
- ('::'); the double colons were introduced in Fortran 90, which also
- introduced a standard syntax for initializing variables in type
- declarations.
- Examples of standard-conforming code equivalent to the above example
- are:
- ! Fortran 90
- INTEGER :: i = 1, j = 2
- REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
- ! Fortran 77
- INTEGER i, j
- REAL x(2,2)
- DATA i/1/, j/2/, x/3*0.,1./
- Note that variables which are explicitly initialized in declarations
- or in 'DATA' statements automatically acquire the 'SAVE' attribute.
- File: gfortran.info, Node: Extensions to namelist, Next: X format descriptor without count field, Prev: Old-style variable initialization, Up: Extensions implemented in GNU Fortran
- 6.1.3 Extensions to namelist
- ----------------------------
- GNU Fortran fully supports the Fortran 95 standard for namelist I/O
- including array qualifiers, substrings and fully qualified derived
- types. The output from a namelist write is compatible with namelist
- read. The output has all names in upper case and indentation to column
- 1 after the namelist name. Two extensions are permitted:
- Old-style use of '$' instead of '&'
- $MYNML
- X(:)%Y(2) = 1.0 2.0 3.0
- CH(1:4) = "abcd"
- $END
- It should be noted that the default terminator is '/' rather than
- '&END'.
- Querying of the namelist when inputting from stdin. After at least
- one space, entering '?' sends to stdout the namelist name and the names
- of the variables in the namelist:
- ?
- &mynml
- x
- x%y
- ch
- &end
- Entering '=?' outputs the namelist to stdout, as if 'WRITE(*,NML =
- mynml)' had been called:
- =?
- &MYNML
- X(1)%Y= 0.000000 , 1.000000 , 0.000000 ,
- X(2)%Y= 0.000000 , 2.000000 , 0.000000 ,
- X(3)%Y= 0.000000 , 3.000000 , 0.000000 ,
- CH=abcd, /
- To aid this dialog, when input is from stdin, errors send their
- messages to stderr and execution continues, even if 'IOSTAT' is set.
- 'PRINT' namelist is permitted. This causes an error if '-std=f95' is
- used.
- PROGRAM test_print
- REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
- NAMELIST /mynml/ x
- PRINT mynml
- END PROGRAM test_print
- Expanded namelist reads are permitted. This causes an error if
- '-std=f95' is used. In the following example, the first element of the
- array will be given the value 0.00 and the two succeeding elements will
- be given the values 1.00 and 2.00.
- &MYNML
- X(1,1) = 0.00 , 1.00 , 2.00
- /
- When writing a namelist, if no 'DELIM=' is specified, by default a
- double quote is used to delimit character strings. If -std=F95, F2003,
- or F2008, etc, the delim status is set to 'none'. Defaulting to quotes
- ensures that namelists with character strings can be subsequently read
- back in accurately.
- File: gfortran.info, Node: X format descriptor without count field, Next: Commas in FORMAT specifications, Prev: Extensions to namelist, Up: Extensions implemented in GNU Fortran
- 6.1.4 'X' format descriptor without count field
- -----------------------------------------------
- To support legacy codes, GNU Fortran permits the count field of the 'X'
- edit descriptor in 'FORMAT' statements to be omitted. When omitted, the
- count is implicitly assumed to be one.
- PRINT 10, 2, 3
- 10 FORMAT (I1, X, I1)
- File: gfortran.info, Node: Commas in FORMAT specifications, Next: Missing period in FORMAT specifications, Prev: X format descriptor without count field, Up: Extensions implemented in GNU Fortran
- 6.1.5 Commas in 'FORMAT' specifications
- ---------------------------------------
- To support legacy codes, GNU Fortran allows the comma separator to be
- omitted immediately before and after character string edit descriptors
- in 'FORMAT' statements.
- PRINT 10, 2, 3
- 10 FORMAT ('FOO='I1' BAR='I2)
- File: gfortran.info, Node: Missing period in FORMAT specifications, Next: I/O item lists, Prev: Commas in FORMAT specifications, Up: Extensions implemented in GNU Fortran
- 6.1.6 Missing period in 'FORMAT' specifications
- -----------------------------------------------
- To support legacy codes, GNU Fortran allows missing periods in format
- specifications if and only if '-std=legacy' is given on the command
- line. This is considered non-conforming code and is discouraged.
- REAL :: value
- READ(*,10) value
- 10 FORMAT ('F4')
- File: gfortran.info, Node: I/O item lists, Next: 'Q' exponent-letter, Prev: Missing period in FORMAT specifications, Up: Extensions implemented in GNU Fortran
- 6.1.7 I/O item lists
- --------------------
- To support legacy codes, GNU Fortran allows the input item list of the
- 'READ' statement, and the output item lists of the 'WRITE' and 'PRINT'
- statements, to start with a comma.
- File: gfortran.info, Node: 'Q' exponent-letter, Next: BOZ literal constants, Prev: I/O item lists, Up: Extensions implemented in GNU Fortran
- 6.1.8 'Q' exponent-letter
- -------------------------
- GNU Fortran accepts real literal constants with an exponent-letter of
- 'Q', for example, '1.23Q45'. The constant is interpreted as a
- 'REAL(16)' entity on targets that support this type. If the target does
- not support 'REAL(16)' but has a 'REAL(10)' type, then the
- real-literal-constant will be interpreted as a 'REAL(10)' entity. In
- the absence of 'REAL(16)' and 'REAL(10)', an error will occur.
- File: gfortran.info, Node: BOZ literal constants, Next: Real array indices, Prev: 'Q' exponent-letter, Up: Extensions implemented in GNU Fortran
- 6.1.9 BOZ literal constants
- ---------------------------
- Besides decimal constants, Fortran also supports binary ('b'), octal
- ('o') and hexadecimal ('z') integer constants. The syntax is: 'prefix
- quote digits quote', were the prefix is either 'b', 'o' or 'z', quote is
- either ''' or '"' and the digits are for binary '0' or '1', for octal
- between '0' and '7', and for hexadecimal between '0' and 'F'. (Example:
- 'b'01011101''.)
- Up to Fortran 95, BOZ literals were only allowed to initialize
- integer variables in DATA statements. Since Fortran 2003 BOZ literals
- are also allowed as argument of 'REAL', 'DBLE', 'INT' and 'CMPLX'; the
- result is the same as if the integer BOZ literal had been converted by
- 'TRANSFER' to, respectively, 'real', 'double precision', 'integer' or
- 'complex'. As GNU Fortran extension the intrinsic procedures 'FLOAT',
- 'DFLOAT', 'COMPLEX' and 'DCMPLX' are treated alike.
- As an extension, GNU Fortran allows hexadecimal BOZ literal constants
- to be specified using the 'X' prefix, in addition to the standard 'Z'
- prefix. The BOZ literal can also be specified by adding a suffix to the
- string, for example, 'Z'ABC'' and ''ABC'Z' are equivalent.
- Furthermore, GNU Fortran allows using BOZ literal constants outside
- DATA statements and the four intrinsic functions allowed by Fortran
- 2003. In DATA statements, in direct assignments, where the right-hand
- side only contains a BOZ literal constant, and for old-style
- initializers of the form 'integer i /o'0173'/', the constant is
- transferred as if 'TRANSFER' had been used; for 'COMPLEX' numbers, only
- the real part is initialized unless 'CMPLX' is used. In all other
- cases, the BOZ literal constant is converted to an 'INTEGER' value with
- the largest decimal representation. This value is then converted
- numerically to the type and kind of the variable in question. (For
- instance, 'real :: r = b'0000001' + 1' initializes 'r' with '2.0'.) As
- different compilers implement the extension differently, one should be
- careful when doing bitwise initialization of non-integer variables.
- Note that initializing an 'INTEGER' variable with a statement such as
- 'DATA i/Z'FFFFFFFF'/' will give an integer overflow error rather than
- the desired result of -1 when 'i' is a 32-bit integer on a system that
- supports 64-bit integers. The '-fno-range-check' option can be used as
- a workaround for legacy code that initializes integers in this manner.
- File: gfortran.info, Node: Real array indices, Next: Unary operators, Prev: BOZ literal constants, Up: Extensions implemented in GNU Fortran
- 6.1.10 Real array indices
- -------------------------
- As an extension, GNU Fortran allows the use of 'REAL' expressions or
- variables as array indices.
- File: gfortran.info, Node: Unary operators, Next: Implicitly convert LOGICAL and INTEGER values, Prev: Real array indices, Up: Extensions implemented in GNU Fortran
- 6.1.11 Unary operators
- ----------------------
- As an extension, GNU Fortran allows unary plus and unary minus operators
- to appear as the second operand of binary arithmetic operators without
- the need for parenthesis.
- X = Y * -Z
- File: gfortran.info, Node: Implicitly convert LOGICAL and INTEGER values, Next: Hollerith constants support, Prev: Unary operators, Up: Extensions implemented in GNU Fortran
- 6.1.12 Implicitly convert 'LOGICAL' and 'INTEGER' values
- --------------------------------------------------------
- As an extension for backwards compatibility with other compilers, GNU
- Fortran allows the implicit conversion of 'LOGICAL' values to 'INTEGER'
- values and vice versa. When converting from a 'LOGICAL' to an
- 'INTEGER', '.FALSE.' is interpreted as zero, and '.TRUE.' is interpreted
- as one. When converting from 'INTEGER' to 'LOGICAL', the value zero is
- interpreted as '.FALSE.' and any nonzero value is interpreted as
- '.TRUE.'.
- LOGICAL :: l
- l = 1
- INTEGER :: i
- i = .TRUE.
- However, there is no implicit conversion of 'INTEGER' values in
- 'if'-statements, nor of 'LOGICAL' or 'INTEGER' values in I/O operations.
- File: gfortran.info, Node: Hollerith constants support, Next: Cray pointers, Prev: Implicitly convert LOGICAL and INTEGER values, Up: Extensions implemented in GNU Fortran
- 6.1.13 Hollerith constants support
- ----------------------------------
- GNU Fortran supports Hollerith constants in assignments, function
- arguments, and 'DATA' and 'ASSIGN' statements. A Hollerith constant is
- written as a string of characters preceded by an integer constant
- indicating the character count, and the letter 'H' or 'h', and stored in
- bytewise fashion in a numeric ('INTEGER', 'REAL', or 'complex') or
- 'LOGICAL' variable. The constant will be padded or truncated to fit the
- size of the variable in which it is stored.
- Examples of valid uses of Hollerith constants:
- complex*16 x(2)
- data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
- x(1) = 16HABCDEFGHIJKLMNOP
- call foo (4h abc)
- Invalid Hollerith constants examples:
- integer*4 a
- a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
- a = 0H ! At least one character is needed.
- In general, Hollerith constants were used to provide a rudimentary
- facility for handling character strings in early Fortran compilers,
- prior to the introduction of 'CHARACTER' variables in Fortran 77; in
- those cases, the standard-compliant equivalent is to convert the program
- to use proper character strings. On occasion, there may be a case where
- the intent is specifically to initialize a numeric variable with a given
- byte sequence. In these cases, the same result can be obtained by using
- the 'TRANSFER' statement, as in this example.
- INTEGER(KIND=4) :: a
- a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd
- File: gfortran.info, Node: Cray pointers, Next: CONVERT specifier, Prev: Hollerith constants support, Up: Extensions implemented in GNU Fortran
- 6.1.14 Cray pointers
- --------------------
- Cray pointers are part of a non-standard extension that provides a
- C-like pointer in Fortran. This is accomplished through a pair of
- variables: an integer "pointer" that holds a memory address, and a
- "pointee" that is used to dereference the pointer.
- Pointer/pointee pairs are declared in statements of the form:
- pointer ( <pointer> , <pointee> )
- or,
- pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
- The pointer is an integer that is intended to hold a memory address.
- The pointee may be an array or scalar. A pointee can be an assumed size
- array--that is, the last dimension may be left unspecified by using a
- '*' in place of a value--but a pointee cannot be an assumed shape array.
- No space is allocated for the pointee.
- The pointee may have its type declared before or after the pointer
- statement, and its array specification (if any) may be declared before,
- during, or after the pointer statement. The pointer may be declared as
- an integer prior to the pointer statement. However, some machines have
- default integer sizes that are different than the size of a pointer, and
- so the following code is not portable:
- integer ipt
- pointer (ipt, iarr)
- If a pointer is declared with a kind that is too small, the compiler
- will issue a warning; the resulting binary will probably not work
- correctly, because the memory addresses stored in the pointers may be
- truncated. It is safer to omit the first line of the above example; if
- explicit declaration of ipt's type is omitted, then the compiler will
- ensure that ipt is an integer variable large enough to hold a pointer.
- Pointer arithmetic is valid with Cray pointers, but it is not the
- same as C pointer arithmetic. Cray pointers are just ordinary integers,
- so the user is responsible for determining how many bytes to add to a
- pointer in order to increment it. Consider the following example:
- real target(10)
- real pointee(10)
- pointer (ipt, pointee)
- ipt = loc (target)
- ipt = ipt + 1
- The last statement does not set 'ipt' to the address of 'target(1)',
- as it would in C pointer arithmetic. Adding '1' to 'ipt' just adds one
- byte to the address stored in 'ipt'.
- Any expression involving the pointee will be translated to use the
- value stored in the pointer as the base address.
- To get the address of elements, this extension provides an intrinsic
- function 'LOC()'. The 'LOC()' function is equivalent to the '&'
- operator in C, except the address is cast to an integer type:
- real ar(10)
- pointer(ipt, arpte(10))
- real arpte
- ipt = loc(ar) ! Makes arpte is an alias for ar
- arpte(1) = 1.0 ! Sets ar(1) to 1.0
- The pointer can also be set by a call to the 'MALLOC' intrinsic (see
- *note MALLOC::).
- Cray pointees often are used to alias an existing variable. For
- example:
- integer target(10)
- integer iarr(10)
- pointer (ipt, iarr)
- ipt = loc(target)
- As long as 'ipt' remains unchanged, 'iarr' is now an alias for
- 'target'. The optimizer, however, will not detect this aliasing, so it
- is unsafe to use 'iarr' and 'target' simultaneously. Using a pointee in
- any way that violates the Fortran aliasing rules or assumptions is
- illegal. It is the user's responsibility to avoid doing this; the
- compiler works under the assumption that no such aliasing occurs.
- Cray pointers will work correctly when there is no aliasing (i.e.,
- when they are used to access a dynamically allocated block of memory),
- and also in any routine where a pointee is used, but any variable with
- which it shares storage is not used. Code that violates these rules may
- not run as the user intends. This is not a bug in the optimizer; any
- code that violates the aliasing rules is illegal. (Note that this is
- not unique to GNU Fortran; any Fortran compiler that supports Cray
- pointers will "incorrectly" optimize code with illegal aliasing.)
- There are a number of restrictions on the attributes that can be
- applied to Cray pointers and pointees. Pointees may not have the
- 'ALLOCATABLE', 'INTENT', 'OPTIONAL', 'DUMMY', 'TARGET', 'INTRINSIC', or
- 'POINTER' attributes. Pointers may not have the 'DIMENSION', 'POINTER',
- 'TARGET', 'ALLOCATABLE', 'EXTERNAL', or 'INTRINSIC' attributes, nor may
- they be function results. Pointees may not occur in more than one
- pointer statement. A pointee cannot be a pointer. Pointees cannot
- occur in equivalence, common, or data statements.
- A Cray pointer may also point to a function or a subroutine. For
- example, the following excerpt is valid:
- implicit none
- external sub
- pointer (subptr,subpte)
- external subpte
- subptr = loc(sub)
- call subpte()
- [...]
- subroutine sub
- [...]
- end subroutine sub
- A pointer may be modified during the course of a program, and this
- will change the location to which the pointee refers. However, when
- pointees are passed as arguments, they are treated as ordinary variables
- in the invoked function. Subsequent changes to the pointer will not
- change the base address of the array that was passed.
- File: gfortran.info, Node: CONVERT specifier, Next: OpenMP, Prev: Cray pointers, Up: Extensions implemented in GNU Fortran
- 6.1.15 'CONVERT' specifier
- --------------------------
- GNU Fortran allows the conversion of unformatted data between little-
- and big-endian representation to facilitate moving of data between
- different systems. The conversion can be indicated with the 'CONVERT'
- specifier on the 'OPEN' statement. *Note GFORTRAN_CONVERT_UNIT::, for
- an alternative way of specifying the data format via an environment
- variable.
- Valid values for 'CONVERT' are:
- 'CONVERT='NATIVE'' Use the native format. This is the default.
- 'CONVERT='SWAP'' Swap between little- and big-endian.
- 'CONVERT='LITTLE_ENDIAN'' Use the little-endian representation for
- unformatted files.
- 'CONVERT='BIG_ENDIAN'' Use the big-endian representation for
- unformatted files.
- Using the option could look like this:
- open(file='big.dat',form='unformatted',access='sequential', &
- convert='big_endian')
- The value of the conversion can be queried by using
- 'INQUIRE(CONVERT=ch)'. The values returned are ''BIG_ENDIAN'' and
- ''LITTLE_ENDIAN''.
- 'CONVERT' works between big- and little-endian for 'INTEGER' values
- of all supported kinds and for 'REAL' on IEEE systems of kinds 4 and 8.
- Conversion between different "extended double" types on different
- architectures such as m68k and x86_64, which GNU Fortran supports as
- 'REAL(KIND=10)' and 'REAL(KIND=16)', will probably not work.
- _Note that the values specified via the GFORTRAN_CONVERT_UNIT
- environment variable will override the CONVERT specifier in the open
- statement_. This is to give control over data formats to users who do
- not have the source code of their program available.
- Using anything but the native representation for unformatted data
- carries a significant speed overhead. If speed in this area matters to
- you, it is best if you use this only for data that needs to be portable.
- File: gfortran.info, Node: OpenMP, Next: OpenACC, Prev: CONVERT specifier, Up: Extensions implemented in GNU Fortran
- 6.1.16 OpenMP
- -------------
- OpenMP (Open Multi-Processing) is an application programming interface
- (API) that supports multi-platform shared memory multiprocessing
- programming in C/C++ and Fortran on many architectures, including Unix
- and Microsoft Windows platforms. It consists of a set of compiler
- directives, library routines, and environment variables that influence
- run-time behavior.
- GNU Fortran strives to be compatible to the OpenMP Application
- Program Interface v4.5 (http://openmp.org/wp/openmp-specifications/).
- To enable the processing of the OpenMP directive '!$omp' in free-form
- source code; the 'c$omp', '*$omp' and '!$omp' directives in fixed form;
- the '!$' conditional compilation sentinels in free form; and the 'c$',
- '*$' and '!$' sentinels in fixed form, 'gfortran' needs to be invoked
- with the '-fopenmp'. This also arranges for automatic linking of the
- GNU Offloading and Multi Processing Runtime Library *note libgomp:
- (libgomp)Top.
- The OpenMP Fortran runtime library routines are provided both in a
- form of a Fortran 90 module named 'omp_lib' and in a form of a Fortran
- 'include' file named 'omp_lib.h'.
- An example of a parallelized loop taken from Appendix A.1 of the
- OpenMP Application Program Interface v2.5:
- SUBROUTINE A1(N, A, B)
- INTEGER I, N
- REAL B(N), A(N)
- !$OMP PARALLEL DO !I is private by default
- DO I=2,N
- B(I) = (A(I) + A(I-1)) / 2.0
- ENDDO
- !$OMP END PARALLEL DO
- END SUBROUTINE A1
- Please note:
- * '-fopenmp' implies '-frecursive', i.e., all local arrays will be
- allocated on the stack. When porting existing code to OpenMP, this
- may lead to surprising results, especially to segmentation faults
- if the stacksize is limited.
- * On glibc-based systems, OpenMP enabled applications cannot be
- statically linked due to limitations of the underlying
- pthreads-implementation. It might be possible to get a working
- solution if '-Wl,--whole-archive -lpthread -Wl,--no-whole-archive'
- is added to the command line. However, this is not supported by
- 'gcc' and thus not recommended.
- File: gfortran.info, Node: OpenACC, Next: Argument list functions, Prev: OpenMP, Up: Extensions implemented in GNU Fortran
- 6.1.17 OpenACC
- --------------
- OpenACC is an application programming interface (API) that supports
- offloading of code to accelerator devices. It consists of a set of
- compiler directives, library routines, and environment variables that
- influence run-time behavior.
- GNU Fortran strives to be compatible to the OpenACC Application
- Programming Interface v2.0 (http://www.openacc.org/).
- To enable the processing of the OpenACC directive '!$acc' in
- free-form source code; the 'c$acc', '*$acc' and '!$acc' directives in
- fixed form; the '!$' conditional compilation sentinels in free form; and
- the 'c$', '*$' and '!$' sentinels in fixed form, 'gfortran' needs to be
- invoked with the '-fopenacc'. This also arranges for automatic linking
- of the GNU Offloading and Multi Processing Runtime Library *note
- libgomp: (libgomp)Top.
- The OpenACC Fortran runtime library routines are provided both in a
- form of a Fortran 90 module named 'openacc' and in a form of a Fortran
- 'include' file named 'openacc_lib.h'.
- Note that this is an experimental feature, incomplete, and subject to
- change in future versions of GCC. See <https://gcc.gnu.org/wiki/OpenACC>
- for more information.
- File: gfortran.info, Node: Argument list functions, Next: Read/Write after EOF marker, Prev: OpenACC, Up: Extensions implemented in GNU Fortran
- 6.1.18 Argument list functions '%VAL', '%REF' and '%LOC'
- --------------------------------------------------------
- GNU Fortran supports argument list functions '%VAL', '%REF' and '%LOC'
- statements, for backward compatibility with g77. It is recommended that
- these should be used only for code that is accessing facilities outside
- of GNU Fortran, such as operating system or windowing facilities. It is
- best to constrain such uses to isolated portions of a program-portions
- that deal specifically and exclusively with low-level, system-dependent
- facilities. Such portions might well provide a portable interface for
- use by the program as a whole, but are themselves not portable, and
- should be thoroughly tested each time they are rebuilt using a new
- compiler or version of a compiler.
- '%VAL' passes a scalar argument by value, '%REF' passes it by
- reference and '%LOC' passes its memory location. Since gfortran already
- passes scalar arguments by reference, '%REF' is in effect a do-nothing.
- '%LOC' has the same effect as a Fortran pointer.
- An example of passing an argument by value to a C subroutine foo.:
- C
- C prototype void foo_ (float x);
- C
- external foo
- real*4 x
- x = 3.14159
- call foo (%VAL (x))
- end
- For details refer to the g77 manual
- <https://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top>.
- Also, 'c_by_val.f' and its partner 'c_by_val.c' of the GNU Fortran
- testsuite are worth a look.
- File: gfortran.info, Node: Read/Write after EOF marker, Next: STRUCTURE and RECORD, Prev: Argument list functions, Up: Extensions implemented in GNU Fortran
- 6.1.19 Read/Write after EOF marker
- ----------------------------------
- Some legacy codes rely on allowing 'READ' or 'WRITE' after the EOF file
- marker in order to find the end of a file. GNU Fortran normally rejects
- these codes with a run-time error message and suggests the user consider
- 'BACKSPACE' or 'REWIND' to properly position the file before the EOF
- marker. As an extension, the run-time error may be disabled using
- -std=legacy.
- File: gfortran.info, Node: STRUCTURE and RECORD, Next: UNION and MAP, Prev: Read/Write after EOF marker, Up: Extensions implemented in GNU Fortran
- 6.1.20 'STRUCTURE' and 'RECORD'
- -------------------------------
- Record structures are a pre-Fortran-90 vendor extension to create
- user-defined aggregate data types. Support for record structures in GNU
- Fortran can be enabled with the '-fdec-structure' compile flag. If you
- have a choice, you should instead use Fortran 90's "derived types",
- which have a different syntax.
- In many cases, record structures can easily be converted to derived
- types. To convert, replace 'STRUCTURE /'STRUCTURE-NAME'/' by 'TYPE'
- TYPE-NAME. Additionally, replace 'RECORD /'STRUCTURE-NAME'/' by
- 'TYPE('TYPE-NAME')'. Finally, in the component access, replace the
- period ('.') by the percent sign ('%').
- Here is an example of code using the non portable record structure
- syntax:
- ! Declaring a structure named ``item'' and containing three fields:
- ! an integer ID, an description string and a floating-point price.
- STRUCTURE /item/
- INTEGER id
- CHARACTER(LEN=200) description
- REAL price
- END STRUCTURE
- ! Define two variables, an single record of type ``item''
- ! named ``pear'', and an array of items named ``store_catalog''
- RECORD /item/ pear, store_catalog(100)
- ! We can directly access the fields of both variables
- pear.id = 92316
- pear.description = "juicy D'Anjou pear"
- pear.price = 0.15
- store_catalog(7).id = 7831
- store_catalog(7).description = "milk bottle"
- store_catalog(7).price = 1.2
- ! We can also manipulate the whole structure
- store_catalog(12) = pear
- print *, store_catalog(12)
- This code can easily be rewritten in the Fortran 90 syntax as following:
- ! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
- ! ``TYPE name ... END TYPE''
- TYPE item
- INTEGER id
- CHARACTER(LEN=200) description
- REAL price
- END TYPE
- ! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
- TYPE(item) pear, store_catalog(100)
- ! Instead of using a dot (.) to access fields of a record, the
- ! standard syntax uses a percent sign (%)
- pear%id = 92316
- pear%description = "juicy D'Anjou pear"
- pear%price = 0.15
- store_catalog(7)%id = 7831
- store_catalog(7)%description = "milk bottle"
- store_catalog(7)%price = 1.2
- ! Assignments of a whole variable do not change
- store_catalog(12) = pear
- print *, store_catalog(12)
- GNU Fortran implements STRUCTURES like derived types with the following
- rules and exceptions:
- * Structures act like derived types with the 'SEQUENCE' attribute.
- Otherwise they may contain no specifiers.
- * Structures may share names with other symbols. For example, the
- following is invalid for derived types, but valid for structures:
- structure /header/
- ! ...
- end structure
- record /header/ header
- * Structure types may be declared nested within another parent
- structure. The syntax is:
- structure /type-name/
- ...
- structure [/<type-name>/] <field-list>
- ...
- The type name may be ommitted, in which case the structure type
- itself is anonymous, and other structures of the same type cannot
- be instantiated. The following shows some examples:
- structure /appointment/
- ! nested structure definition: app_time is an array of two 'time'
- structure /time/ app_time (2)
- integer(1) hour, minute
- end structure
- character(10) memo
- end structure
- ! The 'time' structure is still usable
- record /time/ now
- now = time(5, 30)
- ...
- structure /appointment/
- ! anonymous nested structure definition
- structure start, end
- integer(1) hour, minute
- end structure
- character(10) memo
- end structure
- * Structures may contain 'UNION' blocks. For more detail see the
- section on *note UNION and MAP::.
- * Structures support old-style initialization of components, like
- those described in *note Old-style variable initialization::. For
- array initializers, an initializer may contain a repeat
- specification of the form '<literal-integer> *
- <constant-initializer>'. The value of the integer indicates the
- number of times to repeat the constant initializer when expanding
- the initializer list.
- File: gfortran.info, Node: UNION and MAP, Next: Type variants for integer intrinsics, Prev: STRUCTURE and RECORD, Up: Extensions implemented in GNU Fortran
- 6.1.21 'UNION' and 'MAP'
- ------------------------
- Unions are an old vendor extension which were commonly used with the
- non-standard *note STRUCTURE and RECORD:: extensions. Use of 'UNION'
- and 'MAP' is automatically enabled with '-fdec-structure'.
- A 'UNION' declaration occurs within a structure; within the
- definition of each union is a number of 'MAP' blocks. Each 'MAP' shares
- storage with its sibling maps (in the same union), and the size of the
- union is the size of the largest map within it, just as with unions in
- C. The major difference is that component references do not indicate
- which union or map the component is in (the compiler gets to figure that
- out).
- Here is a small example:
- structure /myunion/
- union
- map
- character(2) w0, w1, w2
- end map
- map
- character(6) long
- end map
- end union
- end structure
- record /myunion/ rec
- ! After this assignment...
- rec.long = 'hello!'
- ! The following is true:
- ! rec.w0 === 'he'
- ! rec.w1 === 'll'
- ! rec.w2 === 'o!'
- The two maps share memory, and the size of the union is ultimately
- six bytes:
- 0 1 2 3 4 5 6 Byte offset
- -------------------------------
- | | | | | | |
- -------------------------------
- ^ W0 ^ W1 ^ W2 ^
- \-------/ \-------/ \-------/
- ^ LONG ^
- \---------------------------/
- Following is an example mirroring the layout of an Intel x86_64
- register:
- structure /reg/
- union ! U0 ! rax
- map
- character(16) rx
- end map
- map
- character(8) rh ! rah
- union ! U1
- map
- character(8) rl ! ral
- end map
- map
- character(8) ex ! eax
- end map
- map
- character(4) eh ! eah
- union ! U2
- map
- character(4) el ! eal
- end map
- map
- character(4) x ! ax
- end map
- map
- character(2) h ! ah
- character(2) l ! al
- end map
- end union
- end map
- end union
- end map
- end union
- end structure
- record /reg/ a
- ! After this assignment...
- a.rx = 'AAAAAAAA.BBB.C.D'
- ! The following is true:
- a.rx === 'AAAAAAAA.BBB.C.D'
- a.rh === 'AAAAAAAA'
- a.rl === '.BBB.C.D'
- a.ex === '.BBB.C.D'
- a.eh === '.BBB'
- a.el === '.C.D'
- a.x === '.C.D'
- a.h === '.C'
- a.l === '.D'
- File: gfortran.info, Node: Type variants for integer intrinsics, Next: AUTOMATIC and STATIC attributes, Prev: UNION and MAP, Up: Extensions implemented in GNU Fortran
- 6.1.22 Type variants for integer intrinsics
- -------------------------------------------
- Similar to the D/C prefixes to real functions to specify the
- input/output types, GNU Fortran offers B/I/J/K prefixes to integer
- functions for compatibility with DEC programs. The types implied by
- each are:
- B - INTEGER(kind=1)
- I - INTEGER(kind=2)
- J - INTEGER(kind=4)
- K - INTEGER(kind=8)
- GNU Fortran supports these with the flag '-fdec-intrinsic-ints'.
- Intrinsics for which prefixed versions are available and in what form
- are noted in *note Intrinsic Procedures::. The complete list of
- supported intrinsics is here:
- Intrinsic B I J K
-
- ---------------------------------------------------------------------------
- '*note 'BABS' 'IIABS' 'JIABS' 'KIABS'
- ABS::'
- '*note 'BBTEST' 'BITEST' 'BJTEST' 'BKTEST'
- BTEST::'
- '*note 'BIAND' 'IIAND' 'JIAND' 'KIAND'
- IAND::'
- '*note 'BBCLR' 'IIBCLR' 'JIBCLR' 'KIBCLR'
- IBCLR::'
- '*note 'BBITS' 'IIBITS' 'JIBITS' 'KIBITS'
- IBITS::'
- '*note 'BBSET' 'IIBSET' 'JIBSET' 'KIBSET'
- IBSET::'
- '*note 'BIEOR' 'IIEOR' 'JIEOR' 'KIEOR'
- IEOR::'
- '*note 'BIOR' 'IIOR' 'JIOR' 'KIOR'
- IOR::'
- '*note 'BSHFT' 'IISHFT' 'JISHFT' 'KISHFT'
- ISHFT::'
- '*note 'BSHFTC' 'IISHFTC' 'JISHFTC' 'KISHFTC'
- ISHFTC::'
- '*note 'BMOD' 'IMOD' 'JMOD' 'KMOD'
- MOD::'
- '*note 'BNOT' 'INOT' 'JNOT' 'KNOT'
- NOT::'
- '*note '--' 'FLOATI' 'FLOATJ' 'FLOATK'
- REAL::'
- File: gfortran.info, Node: AUTOMATIC and STATIC attributes, Next: Extended math intrinsics, Prev: Type variants for integer intrinsics, Up: Extensions implemented in GNU Fortran
- 6.1.23 'AUTOMATIC' and 'STATIC' attributes
- ------------------------------------------
- With '-fdec-static' GNU Fortran supports the DEC extended attributes
- 'STATIC' and 'AUTOMATIC' to provide explicit specification of entity
- storage. These follow the syntax of the Fortran standard 'SAVE'
- attribute.
- 'STATIC' is exactly equivalent to 'SAVE', and specifies that an
- entity should be allocated in static memory. As an example, 'STATIC'
- local variables will retain their values across multiple calls to a
- function.
- Entities marked 'AUTOMATIC' will be stack automatic whenever
- possible. 'AUTOMATIC' is the default for local variables smaller than
- '-fmax-stack-var-size', unless '-fno-automatic' is given. This
- attribute overrides '-fno-automatic', '-fmax-stack-var-size', and
- blanket 'SAVE' statements.
- Examples:
- subroutine f
- integer, automatic :: i ! automatic variable
- integer x, y ! static variables
- save
- ...
- endsubroutine
- subroutine f
- integer a, b, c, x, y, z
- static :: x
- save y
- automatic z, c
- ! a, b, c, and z are automatic
- ! x and y are static
- endsubroutine
- ! Compiled with -fno-automatic
- subroutine f
- integer a, b, c, d
- automatic :: a
- ! a is automatic; b, c, and d are static
- endsubroutine
- File: gfortran.info, Node: Extended math intrinsics, Next: Form feed as whitespace, Prev: AUTOMATIC and STATIC attributes, Up: Extensions implemented in GNU Fortran
- 6.1.24 Extended math intrinsics
- -------------------------------
- GNU Fortran supports an extended list of mathematical intrinsics with
- the compile flag '-fdec-math' for compatability with legacy code. These
- intrinsics are described fully in *note Intrinsic Procedures:: where it
- is noted that they are extensions and should be avoided whenever
- possible.
- Specifically, '-fdec-math' enables the *note COTAN:: intrinsic, and
- trigonometric intrinsics which accept or produce values in degrees
- instead of radians. Here is a summary of the new intrinsics:
- Radians Degrees
- --------------------------------------------------------------------------
- '*note ACOS::' '*note ACOSD::'*
- '*note ASIN::' '*note ASIND::'*
- '*note ATAN::' '*note ATAND::'*
- '*note ATAN2::' '*note ATAN2D::'*
- '*note COS::' '*note COSD::'*
- '*note COTAN::'* '*note COTAND::'*
- '*note SIN::' '*note SIND::'*
- '*note TAN::' '*note TAND::'*
- * Enabled with '-fdec-math'.
- For advanced users, it may be important to know the implementation of
- these functions. They are simply wrappers around the standard radian
- functions, which have more accurate builtin versions. These functions
- convert their arguments (or results) to degrees (or radians) by taking
- the value modulus 360 (or 2*pi) and then multiplying it by a constant
- radian-to-degree (or degree-to-radian) factor, as appropriate. The
- factor is computed at compile-time as 180/pi (or pi/180).
- File: gfortran.info, Node: Form feed as whitespace, Next: TYPE as an alias for PRINT, Prev: Extended math intrinsics, Up: Extensions implemented in GNU Fortran
- 6.1.25 Form feed as whitespace
- ------------------------------
- Historically, legacy compilers allowed insertion of form feed characters
- ('\f', ASCII 0xC) at the beginning of lines for formatted output to line
- printers, though the Fortran standard does not mention this. GNU
- Fortran supports the interpretation of form feed characters in source as
- whitespace for compatibility.
- File: gfortran.info, Node: TYPE as an alias for PRINT, Next: %LOC as an rvalue, Prev: Form feed as whitespace, Up: Extensions implemented in GNU Fortran
- 6.1.26 TYPE as an alias for PRINT
- ---------------------------------
- For compatibility, GNU Fortran will interpret 'TYPE' statements as
- 'PRINT' statements with the flag '-fdec'. With this flag asserted, the
- following two examples are equivalent:
- TYPE *, 'hello world'
- PRINT *, 'hello world'
- File: gfortran.info, Node: %LOC as an rvalue, Next: .XOR. operator, Prev: TYPE as an alias for PRINT, Up: Extensions implemented in GNU Fortran
- 6.1.27 %LOC as an rvalue
- ------------------------
- Normally '%LOC' is allowed only in parameter lists. However the
- intrinsic function 'LOC' does the same thing, and is usable as the
- right-hand-side of assignments. For compatibility, GNU Fortran supports
- the use of '%LOC' as an alias for the builtin 'LOC' with '-std=legacy'.
- With this feature enabled the following two examples are equivalent:
- integer :: i, l
- l = %loc(i)
- call sub(l)
- integer :: i
- call sub(%loc(i))
- File: gfortran.info, Node: .XOR. operator, Next: Bitwise logical operators, Prev: %LOC as an rvalue, Up: Extensions implemented in GNU Fortran
- 6.1.28 .XOR. operator
- ---------------------
- GNU Fortran supports '.XOR.' as a logical operator with '-std=legacy'
- for compatibility with legacy code. '.XOR.' is equivalent to '.NEQV.'.
- That is, the output is true if and only if the inputs differ.
- File: gfortran.info, Node: Bitwise logical operators, Next: Extended I/O specifiers, Prev: .XOR. operator, Up: Extensions implemented in GNU Fortran
- 6.1.29 Bitwise logical operators
- --------------------------------
- With '-fdec', GNU Fortran relaxes the type constraints on logical
- operators to allow integer operands, and performs the corresponding
- bitwise operation instead. This flag is for compatibility only, and
- should be avoided in new code. Consider:
- INTEGER :: i, j
- i = z'33'
- j = z'cc'
- print *, i .AND. j
- In this example, compiled with '-fdec', GNU Fortran will replace the
- '.AND.' operation with a call to the intrinsic '*note IAND::' function,
- yielding the bitwise-and of 'i' and 'j'.
- Note that this conversion will occur if at least one operand is of
- integral type. As a result, a logical operand will be converted to an
- integer when the other operand is an integer in a logical operation. In
- this case, '.TRUE.' is converted to '1' and '.FALSE.' to '0'.
- Here is the mapping of logical operator to bitwise intrinsic used
- with '-fdec':
- Operator Intrinsic Bitwise operation
- ---------------------------------------------------------------------------
- '.NOT.' '*note NOT::' complement
- '.AND.' '*note IAND::' intersection
- '.OR.' '*note IOR::' union
- '.NEQV.' '*note IEOR::' exclusive or
- '.EQV.' '*note complement of exclusive or
- NOT::(*note
- IEOR::)'
- File: gfortran.info, Node: Extended I/O specifiers, Next: Legacy PARAMETER statements, Prev: Bitwise logical operators, Up: Extensions implemented in GNU Fortran
- 6.1.30 Extended I/O specifiers
- ------------------------------
- GNU Fortran supports the additional legacy I/O specifiers
- 'CARRIAGECONTROL', 'READONLY', and 'SHARE' with the compile flag
- '-fdec', for compatibility.
- 'CARRIAGECONTROL'
- The 'CARRIAGECONTROL' specifier allows a user to control line
- termination settings between output records for an I/O unit. The
- specifier has no meaning for readonly files. When
- 'CARRAIGECONTROL' is specified upon opening a unit for formatted
- writing, the exact 'CARRIAGECONTROL' setting determines what
- characters to write between output records. The syntax is:
- OPEN(..., CARRIAGECONTROL=cc)
- Where _cc_ is a character expression that evaluates to one of the
- following values:
- ''LIST'' One line feed between records (default)
- ''FORTRAN'' Legacy interpretation of the first character (see below)
- ''NONE'' No separator between records
- With 'CARRIAGECONTROL='FORTRAN'', when a record is written, the
- first character of the input record is not written, and instead
- determines the output record separator as follows:
- Leading character Meaning Output separating
- character(s)
- ----------------------------------------------------------------------------
- ''+'' Overprinting Carriage return only
- ''-'' New line Line feed and carriage
- return
- ''0'' Skip line Two line feeds and carriage
- return
- ''1'' New page Form feed and carriage
- return
- ''$'' Prompting Line feed (no carriage
- return)
- 'CHAR(0)' Overprinting (no None
- advance)
- 'READONLY'
- The 'READONLY' specifier may be given upon opening a unit, and is
- equivalent to specifying 'ACTION='READ'', except that the file may
- not be deleted on close (i.e. 'CLOSE' with 'STATUS="DELETE"').
- The syntax is:
- OPEN(..., READONLY)
- 'SHARE'
- The 'SHARE' specifier allows system-level locking on a unit upon
- opening it for controlled access from multiple processes/threads.
- The 'SHARE' specifier has several forms:
- OPEN(..., SHARE=sh)
- OPEN(..., SHARED)
- OPEN(..., NOSHARED)
- Where _sh_ in the first form is a character expression that
- evaluates to a value as seen in the table below. The latter two
- forms are aliases for particular values of _sh_:
- Explicit form Short form Meaning
- ----------------------------------------------------------------------------
- 'SHARE='DENYRW'' 'NOSHARED' Exclusive (write) lock
- 'SHARE='DENYNONE'' 'SHARED' Shared (read) lock
- In general only one process may hold an exclusive (write) lock for
- a given file at a time, whereas many processes may hold shared
- (read) locks for the same file.
- The behavior of locking may vary with your operating system. On
- POSIX systems, locking is implemented with 'fcntl'. Consult your
- corresponding operating system's manual pages for further details.
- Locking via 'SHARE=' is not supported on other systems.
- File: gfortran.info, Node: Legacy PARAMETER statements, Next: Default exponents, Prev: Extended I/O specifiers, Up: Extensions implemented in GNU Fortran
- 6.1.31 Legacy PARAMETER statements
- ----------------------------------
- For compatibility, GNU Fortran supports legacy PARAMETER statements
- without parentheses with '-std=legacy'. A warning is emitted if used
- with '-std=gnu', and an error is acknowledged with a real Fortran
- standard flag ('-std=f95', etc...). These statements take the following
- form:
- implicit real (E)
- parameter e = 2.718282
- real c
- parameter c = 3.0e8
- File: gfortran.info, Node: Default exponents, Prev: Legacy PARAMETER statements, Up: Extensions implemented in GNU Fortran
- 6.1.32 Default exponents
- ------------------------
- For compatibility, GNU Fortran supports a default exponent of zero in
- real constants with '-fdec'. For example, '9e' would be interpreted as
- '9e0', rather than an error.
- File: gfortran.info, Node: Extensions not implemented in GNU Fortran, Prev: Extensions implemented in GNU Fortran, Up: Extensions
- 6.2 Extensions not implemented in GNU Fortran
- =============================================
- The long history of the Fortran language, its wide use and broad
- userbase, the large number of different compiler vendors and the lack of
- some features crucial to users in the first standards have lead to the
- existence of a number of important extensions to the language. While
- some of the most useful or popular extensions are supported by the GNU
- Fortran compiler, not all existing extensions are supported. This
- section aims at listing these extensions and offering advice on how best
- make code that uses them running with the GNU Fortran compiler.
- * Menu:
- * ENCODE and DECODE statements::
- * Variable FORMAT expressions::
- * Alternate complex function syntax::
- * Volatile COMMON blocks::
- * OPEN( ... NAME=)::
- File: gfortran.info, Node: ENCODE and DECODE statements, Next: Variable FORMAT expressions, Up: Extensions not implemented in GNU Fortran
- 6.2.1 'ENCODE' and 'DECODE' statements
- --------------------------------------
- GNU Fortran does not support the 'ENCODE' and 'DECODE' statements.
- These statements are best replaced by 'READ' and 'WRITE' statements
- involving internal files ('CHARACTER' variables and arrays), which have
- been part of the Fortran standard since Fortran 77. For example,
- replace a code fragment like
- INTEGER*1 LINE(80)
- REAL A, B, C
- c ... Code that sets LINE
- DECODE (80, 9000, LINE) A, B, C
- 9000 FORMAT (1X, 3(F10.5))
- with the following:
- CHARACTER(LEN=80) LINE
- REAL A, B, C
- c ... Code that sets LINE
- READ (UNIT=LINE, FMT=9000) A, B, C
- 9000 FORMAT (1X, 3(F10.5))
- Similarly, replace a code fragment like
- INTEGER*1 LINE(80)
- REAL A, B, C
- c ... Code that sets A, B and C
- ENCODE (80, 9000, LINE) A, B, C
- 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
- with the following:
- CHARACTER(LEN=80) LINE
- REAL A, B, C
- c ... Code that sets A, B and C
- WRITE (UNIT=LINE, FMT=9000) A, B, C
- 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
- File: gfortran.info, Node: Variable FORMAT expressions, Next: Alternate complex function syntax, Prev: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran
- 6.2.2 Variable 'FORMAT' expressions
- -----------------------------------
- A variable 'FORMAT' expression is format statement which includes angle
- brackets enclosing a Fortran expression: 'FORMAT(I<N>)'. GNU Fortran
- does not support this legacy extension. The effect of variable format
- expressions can be reproduced by using the more powerful (and standard)
- combination of internal output and string formats. For example, replace
- a code fragment like this:
- WRITE(6,20) INT1
- 20 FORMAT(I<N+1>)
- with the following:
- c Variable declaration
- CHARACTER(LEN=20) FMT
- c
- c Other code here...
- c
- WRITE(FMT,'("(I", I0, ")")') N+1
- WRITE(6,FMT) INT1
- or with:
- c Variable declaration
- CHARACTER(LEN=20) FMT
- c
- c Other code here...
- c
- WRITE(FMT,*) N+1
- WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1
- File: gfortran.info, Node: Alternate complex function syntax, Next: Volatile COMMON blocks, Prev: Variable FORMAT expressions, Up: Extensions not implemented in GNU Fortran
- 6.2.3 Alternate complex function syntax
- ---------------------------------------
- Some Fortran compilers, including 'g77', let the user declare complex
- functions with the syntax 'COMPLEX FUNCTION name*16()', as well as
- 'COMPLEX*16 FUNCTION name()'. Both are non-standard, legacy extensions.
- 'gfortran' accepts the latter form, which is more common, but not the
- former.
- File: gfortran.info, Node: Volatile COMMON blocks, Next: OPEN( ... NAME=), Prev: Alternate complex function syntax, Up: Extensions not implemented in GNU Fortran
- 6.2.4 Volatile 'COMMON' blocks
- ------------------------------
- Some Fortran compilers, including 'g77', let the user declare 'COMMON'
- with the 'VOLATILE' attribute. This is invalid standard Fortran syntax
- and is not supported by 'gfortran'. Note that 'gfortran' accepts
- 'VOLATILE' variables in 'COMMON' blocks since revision 4.3.
- File: gfortran.info, Node: OPEN( ... NAME=), Prev: Volatile COMMON blocks, Up: Extensions not implemented in GNU Fortran
- 6.2.5 'OPEN( ... NAME=)'
- ------------------------
- Some Fortran compilers, including 'g77', let the user declare 'OPEN( ...
- NAME=)'. This is invalid standard Fortran syntax and is not supported
- by 'gfortran'. 'OPEN( ... NAME=)' should be replaced with 'OPEN( ...
- FILE=)'.
- File: gfortran.info, Node: Mixed-Language Programming, Next: Coarray Programming, Prev: Extensions, Up: Top
- 7 Mixed-Language Programming
- ****************************
- * Menu:
- * Interoperability with C::
- * GNU Fortran Compiler Directives::
- * Non-Fortran Main Program::
- * Naming and argument-passing conventions::
- This chapter is about mixed-language interoperability, but also applies
- if one links Fortran code compiled by different compilers. In most
- cases, use of the C Binding features of the Fortran 2003 standard is
- sufficient, and their use is highly recommended.
- File: gfortran.info, Node: Interoperability with C, Next: GNU Fortran Compiler Directives, Up: Mixed-Language Programming
- 7.1 Interoperability with C
- ===========================
- * Menu:
- * Intrinsic Types::
- * Derived Types and struct::
- * Interoperable Global Variables::
- * Interoperable Subroutines and Functions::
- * Working with Pointers::
- * Further Interoperability of Fortran with C::
- Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way
- to generate procedure and derived-type declarations and global variables
- which are interoperable with C (ISO/IEC 9899:1999). The 'bind(C)'
- attribute has been added to inform the compiler that a symbol shall be
- interoperable with C; also, some constraints are added. Note, however,
- that not all C features have a Fortran equivalent or vice versa. For
- instance, neither C's unsigned integers nor C's functions with variable
- number of arguments have an equivalent in Fortran.
- Note that array dimensions are reversely ordered in C and that arrays
- in C always start with index 0 while in Fortran they start by default
- with 1. Thus, an array declaration 'A(n,m)' in Fortran matches
- 'A[m][n]' in C and accessing the element 'A(i,j)' matches 'A[j-1][i-1]'.
- The element following 'A(i,j)' (C: 'A[j-1][i-1]'; assuming i < n) in
- memory is 'A(i+1,j)' (C: 'A[j-1][i]').
- File: gfortran.info, Node: Intrinsic Types, Next: Derived Types and struct, Up: Interoperability with C
- 7.1.1 Intrinsic Types
- ---------------------
- In order to ensure that exactly the same variable type and kind is used
- in C and Fortran, the named constants shall be used which are defined in
- the 'ISO_C_BINDING' intrinsic module. That module contains named
- constants for kind parameters and character named constants for the
- escape sequences in C. For a list of the constants, see *note
- ISO_C_BINDING::.
- For logical types, please note that the Fortran standard only
- guarantees interoperability between C99's '_Bool' and Fortran's
- 'C_Bool'-kind logicals and C99 defines that 'true' has the value 1 and
- 'false' the value 0. Using any other integer value with GNU Fortran's
- 'LOGICAL' (with any kind parameter) gives an undefined result. (Passing
- other integer values than 0 and 1 to GCC's '_Bool' is also undefined,
- unless the integer is explicitly or implicitly casted to '_Bool'.)
- File: gfortran.info, Node: Derived Types and struct, Next: Interoperable Global Variables, Prev: Intrinsic Types, Up: Interoperability with C
- 7.1.2 Derived Types and struct
- ------------------------------
- For compatibility of derived types with 'struct', one needs to use the
- 'BIND(C)' attribute in the type declaration. For instance, the
- following type declaration
- USE ISO_C_BINDING
- TYPE, BIND(C) :: myType
- INTEGER(C_INT) :: i1, i2
- INTEGER(C_SIGNED_CHAR) :: i3
- REAL(C_DOUBLE) :: d1
- COMPLEX(C_FLOAT_COMPLEX) :: c1
- CHARACTER(KIND=C_CHAR) :: str(5)
- END TYPE
- matches the following 'struct' declaration in C
- struct {
- int i1, i2;
- /* Note: "char" might be signed or unsigned. */
- signed char i3;
- double d1;
- float _Complex c1;
- char str[5];
- } myType;
- Derived types with the C binding attribute shall not have the
- 'sequence' attribute, type parameters, the 'extends' attribute, nor
- type-bound procedures. Every component must be of interoperable type
- and kind and may not have the 'pointer' or 'allocatable' attribute. The
- names of the components are irrelevant for interoperability.
- As there exist no direct Fortran equivalents, neither unions nor
- structs with bit field or variable-length array members are
- interoperable.
- File: gfortran.info, Node: Interoperable Global Variables, Next: Interoperable Subroutines and Functions, Prev: Derived Types and struct, Up: Interoperability with C
- 7.1.3 Interoperable Global Variables
- ------------------------------------
- Variables can be made accessible from C using the C binding attribute,
- optionally together with specifying a binding name. Those variables
- have to be declared in the declaration part of a 'MODULE', be of
- interoperable type, and have neither the 'pointer' nor the 'allocatable'
- attribute.
- MODULE m
- USE myType_module
- USE ISO_C_BINDING
- integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
- type(myType), bind(C) :: tp
- END MODULE
- Here, '_MyProject_flags' is the case-sensitive name of the variable
- as seen from C programs while 'global_flag' is the case-insensitive name
- as seen from Fortran. If no binding name is specified, as for TP, the C
- binding name is the (lowercase) Fortran binding name. If a binding name
- is specified, only a single variable may be after the double colon.
- Note of warning: You cannot use a global variable to access ERRNO of the
- C library as the C standard allows it to be a macro. Use the 'IERRNO'
- intrinsic (GNU extension) instead.
- File: gfortran.info, Node: Interoperable Subroutines and Functions, Next: Working with Pointers, Prev: Interoperable Global Variables, Up: Interoperability with C
- 7.1.4 Interoperable Subroutines and Functions
- ---------------------------------------------
- Subroutines and functions have to have the 'BIND(C)' attribute to be
- compatible with C. The dummy argument declaration is relatively
- straightforward. However, one needs to be careful because C uses
- call-by-value by default while Fortran behaves usually similar to
- call-by-reference. Furthermore, strings and pointers are handled
- differently. Note that in Fortran 2003 and 2008 only explicit size and
- assumed-size arrays are supported but not assumed-shape or
- deferred-shape (i.e. allocatable or pointer) arrays. However, those
- are allowed since the Technical Specification 29113, see *note Further
- Interoperability of Fortran with C::
- To pass a variable by value, use the 'VALUE' attribute. Thus, the
- following C prototype
- int func(int i, int *j)
- matches the Fortran declaration
- integer(c_int) function func(i,j)
- use iso_c_binding, only: c_int
- integer(c_int), VALUE :: i
- integer(c_int) :: j
- Note that pointer arguments also frequently need the 'VALUE'
- attribute, see *note Working with Pointers::.
- Strings are handled quite differently in C and Fortran. In C a
- string is a 'NUL'-terminated array of characters while in Fortran each
- string has a length associated with it and is thus not terminated (by
- e.g. 'NUL'). For example, if one wants to use the following C
- function,
- #include <stdio.h>
- void print_C(char *string) /* equivalent: char string[] */
- {
- printf("%s\n", string);
- }
- to print "Hello World" from Fortran, one can call it using
- use iso_c_binding, only: C_CHAR, C_NULL_CHAR
- interface
- subroutine print_c(string) bind(C, name="print_C")
- use iso_c_binding, only: c_char
- character(kind=c_char) :: string(*)
- end subroutine print_c
- end interface
- call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)
- As the example shows, one needs to ensure that the string is 'NUL'
- terminated. Additionally, the dummy argument STRING of 'print_C' is a
- length-one assumed-size array; using 'character(len=*)' is not allowed.
- The example above uses 'c_char_"Hello World"' to ensure the string
- literal has the right type; typically the default character kind and
- 'c_char' are the same and thus '"Hello World"' is equivalent. However,
- the standard does not guarantee this.
- The use of strings is now further illustrated using the C library
- function 'strncpy', whose prototype is
- char *strncpy(char *restrict s1, const char *restrict s2, size_t n);
- The function 'strncpy' copies at most N characters from string S2 to
- S1 and returns S1. In the following example, we ignore the return
- value:
- use iso_c_binding
- implicit none
- character(len=30) :: str,str2
- interface
- ! Ignore the return value of strncpy -> subroutine
- ! "restrict" is always assumed if we do not pass a pointer
- subroutine strncpy(dest, src, n) bind(C)
- import
- character(kind=c_char), intent(out) :: dest(*)
- character(kind=c_char), intent(in) :: src(*)
- integer(c_size_t), value, intent(in) :: n
- end subroutine strncpy
- end interface
- str = repeat('X',30) ! Initialize whole string with 'X'
- call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
- len(c_char_"Hello World",kind=c_size_t))
- print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
- end
- The intrinsic procedures are described in *note Intrinsic
- Procedures::.
- File: gfortran.info, Node: Working with Pointers, Next: Further Interoperability of Fortran with C, Prev: Interoperable Subroutines and Functions, Up: Interoperability with C
- 7.1.5 Working with Pointers
- ---------------------------
- C pointers are represented in Fortran via the special opaque derived
- type 'type(c_ptr)' (with private components). Thus one needs to use
- intrinsic conversion procedures to convert from or to C pointers.
- For some applications, using an assumed type ('TYPE(*)') can be an
- alternative to a C pointer; see *note Further Interoperability of
- Fortran with C::.
- For example,
- use iso_c_binding
- type(c_ptr) :: cptr1, cptr2
- integer, target :: array(7), scalar
- integer, pointer :: pa(:), ps
- cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
- ! array is contiguous if required by the C
- ! procedure
- cptr2 = c_loc(scalar)
- call c_f_pointer(cptr2, ps)
- call c_f_pointer(cptr2, pa, shape=[7])
- When converting C to Fortran arrays, the one-dimensional 'SHAPE'
- argument has to be passed.
- If a pointer is a dummy-argument of an interoperable procedure, it
- usually has to be declared using the 'VALUE' attribute. 'void*' matches
- 'TYPE(C_PTR), VALUE', while 'TYPE(C_PTR)' alone matches 'void**'.
- Procedure pointers are handled analogously to pointers; the C type is
- 'TYPE(C_FUNPTR)' and the intrinsic conversion procedures are
- 'C_F_PROCPOINTER' and 'C_FUNLOC'.
- Let us consider two examples of actually passing a procedure pointer
- from C to Fortran and vice versa. Note that these examples are also
- very similar to passing ordinary pointers between both languages.
- First, consider this code in C:
- /* Procedure implemented in Fortran. */
- void get_values (void (*)(double));
- /* Call-back routine we want called from Fortran. */
- void
- print_it (double x)
- {
- printf ("Number is %f.\n", x);
- }
- /* Call Fortran routine and pass call-back to it. */
- void
- foobar ()
- {
- get_values (&print_it);
- }
- A matching implementation for 'get_values' in Fortran, that correctly
- receives the procedure pointer from C and is able to call it, is given
- in the following 'MODULE':
- MODULE m
- IMPLICIT NONE
- ! Define interface of call-back routine.
- ABSTRACT INTERFACE
- SUBROUTINE callback (x)
- USE, INTRINSIC :: ISO_C_BINDING
- REAL(KIND=C_DOUBLE), INTENT(IN), VALUE :: x
- END SUBROUTINE callback
- END INTERFACE
- CONTAINS
- ! Define C-bound procedure.
- SUBROUTINE get_values (cproc) BIND(C)
- USE, INTRINSIC :: ISO_C_BINDING
- TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc
- PROCEDURE(callback), POINTER :: proc
- ! Convert C to Fortran procedure pointer.
- CALL C_F_PROCPOINTER (cproc, proc)
- ! Call it.
- CALL proc (1.0_C_DOUBLE)
- CALL proc (-42.0_C_DOUBLE)
- CALL proc (18.12_C_DOUBLE)
- END SUBROUTINE get_values
- END MODULE m
- Next, we want to call a C routine that expects a procedure pointer
- argument and pass it a Fortran procedure (which clearly must be
- interoperable!). Again, the C function may be:
- int
- call_it (int (*func)(int), int arg)
- {
- return func (arg);
- }
- It can be used as in the following Fortran code:
- MODULE m
- USE, INTRINSIC :: ISO_C_BINDING
- IMPLICIT NONE
- ! Define interface of C function.
- INTERFACE
- INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
- USE, INTRINSIC :: ISO_C_BINDING
- TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
- INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
- END FUNCTION call_it
- END INTERFACE
- CONTAINS
- ! Define procedure passed to C function.
- ! It must be interoperable!
- INTEGER(KIND=C_INT) FUNCTION double_it (arg) BIND(C)
- INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
- double_it = arg + arg
- END FUNCTION double_it
- ! Call C function.
- SUBROUTINE foobar ()
- TYPE(C_FUNPTR) :: cproc
- INTEGER(KIND=C_INT) :: i
- ! Get C procedure pointer.
- cproc = C_FUNLOC (double_it)
- ! Use it.
- DO i = 1_C_INT, 10_C_INT
- PRINT *, call_it (cproc, i)
- END DO
- END SUBROUTINE foobar
- END MODULE m
- File: gfortran.info, Node: Further Interoperability of Fortran with C, Prev: Working with Pointers, Up: Interoperability with C
- 7.1.6 Further Interoperability of Fortran with C
- ------------------------------------------------
- The Technical Specification ISO/IEC TS 29113:2012 on further
- interoperability of Fortran with C extends the interoperability support
- of Fortran 2003 and Fortran 2008. Besides removing some restrictions
- and constraints, it adds assumed-type ('TYPE(*)') and assumed-rank
- ('dimension') variables and allows for interoperability of
- assumed-shape, assumed-rank and deferred-shape arrays, including
- allocatables and pointers.
- Note: Currently, GNU Fortran does not support the array descriptor
- (dope vector) as specified in the Technical Specification, but uses an
- array descriptor with different fields. The Chasm Language
- Interoperability Tools, <http://chasm-interop.sourceforge.net/>, provide
- an interface to GNU Fortran's array descriptor.
- The Technical Specification adds the following new features, which
- are supported by GNU Fortran:
- * The 'ASYNCHRONOUS' attribute has been clarified and extended to
- allow its use with asynchronous communication in user-provided
- libraries such as in implementations of the Message Passing
- Interface specification.
- * Many constraints have been relaxed, in particular for the 'C_LOC'
- and 'C_F_POINTER' intrinsics.
- * The 'OPTIONAL' attribute is now allowed for dummy arguments; an
- absent argument matches a 'NULL' pointer.
- * Assumed types ('TYPE(*)') have been added, which may only be used
- for dummy arguments. They are unlimited polymorphic but contrary
- to 'CLASS(*)' they do not contain any type information, similar to
- C's 'void *' pointers. Expressions of any type and kind can be
- passed; thus, it can be used as replacement for 'TYPE(C_PTR)',
- avoiding the use of 'C_LOC' in the caller.
- Note, however, that 'TYPE(*)' only accepts scalar arguments, unless
- the 'DIMENSION' is explicitly specified. As 'DIMENSION(*)' only
- supports array (including array elements) but no scalars, it is not
- a full replacement for 'C_LOC'. On the other hand, assumed-type
- assumed-rank dummy arguments ('TYPE(*), DIMENSION(..)') allow for
- both scalars and arrays, but require special code on the callee
- side to handle the array descriptor.
- * Assumed-rank arrays ('DIMENSION(..)') as dummy argument allow that
- scalars and arrays of any rank can be passed as actual argument.
- As the Technical Specification does not provide for direct means to
- operate with them, they have to be used either from the C side or
- be converted using 'C_LOC' and 'C_F_POINTER' to scalars or arrays
- of a specific rank. The rank can be determined using the 'RANK'
- intrinisic.
- Currently unimplemented:
- * GNU Fortran always uses an array descriptor, which does not match
- the one of the Technical Specification. The
- 'ISO_Fortran_binding.h' header file and the C functions it
- specifies are not available.
- * Using assumed-shape, assumed-rank and deferred-shape arrays in
- 'BIND(C)' procedures is not fully supported. In particular, C
- interoperable strings of other length than one are not supported as
- this requires the new array descriptor.
- File: gfortran.info, Node: GNU Fortran Compiler Directives, Next: Non-Fortran Main Program, Prev: Interoperability with C, Up: Mixed-Language Programming
- 7.2 GNU Fortran Compiler Directives
- ===================================
- The Fortran standard describes how a conforming program shall behave;
- however, the exact implementation is not standardized. In order to
- allow the user to choose specific implementation details, compiler
- directives can be used to set attributes of variables and procedures
- which are not part of the standard. Whether a given attribute is
- supported and its exact effects depend on both the operating system and
- on the processor; see *note C Extensions: (gcc)Top. for details.
- For procedures and procedure pointers, the following attributes can
- be used to change the calling convention:
- * 'CDECL' - standard C calling convention
- * 'STDCALL' - convention where the called procedure pops the stack
- * 'FASTCALL' - part of the arguments are passed via registers instead
- using the stack
- Besides changing the calling convention, the attributes also
- influence the decoration of the symbol name, e.g., by a leading
- underscore or by a trailing at-sign followed by the number of bytes on
- the stack. When assigning a procedure to a procedure pointer, both
- should use the same calling convention.
- On some systems, procedures and global variables (module variables
- and 'COMMON' blocks) need special handling to be accessible when they
- are in a shared library. The following attributes are available:
- * 'DLLEXPORT' - provide a global pointer to a pointer in the DLL
- * 'DLLIMPORT' - reference the function or variable using a global
- pointer
- For dummy arguments, the 'NO_ARG_CHECK' attribute can be used; in
- other compilers, it is also known as 'IGNORE_TKR'. For dummy arguments
- with this attribute actual arguments of any type and kind (similar to
- 'TYPE(*)'), scalars and arrays of any rank (no equivalent in Fortran
- standard) are accepted. As with 'TYPE(*)', the argument is unlimited
- polymorphic and no type information is available. Additionally, the
- argument may only be passed to dummy arguments with the 'NO_ARG_CHECK'
- attribute and as argument to the 'PRESENT' intrinsic function and to
- 'C_LOC' of the 'ISO_C_BINDING' module.
- Variables with 'NO_ARG_CHECK' attribute shall be of assumed-type
- ('TYPE(*)'; recommended) or of type 'INTEGER', 'LOGICAL', 'REAL' or
- 'COMPLEX'. They shall not have the 'ALLOCATE', 'CODIMENSION',
- 'INTENT(OUT)', 'POINTER' or 'VALUE' attribute; furthermore, they shall
- be either scalar or of assumed-size ('dimension(*)'). As 'TYPE(*)', the
- 'NO_ARG_CHECK' attribute requires an explicit interface.
- * 'NO_ARG_CHECK' - disable the type, kind and rank checking
- The attributes are specified using the syntax
- '!GCC$ ATTRIBUTES' ATTRIBUTE-LIST '::' VARIABLE-LIST
- where in free-form source code only whitespace is allowed before
- '!GCC$' and in fixed-form source code '!GCC$', 'cGCC$' or '*GCC$' shall
- start in the first column.
- For procedures, the compiler directives shall be placed into the body
- of the procedure; for variables and procedure pointers, they shall be in
- the same declaration part as the variable or procedure pointer.
- File: gfortran.info, Node: Non-Fortran Main Program, Next: Naming and argument-passing conventions, Prev: GNU Fortran Compiler Directives, Up: Mixed-Language Programming
- 7.3 Non-Fortran Main Program
- ============================
- * Menu:
- * _gfortran_set_args:: Save command-line arguments
- * _gfortran_set_options:: Set library option flags
- * _gfortran_set_convert:: Set endian conversion
- * _gfortran_set_record_marker:: Set length of record markers
- * _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
- * _gfortran_set_max_subrecord_length:: Set subrecord length
- Even if you are doing mixed-language programming, it is very likely that
- you do not need to know or use the information in this section. Since
- it is about the internal structure of GNU Fortran, it may also change in
- GCC minor releases.
- When you compile a 'PROGRAM' with GNU Fortran, a function with the
- name 'main' (in the symbol table of the object file) is generated, which
- initializes the libgfortran library and then calls the actual program
- which uses the name 'MAIN__', for historic reasons. If you link GNU
- Fortran compiled procedures to, e.g., a C or C++ program or to a Fortran
- program compiled by a different compiler, the libgfortran library is not
- initialized and thus a few intrinsic procedures do not work properly,
- e.g. those for obtaining the command-line arguments.
- Therefore, if your 'PROGRAM' is not compiled with GNU Fortran and the
- GNU Fortran compiled procedures require intrinsics relying on the
- library initialization, you need to initialize the library yourself.
- Using the default options, gfortran calls '_gfortran_set_args' and
- '_gfortran_set_options'. The initialization of the former is needed if
- the called procedures access the command line (and for backtracing); the
- latter sets some flags based on the standard chosen or to enable
- backtracing. In typical programs, it is not necessary to call any
- initialization function.
- If your 'PROGRAM' is compiled with GNU Fortran, you shall not call
- any of the following functions. The libgfortran initialization
- functions are shown in C syntax but using C bindings they are also
- accessible from Fortran.
- File: gfortran.info, Node: _gfortran_set_args, Next: _gfortran_set_options, Up: Non-Fortran Main Program
- 7.3.1 '_gfortran_set_args' -- Save command-line arguments
- ---------------------------------------------------------
- _Description_:
- '_gfortran_set_args' saves the command-line arguments; this
- initialization is required if any of the command-line intrinsics is
- called. Additionally, it shall be called if backtracing is enabled
- (see '_gfortran_set_options').
- _Syntax_:
- 'void _gfortran_set_args (int argc, char *argv[])'
- _Arguments_:
- ARGC number of command line argument strings
- ARGV the command-line argument strings; argv[0] is
- the pathname of the executable itself.
- _Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- return 0;
- }
- File: gfortran.info, Node: _gfortran_set_options, Next: _gfortran_set_convert, Prev: _gfortran_set_args, Up: Non-Fortran Main Program
- 7.3.2 '_gfortran_set_options' -- Set library option flags
- ---------------------------------------------------------
- _Description_:
- '_gfortran_set_options' sets several flags related to the Fortran
- standard to be used, whether backtracing should be enabled and
- whether range checks should be performed. The syntax allows for
- upward compatibility since the number of passed flags is specified;
- for non-passed flags, the default value is used. See also *note
- Code Gen Options::. Please note that not all flags are actually
- used.
- _Syntax_:
- 'void _gfortran_set_options (int num, int options[])'
- _Arguments_:
- NUM number of options passed
- ARGV The list of flag values
- _option flag list_:
- OPTION[0] Allowed standard; can give run-time errors if
- e.g. an input-output edit descriptor is invalid
- in a given standard. Possible values are
- (bitwise or-ed) 'GFC_STD_F77' (1),
- 'GFC_STD_F95_OBS' (2), 'GFC_STD_F95_DEL' (4),
- 'GFC_STD_F95' (8), 'GFC_STD_F2003' (16),
- 'GFC_STD_GNU' (32), 'GFC_STD_LEGACY' (64),
- 'GFC_STD_F2008' (128), 'GFC_STD_F2008_OBS' (256)
- and GFC_STD_F2008_TS (512). Default:
- 'GFC_STD_F95_OBS | GFC_STD_F95_DEL | GFC_STD_F95
- | GFC_STD_F2003 | GFC_STD_F2008 |
- GFC_STD_F2008_TS | GFC_STD_F2008_OBS |
- GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY'.
- OPTION[1] Standard-warning flag; prints a warning to
- standard error. Default: 'GFC_STD_F95_DEL |
- GFC_STD_LEGACY'.
- OPTION[2] If non zero, enable pedantic checking. Default:
- off.
- OPTION[3] Unused.
- OPTION[4] If non zero, enable backtracing on run-time
- errors. Default: off. (Default in the
- compiler: on.) Note: Installs a signal handler
- and requires command-line initialization using
- '_gfortran_set_args'.
- OPTION[5] If non zero, supports signed zeros. Default:
- enabled.
- OPTION[6] Enables run-time checking. Possible values are
- (bitwise or-ed): GFC_RTCHECK_BOUNDS (1),
- GFC_RTCHECK_ARRAY_TEMPS (2),
- GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16),
- GFC_RTCHECK_POINTER (32). Default: disabled.
- OPTION[7] Unused.
- OPTION[8] Show a warning when invoking 'STOP' and 'ERROR
- STOP' if a floating-point exception occurred.
- Possible values are (bitwise or-ed)
- 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2),
- 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8),
- 'GFC_FPE_UNDERFLOW' (16), 'GFC_FPE_INEXACT'
- (32). Default: None (0). (Default in the
- compiler: 'GFC_FPE_INVALID | GFC_FPE_DENORMAL |
- GFC_FPE_ZERO | GFC_FPE_OVERFLOW |
- GFC_FPE_UNDERFLOW'.)
- _Example_:
- /* Use gfortran 4.9 default options. */
- static int options[] = {68, 511, 0, 0, 1, 1, 0, 0, 31};
- _gfortran_set_options (9, &options);
- File: gfortran.info, Node: _gfortran_set_convert, Next: _gfortran_set_record_marker, Prev: _gfortran_set_options, Up: Non-Fortran Main Program
- 7.3.3 '_gfortran_set_convert' -- Set endian conversion
- ------------------------------------------------------
- _Description_:
- '_gfortran_set_convert' set the representation of data for
- unformatted files.
- _Syntax_:
- 'void _gfortran_set_convert (int conv)'
- _Arguments_:
- CONV Endian conversion, possible values:
- GFC_CONVERT_NATIVE (0, default),
- GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG (2),
- GFC_CONVERT_LITTLE (3).
- _Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- _gfortran_set_convert (1);
- return 0;
- }
- File: gfortran.info, Node: _gfortran_set_record_marker, Next: _gfortran_set_fpe, Prev: _gfortran_set_convert, Up: Non-Fortran Main Program
- 7.3.4 '_gfortran_set_record_marker' -- Set length of record markers
- -------------------------------------------------------------------
- _Description_:
- '_gfortran_set_record_marker' sets the length of record markers for
- unformatted files.
- _Syntax_:
- 'void _gfortran_set_record_marker (int val)'
- _Arguments_:
- VAL Length of the record marker; valid values are 4
- and 8. Default is 4.
- _Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- _gfortran_set_record_marker (8);
- return 0;
- }
- File: gfortran.info, Node: _gfortran_set_fpe, Next: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_record_marker, Up: Non-Fortran Main Program
- 7.3.5 '_gfortran_set_fpe' -- Enable floating point exception traps
- ------------------------------------------------------------------
- _Description_:
- '_gfortran_set_fpe' enables floating point exception traps for the
- specified exceptions. On most systems, this will result in a
- SIGFPE signal being sent and the program being aborted.
- _Syntax_:
- 'void _gfortran_set_fpe (int val)'
- _Arguments_:
- OPTION[0] IEEE exceptions. Possible values are (bitwise
- or-ed) zero (0, default) no trapping,
- 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2),
- 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8),
- 'GFC_FPE_UNDERFLOW' (16), and 'GFC_FPE_INEXACT'
- (32).
- _Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- /* FPE for invalid operations such as SQRT(-1.0). */
- _gfortran_set_fpe (1);
- return 0;
- }
- File: gfortran.info, Node: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_fpe, Up: Non-Fortran Main Program
- 7.3.6 '_gfortran_set_max_subrecord_length' -- Set subrecord length
- ------------------------------------------------------------------
- _Description_:
- '_gfortran_set_max_subrecord_length' set the maximum length for a
- subrecord. This option only makes sense for testing and debugging
- of unformatted I/O.
- _Syntax_:
- 'void _gfortran_set_max_subrecord_length (int val)'
- _Arguments_:
- VAL the maximum length for a subrecord; the maximum
- permitted value is 2147483639, which is also the
- default.
- _Example_:
- int main (int argc, char *argv[])
- {
- /* Initialize libgfortran. */
- _gfortran_set_args (argc, argv);
- _gfortran_set_max_subrecord_length (8);
- return 0;
- }
- File: gfortran.info, Node: Naming and argument-passing conventions, Prev: Non-Fortran Main Program, Up: Mixed-Language Programming
- 7.4 Naming and argument-passing conventions
- ===========================================
- This section gives an overview about the naming convention of procedures
- and global variables and about the argument passing conventions used by
- GNU Fortran. If a C binding has been specified, the naming convention
- and some of the argument-passing conventions change. If possible,
- mixed-language and mixed-compiler projects should use the better defined
- C binding for interoperability. See *note Interoperability with C::.
- * Menu:
- * Naming conventions::
- * Argument passing conventions::
- File: gfortran.info, Node: Naming conventions, Next: Argument passing conventions, Up: Naming and argument-passing conventions
- 7.4.1 Naming conventions
- ------------------------
- According the Fortran standard, valid Fortran names consist of a letter
- between 'A' to 'Z', 'a' to 'z', digits '0', '1' to '9' and underscores
- ('_') with the restriction that names may only start with a letter. As
- vendor extension, the dollar sign ('$') is additionally permitted with
- the option '-fdollar-ok', but not as first character and only if the
- target system supports it.
- By default, the procedure name is the lower-cased Fortran name with
- an appended underscore ('_'); using '-fno-underscoring' no underscore is
- appended while '-fsecond-underscore' appends two underscores. Depending
- on the target system and the calling convention, the procedure might be
- additionally dressed; for instance, on 32bit Windows with 'stdcall', an
- at-sign '@' followed by an integer number is appended. For the changing
- the calling convention, see *note GNU Fortran Compiler Directives::.
- For common blocks, the same convention is used, i.e. by default an
- underscore is appended to the lower-cased Fortran name. Blank commons
- have the name '__BLNK__'.
- For procedures and variables declared in the specification space of a
- module, the name is formed by '__', followed by the lower-cased module
- name, '_MOD_', and the lower-cased Fortran name. Note that no
- underscore is appended.
- File: gfortran.info, Node: Argument passing conventions, Prev: Naming conventions, Up: Naming and argument-passing conventions
- 7.4.2 Argument passing conventions
- ----------------------------------
- Subroutines do not return a value (matching C99's 'void') while
- functions either return a value as specified in the platform ABI or the
- result variable is passed as hidden argument to the function and no
- result is returned. A hidden result variable is used when the result
- variable is an array or of type 'CHARACTER'.
- Arguments are passed according to the platform ABI. In particular,
- complex arguments might not be compatible to a struct with two real
- components for the real and imaginary part. The argument passing
- matches the one of C99's '_Complex'. Functions with scalar complex
- result variables return their value and do not use a by-reference
- argument. Note that with the '-ff2c' option, the argument passing is
- modified and no longer completely matches the platform ABI. Some other
- Fortran compilers use 'f2c' semantic by default; this might cause
- problems with interoperablility.
- GNU Fortran passes most arguments by reference, i.e. by passing a
- pointer to the data. Note that the compiler might use a temporary
- variable into which the actual argument has been copied, if required
- semantically (copy-in/copy-out).
- For arguments with 'ALLOCATABLE' and 'POINTER' attribute (including
- procedure pointers), a pointer to the pointer is passed such that the
- pointer address can be modified in the procedure.
- For dummy arguments with the 'VALUE' attribute: Scalar arguments of
- the type 'INTEGER', 'LOGICAL', 'REAL' and 'COMPLEX' are passed by value
- according to the platform ABI. (As vendor extension and not recommended,
- using '%VAL()' in the call to a procedure has the same effect.) For
- 'TYPE(C_PTR)' and procedure pointers, the pointer itself is passed such
- that it can be modified without affecting the caller.
- For Boolean ('LOGICAL') arguments, please note that GCC expects only
- the integer value 0 and 1. If a GNU Fortran 'LOGICAL' variable contains
- another integer value, the result is undefined. As some other Fortran
- compilers use -1 for '.TRUE.', extra care has to be taken - such as
- passing the value as 'INTEGER'. (The same value restriction also
- applies to other front ends of GCC, e.g. to GCC's C99 compiler for
- '_Bool' or GCC's Ada compiler for 'Boolean'.)
- For arguments of 'CHARACTER' type, the character length is passed as
- hidden argument. For deferred-length strings, the value is passed by
- reference, otherwise by value. The character length has the type
- 'INTEGER(kind=4)'. Note with C binding, 'CHARACTER(len=1)' result
- variables are returned according to the platform ABI and no hidden
- length argument is used for dummy arguments; with 'VALUE', those
- variables are passed by value.
- For 'OPTIONAL' dummy arguments, an absent argument is denoted by a
- NULL pointer, except for scalar dummy arguments of type 'INTEGER',
- 'LOGICAL', 'REAL' and 'COMPLEX' which have the 'VALUE' attribute. For
- those, a hidden Boolean argument ('logical(kind=C_bool),value') is used
- to indicate whether the argument is present.
- Arguments which are assumed-shape, assumed-rank or deferred-rank
- arrays or, with '-fcoarray=lib', allocatable scalar coarrays use an
- array descriptor. All other arrays pass the address of the first
- element of the array. With '-fcoarray=lib', the token and the offset
- belonging to nonallocatable coarrays dummy arguments are passed as
- hidden argument along the character length hidden arguments. The token
- is an oparque pointer identifying the coarray and the offset is a
- passed-by-value integer of kind 'C_PTRDIFF_T', denoting the byte offset
- between the base address of the coarray and the passed scalar or first
- element of the passed array.
- The arguments are passed in the following order
- * Result variable, when the function result is passed by reference
- * Character length of the function result, if it is a of type
- 'CHARACTER' and no C binding is used
- * The arguments in the order in which they appear in the Fortran
- declaration
- * The the present status for optional arguments with value attribute,
- which are internally passed by value
- * The character length and/or coarray token and offset for the first
- argument which is a 'CHARACTER' or a nonallocatable coarray dummy
- argument, followed by the hidden arguments of the next dummy
- argument of such a type
- File: gfortran.info, Node: Coarray Programming, Next: Intrinsic Procedures, Prev: Mixed-Language Programming, Up: Top
- 8 Coarray Programming
- *********************
- * Menu:
- * Type and enum ABI Documentation::
- * Function ABI Documentation::
- File: gfortran.info, Node: Type and enum ABI Documentation, Next: Function ABI Documentation, Up: Coarray Programming
- 8.1 Type and enum ABI Documentation
- ===================================
- * Menu:
- * caf_token_t::
- * caf_register_t::
- * caf_deregister_t::
- * caf_reference_t::
- * caf_team_t::
- File: gfortran.info, Node: caf_token_t, Next: caf_register_t, Up: Type and enum ABI Documentation
- 8.1.1 'caf_token_t'
- -------------------
- Typedef of type 'void *' on the compiler side. Can be any data type on
- the library side.
- File: gfortran.info, Node: caf_register_t, Next: caf_deregister_t, Prev: caf_token_t, Up: Type and enum ABI Documentation
- 8.1.2 'caf_register_t'
- ----------------------
- Indicates which kind of coarray variable should be registered.
- typedef enum caf_register_t {
- CAF_REGTYPE_COARRAY_STATIC,
- CAF_REGTYPE_COARRAY_ALLOC,
- CAF_REGTYPE_LOCK_STATIC,
- CAF_REGTYPE_LOCK_ALLOC,
- CAF_REGTYPE_CRITICAL,
- CAF_REGTYPE_EVENT_STATIC,
- CAF_REGTYPE_EVENT_ALLOC,
- CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY,
- CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY
- }
- caf_register_t;
- The values 'CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY' and
- 'CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY' are for allocatable components
- in derived type coarrays only. The first one sets up the token without
- allocating memory for allocatable component. The latter one only
- allocates the memory for an allocatable component in a derived type
- coarray. The token needs to be setup previously by the REGISTER_ONLY.
- This allows to have allocatable components un-allocated on some images.
- The status whether an allocatable component is allocated on a remote
- image can be queried by '_caf_is_present' which used internally by the
- 'ALLOCATED' intrinsic.
- File: gfortran.info, Node: caf_deregister_t, Next: caf_reference_t, Prev: caf_register_t, Up: Type and enum ABI Documentation
- 8.1.3 'caf_deregister_t'
- ------------------------
- typedef enum caf_deregister_t {
- CAF_DEREGTYPE_COARRAY_DEREGISTER,
- CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY
- }
- caf_deregister_t;
- Allows to specifiy the type of deregistration of a coarray object.
- The 'CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY' flag is only allowed for
- allocatable components in derived type coarrays.
- File: gfortran.info, Node: caf_reference_t, Next: caf_team_t, Prev: caf_deregister_t, Up: Type and enum ABI Documentation
- 8.1.4 'caf_reference_t'
- -----------------------
- The structure used for implementing arbitrary reference chains. A
- 'CAF_REFERENCE_T' allows to specify a component reference or any kind of
- array reference of any rank supported by gfortran. For array references
- all kinds as known by the compiler/Fortran standard are supported
- indicated by a 'MODE'.
- typedef enum caf_ref_type_t {
- /* Reference a component of a derived type, either regular one or an
- allocatable or pointer type. For regular ones idx in caf_reference_t is
- set to -1. */
- CAF_REF_COMPONENT,
- /* Reference an allocatable array. */
- CAF_REF_ARRAY,
- /* Reference a non-allocatable/non-pointer array. I.e., the coarray object
- has no array descriptor associated and the addressing is done
- completely using the ref. */
- CAF_REF_STATIC_ARRAY
- } caf_ref_type_t;
- typedef enum caf_array_ref_t {
- /* No array ref. This terminates the array ref. */
- CAF_ARR_REF_NONE = 0,
- /* Reference array elements given by a vector. Only for this mode
- caf_reference_t.u.a.dim[i].v is valid. */
- CAF_ARR_REF_VECTOR,
- /* A full array ref (:). */
- CAF_ARR_REF_FULL,
- /* Reference a range on elements given by start, end and stride. */
- CAF_ARR_REF_RANGE,
- /* Only a single item is referenced given in the start member. */
- CAF_ARR_REF_SINGLE,
- /* An array ref of the kind (i:), where i is an arbitrary valid index in the
- array. The index i is given in the start member. */
- CAF_ARR_REF_OPEN_END,
- /* An array ref of the kind (:i), where the lower bound of the array ref
- is given by the remote side. The index i is given in the end member. */
- CAF_ARR_REF_OPEN_START
- } caf_array_ref_t;
- /* References to remote components of a derived type. */
- typedef struct caf_reference_t {
- /* A pointer to the next ref or NULL. */
- struct caf_reference_t *next;
- /* The type of the reference. */
- /* caf_ref_type_t, replaced by int to allow specification in fortran FE. */
- int type;
- /* The size of an item referenced in bytes. I.e. in an array ref this is
- the factor to advance the array pointer with to get to the next item.
- For component refs this gives just the size of the element referenced. */
- size_t item_size;
- union {
- struct {
- /* The offset (in bytes) of the component in the derived type.
- Unused for allocatable or pointer components. */
- ptrdiff_t offset;
- /* The offset (in bytes) to the caf_token associated with this
- component. NULL, when not allocatable/pointer ref. */
- ptrdiff_t caf_token_offset;
- } c;
- struct {
- /* The mode of the array ref. See CAF_ARR_REF_*. */
- /* caf_array_ref_t, replaced by unsigend char to allow specification in
- fortran FE. */
- unsigned char mode[GFC_MAX_DIMENSIONS];
- /* The type of a static array. Unset for array's with descriptors. */
- int static_array_type;
- /* Subscript refs (s) or vector refs (v). */
- union {
- struct {
- /* The start and end boundary of the ref and the stride. */
- index_type start, end, stride;
- } s;
- struct {
- /* nvec entries of kind giving the elements to reference. */
- void *vector;
- /* The number of entries in vector. */
- size_t nvec;
- /* The integer kind used for the elements in vector. */
- int kind;
- } v;
- } dim[GFC_MAX_DIMENSIONS];
- } a;
- } u;
- } caf_reference_t;
- The references make up a single linked list of reference operations.
- The 'NEXT' member links to the next reference or NULL to indicate the
- end of the chain. Component and array refs can be arbitrarly mixed as
- long as they comply to the Fortran standard.
- _NOTES_ The member 'STATIC_ARRAY_TYPE' is used only when the 'TYPE'
- is 'CAF_REF_STATIC_ARRAY'. The member gives the type of the data
- referenced. Because no array descriptor is available for a
- descriptor-less array and type conversion still needs to take place the
- type is transported here.
- At the moment 'CAF_ARR_REF_VECTOR' is not implemented in the front
- end for descriptor-less arrays. The library caf_single has untested
- support for it.
- File: gfortran.info, Node: caf_team_t, Prev: caf_reference_t, Up: Type and enum ABI Documentation
- 8.1.5 'caf_team_t'
- ------------------
- Opaque pointer to represent a team-handle. This type is a stand-in for
- the future implementation of teams. It is about to change without
- further notice.
- File: gfortran.info, Node: Function ABI Documentation, Prev: Type and enum ABI Documentation, Up: Coarray Programming
- 8.2 Function ABI Documentation
- ==============================
- * Menu:
- * _gfortran_caf_init:: Initialiation function
- * _gfortran_caf_finish:: Finalization function
- * _gfortran_caf_this_image:: Querying the image number
- * _gfortran_caf_num_images:: Querying the maximal number of images
- * _gfortran_caf_image_status :: Query the status of an image
- * _gfortran_caf_failed_images :: Get an array of the indexes of the failed images
- * _gfortran_caf_stopped_images :: Get an array of the indexes of the stopped images
- * _gfortran_caf_register:: Registering coarrays
- * _gfortran_caf_deregister:: Deregistering coarrays
- * _gfortran_caf_is_present:: Query whether an allocatable or pointer component in a derived type coarray is allocated
- * _gfortran_caf_send:: Sending data from a local image to a remote image
- * _gfortran_caf_get:: Getting data from a remote image
- * _gfortran_caf_sendget:: Sending data between remote images
- * _gfortran_caf_send_by_ref:: Sending data from a local image to a remote image using enhanced references
- * _gfortran_caf_get_by_ref:: Getting data from a remote image using enhanced references
- * _gfortran_caf_sendget_by_ref:: Sending data between remote images using enhanced references
- * _gfortran_caf_lock:: Locking a lock variable
- * _gfortran_caf_unlock:: Unlocking a lock variable
- * _gfortran_caf_event_post:: Post an event
- * _gfortran_caf_event_wait:: Wait that an event occurred
- * _gfortran_caf_event_query:: Query event count
- * _gfortran_caf_sync_all:: All-image barrier
- * _gfortran_caf_sync_images:: Barrier for selected images
- * _gfortran_caf_sync_memory:: Wait for completion of segment-memory operations
- * _gfortran_caf_error_stop:: Error termination with exit code
- * _gfortran_caf_error_stop_str:: Error termination with string
- * _gfortran_caf_fail_image :: Mark the image failed and end its execution
- * _gfortran_caf_atomic_define:: Atomic variable assignment
- * _gfortran_caf_atomic_ref:: Atomic variable reference
- * _gfortran_caf_atomic_cas:: Atomic compare and swap
- * _gfortran_caf_atomic_op:: Atomic operation
- * _gfortran_caf_co_broadcast:: Sending data to all images
- * _gfortran_caf_co_max:: Collective maximum reduction
- * _gfortran_caf_co_min:: Collective minimum reduction
- * _gfortran_caf_co_sum:: Collective summing reduction
- * _gfortran_caf_co_reduce:: Generic collective reduction
- File: gfortran.info, Node: _gfortran_caf_init, Next: _gfortran_caf_finish, Up: Function ABI Documentation
- 8.2.1 '_gfortran_caf_init' -- Initialiation function
- ----------------------------------------------------
- _Description_:
- This function is called at startup of the program before the
- Fortran main program, if the latter has been compiled with
- '-fcoarray=lib'. It takes as arguments the command-line arguments
- of the program. It is permitted to pass two 'NULL' pointers as
- argument; if non-'NULL', the library is permitted to modify the
- arguments.
- _Syntax_:
- 'void _gfortran_caf_init (int *argc, char ***argv)'
- _Arguments_:
- ARGC intent(inout) An integer pointer with the number
- of arguments passed to the program or 'NULL'.
- ARGV intent(inout) A pointer to an array of strings
- with the command-line arguments or 'NULL'.
- _NOTES_
- The function is modelled after the initialization function of the
- Message Passing Interface (MPI) specification. Due to the way
- coarray registration works, it might not be the first call to the
- library. If the main program is not written in Fortran and only a
- library uses coarrays, it can happen that this function is never
- called. Therefore, it is recommended that the library does not
- rely on the passed arguments and whether the call has been done.
- File: gfortran.info, Node: _gfortran_caf_finish, Next: _gfortran_caf_this_image, Prev: _gfortran_caf_init, Up: Function ABI Documentation
- 8.2.2 '_gfortran_caf_finish' -- Finalization function
- -----------------------------------------------------
- _Description_:
- This function is called at the end of the Fortran main program, if
- it has been compiled with the '-fcoarray=lib' option.
- _Syntax_:
- 'void _gfortran_caf_finish (void)'
- _NOTES_
- For non-Fortran programs, it is recommended to call the function at
- the end of the main program. To ensure that the shutdown is also
- performed for programs where this function is not explicitly
- invoked, for instance non-Fortran programs or calls to the system's
- exit() function, the library can use a destructor function. Note
- that programs can also be terminated using the STOP and ERROR STOP
- statements; those use different library calls.
- File: gfortran.info, Node: _gfortran_caf_this_image, Next: _gfortran_caf_num_images, Prev: _gfortran_caf_finish, Up: Function ABI Documentation
- 8.2.3 '_gfortran_caf_this_image' -- Querying the image number
- -------------------------------------------------------------
- _Description_:
- This function returns the current image number, which is a positive
- number.
- _Syntax_:
- 'int _gfortran_caf_this_image (int distance)'
- _Arguments_:
- DISTANCE As specified for the 'this_image' intrinsic in
- TS18508. Shall be a non-negative number.
- _NOTES_
- If the Fortran intrinsic 'this_image' is invoked without an
- argument, which is the only permitted form in Fortran 2008, GCC
- passes '0' as first argument.
- File: gfortran.info, Node: _gfortran_caf_num_images, Next: _gfortran_caf_image_status, Prev: _gfortran_caf_this_image, Up: Function ABI Documentation
- 8.2.4 '_gfortran_caf_num_images' -- Querying the maximal number of images
- -------------------------------------------------------------------------
- _Description_:
- This function returns the number of images in the current team, if
- DISTANCE is 0 or the number of images in the parent team at the
- specified distance. If failed is -1, the function returns the
- number of all images at the specified distance; if it is 0, the
- function returns the number of nonfailed images, and if it is 1, it
- returns the number of failed images.
- _Syntax_:
- 'int _gfortran_caf_num_images(int distance, int failed)'
- _Arguments_:
- DISTANCE the distance from this image to the ancestor.
- Shall be positive.
- FAILED shall be -1, 0, or 1
- _NOTES_
- This function follows TS18508. If the num_image intrinsic has no
- arguments, then the compiler passes 'distance=0' and 'failed=-1' to
- the function.
- File: gfortran.info, Node: _gfortran_caf_image_status, Next: _gfortran_caf_failed_images, Prev: _gfortran_caf_num_images, Up: Function ABI Documentation
- 8.2.5 '_gfortran_caf_image_status' -- Query the status of an image
- ------------------------------------------------------------------
- _Description_:
- Get the status of the image given by the id IMAGE of the team given
- by TEAM. Valid results are zero, for image is ok,
- 'STAT_STOPPED_IMAGE' from the ISO_FORTRAN_ENV module to indicate
- that the image has been stopped and 'STAT_FAILED_IMAGE' also from
- ISO_FORTRAN_ENV to indicate that the image has executed a 'FAIL
- IMAGE' statement.
- _Syntax_:
- 'int _gfortran_caf_image_status (int image, caf_team_t * team)'
- _Arguments_:
- IMAGE the positive scalar id of the image in the
- current TEAM.
- TEAM optional; team on the which the inquiry is to be
- performed.
- _NOTES_
- This function follows TS18508. Because team-functionality is not
- yet implemented a null-pointer is passed for the TEAM argument at
- the moment.
- File: gfortran.info, Node: _gfortran_caf_failed_images, Next: _gfortran_caf_stopped_images, Prev: _gfortran_caf_image_status, Up: Function ABI Documentation
- 8.2.6 '_gfortran_caf_failed_images' -- Get an array of the indexes of the failed images
- ---------------------------------------------------------------------------------------
- _Description_:
- Get an array of image indexes in the current TEAM that have failed.
- The array is sorted ascendingly. When TEAM is not provided the
- current team is to be used. When KIND is provided then the
- resulting array is of that integer kind else it is of default
- integer kind. The returns an unallocated size zero array when no
- images have failed.
- _Syntax_:
- 'int _gfortran_caf_failed_images (caf_team_t * team, int * kind)'
- _Arguments_:
- TEAM optional; team on the which the inquiry is to be
- performed.
- IMAGE optional; the kind of the resulting integer
- array.
- _NOTES_
- This function follows TS18508. Because team-functionality is not
- yet implemented a null-pointer is passed for the TEAM argument at
- the moment.
- File: gfortran.info, Node: _gfortran_caf_stopped_images, Next: _gfortran_caf_register, Prev: _gfortran_caf_failed_images, Up: Function ABI Documentation
- 8.2.7 '_gfortran_caf_stopped_images' -- Get an array of the indexes of the stopped images
- -----------------------------------------------------------------------------------------
- _Description_:
- Get an array of image indexes in the current TEAM that have
- stopped. The array is sorted ascendingly. When TEAM is not
- provided the current team is to be used. When KIND is provided
- then the resulting array is of that integer kind else it is of
- default integer kind. The returns an unallocated size zero array
- when no images have failed.
- _Syntax_:
- 'int _gfortran_caf_stopped_images (caf_team_t * team, int * kind)'
- _Arguments_:
- TEAM optional; team on the which the inquiry is to be
- performed.
- IMAGE optional; the kind of the resulting integer
- array.
- _NOTES_
- This function follows TS18508. Because team-functionality is not
- yet implemented a null-pointer is passed for the TEAM argument at
- the moment.
- File: gfortran.info, Node: _gfortran_caf_register, Next: _gfortran_caf_deregister, Prev: _gfortran_caf_stopped_images, Up: Function ABI Documentation
- 8.2.8 '_gfortran_caf_register' -- Registering coarrays
- ------------------------------------------------------
- _Description_:
- Registers memory for a coarray and creates a token to identify the
- coarray. The routine is called for both coarrays with 'SAVE'
- attribute and using an explicit 'ALLOCATE' statement. If an error
- occurs and STAT is a 'NULL' pointer, the function shall abort with
- printing an error message and starting the error termination. If
- no error occurs and STAT is present, it shall be set to zero.
- Otherwise, it shall be set to a positive value and, if not-'NULL',
- ERRMSG shall be set to a string describing the failure. The
- routine shall register the memory provided in the 'DATA'-component
- of the array descriptor DESC, when that component is non-'NULL',
- else it shall allocate sufficient memory and provide a pointer to
- it in the 'DATA'-component of DESC. The array descriptor has rank
- zero, when a scalar object is to be registered and the array
- descriptor may be invalid after the call to
- '_gfortran_caf_register'. When an array is to be allocated the
- descriptor persists.
- For 'CAF_REGTYPE_COARRAY_STATIC' and 'CAF_REGTYPE_COARRAY_ALLOC',
- the passed size is the byte size requested. For
- 'CAF_REGTYPE_LOCK_STATIC', 'CAF_REGTYPE_LOCK_ALLOC' and
- 'CAF_REGTYPE_CRITICAL' it is the array size or one for a scalar.
- When 'CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY' is used, then only a
- token for an allocatable or pointer component is created. The
- 'SIZE' parameter is not used then. On the contrary when
- 'CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY' is specified, then the
- TOKEN needs to be registered by a previous call with regtype
- 'CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY' and either the memory
- specified in the DESC's data-ptr is registered or allocate when the
- data-ptr is NULL.
- _Syntax_:
- 'void caf_register (size_t size, caf_register_t type, caf_token_t
- *token, gfc_descriptor_t *desc, int *stat, char *errmsg, int
- errmsg_len)'
- _Arguments_:
- SIZE For normal coarrays, the byte size of the
- coarray to be allocated; for lock types and
- event types, the number of elements.
- TYPE one of the caf_register_t types.
- TOKEN intent(out) An opaque pointer identifying the
- coarray.
- DESC intent(inout) The (pseudo) array descriptor.
- STAT intent(out) For allocatable coarrays, stores the
- STAT=; may be NULL
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL
- ERRMSG_LEN the buffer size of errmsg.
- _NOTES_
- Nonalloatable coarrays have to be registered prior use from remote
- images. In order to guarantee this, they have to be registered
- before the main program. This can be achieved by creating
- constructor functions. That is what GCC does such that also
- nonallocatable coarrays the memory is allocated and no static
- memory is used. The token permits to identify the coarray; to the
- processor, the token is a nonaliasing pointer. The library can,
- for instance, store the base address of the coarray in the token,
- some handle or a more complicated struct. The library may also
- store the array descriptor DESC when its rank is non-zero.
- For lock types, the value shall only used for checking the
- allocation status. Note that for critical blocks, the locking is
- only required on one image; in the locking statement, the processor
- shall always pass an image index of one for critical-block lock
- variables ('CAF_REGTYPE_CRITICAL'). For lock types and
- critical-block variables, the initial value shall be unlocked (or,
- respecitively, not in critical section) such as the value false;
- for event types, the initial state should be no event, e.g. zero.
- File: gfortran.info, Node: _gfortran_caf_deregister, Next: _gfortran_caf_is_present, Prev: _gfortran_caf_register, Up: Function ABI Documentation
- 8.2.9 '_gfortran_caf_deregister' -- Deregistering coarrays
- ----------------------------------------------------------
- _Description_:
- Called to free or deregister the memory of a coarray; the processor
- calls this function for automatic and explicit deallocation. In
- case of an error, this function shall fail with an error message,
- unless the STAT variable is not null. The library is only expected
- to free memory it allocated itself during a call to
- '_gfortran_caf_register'.
- _Syntax_:
- 'void caf_deregister (caf_token_t *token, caf_deregister_t type,
- int *stat, char *errmsg, int errmsg_len)'
- _Arguments_:
- TOKEN the token to free.
- TYPE the type of action to take for the coarray. A
- 'CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY' is
- allowed only for allocatable or pointer
- components of derived type coarrays. The action
- only deallocates the local memory without
- deleting the token.
- STAT intent(out) Stores the STAT=; may be NULL
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL
- ERRMSG_LEN the buffer size of errmsg.
- _NOTES_
- For nonalloatable coarrays this function is never called. If a
- cleanup is required, it has to be handled via the finish, stop and
- error stop functions, and via destructors.
- File: gfortran.info, Node: _gfortran_caf_is_present, Next: _gfortran_caf_send, Prev: _gfortran_caf_deregister, Up: Function ABI Documentation
- 8.2.10 '_gfortran_caf_is_present' -- Query whether an allocatable or pointer component in a derived type coarray is allocated
- -----------------------------------------------------------------------------------------------------------------------------
- _Description_:
- Used to query the coarray library whether an allocatable component
- in a derived type coarray is allocated on a remote image.
- _Syntax_:
- 'void _gfortran_caf_is_present (caf_token_t token, int image_index,
- gfc_reference_t *ref)'
- _Arguments_:
- TOKEN An opaque pointer identifying the coarray.
- IMAGE_INDEX The ID of the remote image; must be a positive
- number.
- REF A chain of references to address the allocatable
- or pointer component in the derived type
- coarray. The object reference needs to be a
- scalar or a full array reference, respectively.
- File: gfortran.info, Node: _gfortran_caf_send, Next: _gfortran_caf_get, Prev: _gfortran_caf_is_present, Up: Function ABI Documentation
- 8.2.11 '_gfortran_caf_send' -- Sending data from a local image to a remote image
- --------------------------------------------------------------------------------
- _Description_:
- Called to send a scalar, an array section or a whole array from a
- local to a remote image identified by the image_index.
- _Syntax_:
- 'void _gfortran_caf_send (caf_token_t token, size_t offset, int
- image_index, gfc_descriptor_t *dest, caf_vector_t *dst_vector,
- gfc_descriptor_t *src, int dst_kind, int src_kind, bool
- may_require_tmp, int *stat)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- DEST intent(in) Array descriptor for the remote image
- for the bounds and the size. The 'base_addr'
- shall not be accessed.
- DST_VECTOR intent(in) If not NULL, it contains the vector
- subscript of the destination array; the values
- are relative to the dimension triplet of the
- dest argument.
- SRC intent(in) Array descriptor of the local array
- to be transferred to the remote image
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- STAT intent(out) when non-NULL give the result of the
- operation, i.e., zero on success and non-zero on
- error. When NULL and an error occurs, then an
- error message is printed and the program is
- terminated.
- _NOTES_
- It is permitted to have IMAGE_INDEX equal the current image; the
- memory of the send-to and the send-from might (partially) overlap
- in that case. The implementation has to take care that it handles
- this case, e.g. using 'memmove' which handles (partially)
- overlapping memory. If MAY_REQUIRE_TMP is true, the library might
- additionally create a temporary variable, unless additional checks
- show that this is not required (e.g. because walking backward is
- possible or because both arrays are contiguous and 'memmove' takes
- care of overlap issues).
- Note that the assignment of a scalar to an array is permitted. In
- addition, the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- File: gfortran.info, Node: _gfortran_caf_get, Next: _gfortran_caf_sendget, Prev: _gfortran_caf_send, Up: Function ABI Documentation
- 8.2.12 '_gfortran_caf_get' -- Getting data from a remote image
- --------------------------------------------------------------
- _Description_:
- Called to get an array section or a whole array from a remote,
- image identified by the image_index.
- _Syntax_:
- 'void _gfortran_caf_get (caf_token_t token, size_t offset, int
- image_index, gfc_descriptor_t *src, caf_vector_t *src_vector,
- gfc_descriptor_t *dest, int src_kind, int dst_kind, bool
- may_require_tmp, int *stat)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- DEST intent(out) Array descriptor of the local array
- to store the data retrieved from the remote
- image
- SRC intent(in) Array descriptor for the remote image
- for the bounds and the size. The 'base_addr'
- shall not be accessed.
- SRC_VECTOR intent(in) If not NULL, it contains the vector
- subscript of the source array; the values are
- relative to the dimension triplet of the SRC
- argument.
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- STAT intent(out) When non-NULL give the result of the
- operation, i.e., zero on success and non-zero on
- error. When NULL and an error occurs, then an
- error message is printed and the program is
- terminated.
- _NOTES_
- It is permitted to have IMAGE_INDEX equal the current image; the
- memory of the send-to and the send-from might (partially) overlap
- in that case. The implementation has to take care that it handles
- this case, e.g. using 'memmove' which handles (partially)
- overlapping memory. If MAY_REQUIRE_TMP is true, the library might
- additionally create a temporary variable, unless additional checks
- show that this is not required (e.g. because walking backward is
- possible or because both arrays are contiguous and 'memmove' takes
- care of overlap issues).
- Note that the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- File: gfortran.info, Node: _gfortran_caf_sendget, Next: _gfortran_caf_send_by_ref, Prev: _gfortran_caf_get, Up: Function ABI Documentation
- 8.2.13 '_gfortran_caf_sendget' -- Sending data between remote images
- --------------------------------------------------------------------
- _Description_:
- Called to send a scalar, an array section or a whole array from a
- remote image identified by the SRC_IMAGE_INDEX to a remote image
- identified by the DST_IMAGE_INDEX.
- _Syntax_:
- 'void _gfortran_caf_sendget (caf_token_t dst_token, size_t
- dst_offset, int dst_image_index, gfc_descriptor_t *dest,
- caf_vector_t *dst_vector, caf_token_t src_token, size_t src_offset,
- int src_image_index, gfc_descriptor_t *src, caf_vector_t
- *src_vector, int dst_kind, int src_kind, bool may_require_tmp, int
- *stat)'
- _Arguments_:
- DST_TOKEN intent(in) An opaque pointer identifying the
- destination coarray.
- DST_OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the destination coarray.
- DST_IMAGE_INDEXintent(in) The ID of the destination remote
- image; must be a positive number.
- DEST intent(in) Array descriptor for the destination
- remote image for the bounds and the size. The
- 'base_addr' shall not be accessed.
- DST_VECTOR intent(int) If not NULL, it contains the vector
- subscript of the destination array; the values
- are relative to the dimension triplet of the
- DEST argument.
- SRC_TOKEN intent(in) An opaque pointer identifying the
- source coarray.
- SRC_OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the source coarray.
- SRC_IMAGE_INDEXintent(in) The ID of the source remote image;
- must be a positive number.
- SRC intent(in) Array descriptor of the local array
- to be transferred to the remote image.
- SRC_VECTOR intent(in) Array descriptor of the local array
- to be transferred to the remote image
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- STAT intent(out) when non-NULL give the result of the
- operation, i.e., zero on success and non-zero on
- error. When NULL and an error occurs, then an
- error message is printed and the program is
- terminated.
- _NOTES_
- It is permitted to have the same image index for both
- SRC_IMAGE_INDEX and DST_IMAGE_INDEX; the memory of the send-to and
- the send-from might (partially) overlap in that case. The
- implementation has to take care that it handles this case, e.g.
- using 'memmove' which handles (partially) overlapping memory. If
- MAY_REQUIRE_TMP is true, the library might additionally create a
- temporary variable, unless additional checks show that this is not
- required (e.g. because walking backward is possible or because
- both arrays are contiguous and 'memmove' takes care of overlap
- issues).
- Note that the assignment of a scalar to an array is permitted. In
- addition, the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- File: gfortran.info, Node: _gfortran_caf_send_by_ref, Next: _gfortran_caf_get_by_ref, Prev: _gfortran_caf_sendget, Up: Function ABI Documentation
- 8.2.14 '_gfortran_caf_send_by_ref' -- Sending data from a local image to a remote image with enhanced referencing options
- -------------------------------------------------------------------------------------------------------------------------
- _Description_:
- Called to send a scalar, an array section or a whole array from a
- local to a remote image identified by the IMAGE_INDEX.
- _Syntax_:
- 'void _gfortran_caf_send_by_ref (caf_token_t token, int
- image_index, gfc_descriptor_t *src, caf_reference_t *refs, int
- dst_kind, int src_kind, bool may_require_tmp, bool
- dst_reallocatable, int *stat)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- SRC intent(in) Array descriptor of the local array
- to be transferred to the remote image
- REFS intent(in) The references on the remote array to
- store the data given by src. Guaranteed to have
- at least one entry.
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- DST_REALLOCATABLEintent(in) Set when the destination is of
- allocatable or pointer type and the refs will
- allow reallocation, i.e., the ref is a full
- array or component ref.
- STAT intent(out) When non-'NULL' give the result of
- the operation, i.e., zero on success and
- non-zero on error. When 'NULL' and an error
- occurs, then an error message is printed and the
- program is terminated.
- _NOTES_
- It is permitted to have IMAGE_INDEX equal the current image; the
- memory of the send-to and the send-from might (partially) overlap
- in that case. The implementation has to take care that it handles
- this case, e.g. using 'memmove' which handles (partially)
- overlapping memory. If MAY_REQUIRE_TMP is true, the library might
- additionally create a temporary variable, unless additional checks
- show that this is not required (e.g. because walking backward is
- possible or because both arrays are contiguous and 'memmove' takes
- care of overlap issues).
- Note that the assignment of a scalar to an array is permitted. In
- addition, the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- Because of the more complicated references possible some operations
- may be unsupported by certain libraries. The library is expected
- to issue a precise error message why the operation is not
- permitted.
- File: gfortran.info, Node: _gfortran_caf_get_by_ref, Next: _gfortran_caf_sendget_by_ref, Prev: _gfortran_caf_send_by_ref, Up: Function ABI Documentation
- 8.2.15 '_gfortran_caf_get_by_ref' -- Getting data from a remote image using enhanced references
- -----------------------------------------------------------------------------------------------
- _Description_:
- Called to get a scalar, an array section or a whole array from a
- remote image identified by the IMAGE_INDEX.
- _Syntax_:
- 'void _gfortran_caf_get_by_ref (caf_token_t token, int image_index,
- caf_reference_t *refs, gfc_descriptor_t *dst, int dst_kind, int
- src_kind, bool may_require_tmp, bool dst_reallocatable, int *stat)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- REFS intent(in) The references to apply to the remote
- structure to get the data.
- DST intent(in) Array descriptor of the local array
- to store the data transferred from the remote
- image. May be reallocated where needed and when
- DST_REALLOCATABLE allows it.
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- DST_REALLOCATABLEintent(in) Set when DST is of allocatable or
- pointer type and its refs allow reallocation,
- i.e., the full array or a component is
- referenced.
- STAT intent(out) When non-'NULL' give the result of
- the operation, i.e., zero on success and
- non-zero on error. When 'NULL' and an error
- occurs, then an error message is printed and the
- program is terminated.
- _NOTES_
- It is permitted to have 'image_index' equal the current image; the
- memory of the send-to and the send-from might (partially) overlap
- in that case. The implementation has to take care that it handles
- this case, e.g. using 'memmove' which handles (partially)
- overlapping memory. If MAY_REQUIRE_TMP is true, the library might
- additionally create a temporary variable, unless additional checks
- show that this is not required (e.g. because walking backward is
- possible or because both arrays are contiguous and 'memmove' takes
- care of overlap issues).
- Note that the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- Because of the more complicated references possible some operations
- may be unsupported by certain libraries. The library is expected
- to issue a precise error message why the operation is not
- permitted.
- File: gfortran.info, Node: _gfortran_caf_sendget_by_ref, Next: _gfortran_caf_lock, Prev: _gfortran_caf_get_by_ref, Up: Function ABI Documentation
- 8.2.16 '_gfortran_caf_sendget_by_ref' -- Sending data between remote images using enhanced references on both sides
- -------------------------------------------------------------------------------------------------------------------
- _Description_:
- Called to send a scalar, an array section or a whole array from a
- remote image identified by the SRC_IMAGE_INDEX to a remote image
- identified by the DST_IMAGE_INDEX.
- _Syntax_:
- 'void _gfortran_caf_sendget_by_ref (caf_token_t dst_token, int
- dst_image_index, caf_reference_t *dst_refs, caf_token_t src_token,
- int src_image_index, caf_reference_t *src_refs, int dst_kind, int
- src_kind, bool may_require_tmp, int *dst_stat, int *src_stat)'
- _Arguments_:
- DST_TOKEN intent(in) An opaque pointer identifying the
- destination coarray.
- DST_IMAGE_INDEXintent(in) The ID of the destination remote
- image; must be a positive number.
- DST_REFS intent(in) The references on the remote array to
- store the data given by the source. Guaranteed
- to have at least one entry.
- SRC_TOKEN intent(in) An opaque pointer identifying the
- source coarray.
- SRC_IMAGE_INDEXintent(in) The ID of the source remote image;
- must be a positive number.
- SRC_REFS intent(in) The references to apply to the remote
- structure to get the data.
- DST_KIND intent(in) Kind of the destination argument
- SRC_KIND intent(in) Kind of the source argument
- MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
- known at compile time that the DEST and SRC
- either cannot overlap or overlap (fully or
- partially) such that walking SRC and DEST in
- element wise element order (honoring the stride
- value) will not lead to wrong results.
- Otherwise, the value is 'true'.
- DST_STAT intent(out) when non-'NULL' give the result of
- the send-operation, i.e., zero on success and
- non-zero on error. When 'NULL' and an error
- occurs, then an error message is printed and the
- program is terminated.
- SRC_STAT intent(out) When non-'NULL' give the result of
- the get-operation, i.e., zero on success and
- non-zero on error. When 'NULL' and an error
- occurs, then an error message is printed and the
- program is terminated.
- _NOTES_
- It is permitted to have the same image index for both
- SRC_IMAGE_INDEX and DST_IMAGE_INDEX; the memory of the send-to and
- the send-from might (partially) overlap in that case. The
- implementation has to take care that it handles this case, e.g.
- using 'memmove' which handles (partially) overlapping memory. If
- MAY_REQUIRE_TMP is true, the library might additionally create a
- temporary variable, unless additional checks show that this is not
- required (e.g. because walking backward is possible or because
- both arrays are contiguous and 'memmove' takes care of overlap
- issues).
- Note that the assignment of a scalar to an array is permitted. In
- addition, the library has to handle numeric-type conversion and for
- strings, padding and different character kinds.
- Because of the more complicated references possible some operations
- may be unsupported by certain libraries. The library is expected
- to issue a precise error message why the operation is not
- permitted.
- File: gfortran.info, Node: _gfortran_caf_lock, Next: _gfortran_caf_unlock, Prev: _gfortran_caf_sendget_by_ref, Up: Function ABI Documentation
- 8.2.17 '_gfortran_caf_lock' -- Locking a lock variable
- ------------------------------------------------------
- _Description_:
- Acquire a lock on the given image on a scalar locking variable or
- for the given array element for an array-valued variable. If the
- AQUIRED_LOCK is 'NULL', the function returns after having obtained
- the lock. If it is non-'NULL', then ACQUIRED_LOCK is assigned the
- value true (one) when the lock could be obtained and false (zero)
- otherwise. Locking a lock variable which has already been locked
- by the same image is an error.
- _Syntax_:
- 'void _gfortran_caf_lock (caf_token_t token, size_t index, int
- image_index, int *aquired_lock, int *stat, char *errmsg, int
- errmsg_len)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- INDEX intent(in) Array index; first array index is 0.
- For scalars, it is always 0.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- AQUIRED_LOCKintent(out) If not NULL, it returns whether lock
- could be obtained.
- STAT intent(out) Stores the STAT=; may be NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- This function is also called for critical blocks; for those, the
- array index is always zero and the image index is one. Libraries
- are permitted to use other images for critical-block locking
- variables.
- File: gfortran.info, Node: _gfortran_caf_unlock, Next: _gfortran_caf_event_post, Prev: _gfortran_caf_lock, Up: Function ABI Documentation
- 8.2.18 '_gfortran_caf_lock' -- Unlocking a lock variable
- --------------------------------------------------------
- _Description_:
- Release a lock on the given image on a scalar locking variable or
- for the given array element for an array-valued variable.
- Unlocking a lock variable which is unlocked or has been locked by a
- different image is an error.
- _Syntax_:
- 'void _gfortran_caf_unlock (caf_token_t token, size_t index, int
- image_index, int *stat, char *errmsg, int errmsg_len)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- INDEX intent(in) Array index; first array index is 0.
- For scalars, it is always 0.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number.
- STAT intent(out) For allocatable coarrays, stores the
- STAT=; may be NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- This function is also called for critical block; for those, the
- array index is always zero and the image index is one. Libraries
- are permitted to use other images for critical-block locking
- variables.
- File: gfortran.info, Node: _gfortran_caf_event_post, Next: _gfortran_caf_event_wait, Prev: _gfortran_caf_unlock, Up: Function ABI Documentation
- 8.2.19 '_gfortran_caf_event_post' -- Post an event
- --------------------------------------------------
- _Description_:
- Increment the event count of the specified event variable.
- _Syntax_:
- 'void _gfortran_caf_event_post (caf_token_t token, size_t index,
- int image_index, int *stat, char *errmsg, int errmsg_len)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- INDEX intent(in) Array index; first array index is 0.
- For scalars, it is always 0.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image, when accessed noncoindexed.
- STAT intent(out) Stores the STAT=; may be NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- This acts like an atomic add of one to the remote image's event
- variable. The statement is an image-control statement but does not
- imply sync memory. Still, all preceeding push communications of
- this image to the specified remote image have to be completed
- before 'event_wait' on the remote image returns.
- File: gfortran.info, Node: _gfortran_caf_event_wait, Next: _gfortran_caf_event_query, Prev: _gfortran_caf_event_post, Up: Function ABI Documentation
- 8.2.20 '_gfortran_caf_event_wait' -- Wait that an event occurred
- ----------------------------------------------------------------
- _Description_:
- Wait until the event count has reached at least the specified
- UNTIL_COUNT; if so, atomically decrement the event variable by this
- amount and return.
- _Syntax_:
- 'void _gfortran_caf_event_wait (caf_token_t token, size_t index,
- int until_count, int *stat, char *errmsg, int errmsg_len)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- INDEX intent(in) Array index; first array index is 0.
- For scalars, it is always 0.
- UNTIL_COUNT intent(in) The number of events which have to be
- available before the function returns.
- STAT intent(out) Stores the STAT=; may be NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- This function only operates on a local coarray. It acts like a
- loop checking atomically the value of the event variable, breaking
- if the value is greater or equal the requested number of counts.
- Before the function returns, the event variable has to be
- decremented by the requested UNTIL_COUNT value. A possible
- implementation would be a busy loop for a certain number of spins
- (possibly depending on the number of threads relative to the number
- of available cores) followed by another waiting strategy such as a
- sleeping wait (possibly with an increasing number of sleep time)
- or, if possible, a futex wait.
- The statement is an image-control statement but does not imply sync
- memory. Still, all preceeding push communications of this image to
- the specified remote image have to be completed before 'event_wait'
- on the remote image returns.
- File: gfortran.info, Node: _gfortran_caf_event_query, Next: _gfortran_caf_sync_all, Prev: _gfortran_caf_event_wait, Up: Function ABI Documentation
- 8.2.21 '_gfortran_caf_event_query' -- Query event count
- -------------------------------------------------------
- _Description_:
- Return the event count of the specified event variable.
- _Syntax_:
- 'void _gfortran_caf_event_query (caf_token_t token, size_t index,
- int image_index, int *count, int *stat)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- INDEX intent(in) Array index; first array index is 0.
- For scalars, it is always 0.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image when accessed noncoindexed.
- COUNT intent(out) The number of events currently
- posted to the event variable.
- STAT intent(out) Stores the STAT=; may be NULL.
- _NOTES_
- The typical use is to check the local event variable to only call
- 'event_wait' when the data is available. However, a coindexed
- variable is permitted; there is no ordering or synchronization
- implied. It acts like an atomic fetch of the value of the event
- variable.
- File: gfortran.info, Node: _gfortran_caf_sync_all, Next: _gfortran_caf_sync_images, Prev: _gfortran_caf_event_query, Up: Function ABI Documentation
- 8.2.22 '_gfortran_caf_sync_all' -- All-image barrier
- ----------------------------------------------------
- _Description_:
- Synchronization of all images in the current team; the program only
- continues on a given image after this function has been called on
- all images of the current team. Additionally, it ensures that all
- pending data transfers of previous segment have completed.
- _Syntax_:
- 'void _gfortran_caf_sync_all (int *stat, char *errmsg, int
- errmsg_len)'
- _Arguments_:
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- File: gfortran.info, Node: _gfortran_caf_sync_images, Next: _gfortran_caf_sync_memory, Prev: _gfortran_caf_sync_all, Up: Function ABI Documentation
- 8.2.23 '_gfortran_caf_sync_images' -- Barrier for selected images
- -----------------------------------------------------------------
- _Description_:
- Synchronization between the specified images; the program only
- continues on a given image after this function has been called on
- all images specified for that image. Note that one image can wait
- for all other images in the current team (e.g. via 'sync
- images(*)') while those only wait for that specific image.
- Additionally, 'sync images' ensures that all pending data transfers
- of previous segments have completed.
- _Syntax_:
- 'void _gfortran_caf_sync_images (int count, int images[], int
- *stat, char *errmsg, int errmsg_len)'
- _Arguments_:
- COUNT intent(in) The number of images which are
- provided in the next argument. For a zero-sized
- array, the value is zero. For 'sync images
- (*)', the value is -1.
- IMAGES intent(in) An array with the images provided by
- the user. If COUNT is zero, a NULL pointer is
- passed.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- File: gfortran.info, Node: _gfortran_caf_sync_memory, Next: _gfortran_caf_error_stop, Prev: _gfortran_caf_sync_images, Up: Function ABI Documentation
- 8.2.24 '_gfortran_caf_sync_memory' -- Wait for completion of segment-memory operations
- --------------------------------------------------------------------------------------
- _Description_:
- Acts as optimization barrier between different segments. It also
- ensures that all pending memory operations of this image have been
- completed.
- _Syntax_:
- 'void _gfortran_caf_sync_memory (int *stat, char *errmsg, int
- errmsg_len)'
- _Arguments_:
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTE_ A simple implementation could be
- '__asm__ __volatile__ ("":::"memory")' to prevent code movements.
- File: gfortran.info, Node: _gfortran_caf_error_stop, Next: _gfortran_caf_error_stop_str, Prev: _gfortran_caf_sync_memory, Up: Function ABI Documentation
- 8.2.25 '_gfortran_caf_error_stop' -- Error termination with exit code
- ---------------------------------------------------------------------
- _Description_:
- Invoked for an 'ERROR STOP' statement which has an integer
- argument. The function should terminate the program with the
- specified exit code.
- _Syntax_:
- 'void _gfortran_caf_error_stop (int32_t error)'
- _Arguments_:
- ERROR intent(in) The exit status to be used.
- File: gfortran.info, Node: _gfortran_caf_error_stop_str, Next: _gfortran_caf_fail_image, Prev: _gfortran_caf_error_stop, Up: Function ABI Documentation
- 8.2.26 '_gfortran_caf_error_stop_str' -- Error termination with string
- ----------------------------------------------------------------------
- _Description_:
- Invoked for an 'ERROR STOP' statement which has a string as
- argument. The function should terminate the program with a
- nonzero-exit code.
- _Syntax_:
- 'void _gfortran_caf_error_stop (const char *string, int32_t len)'
- _Arguments_:
- STRING intent(in) the error message (not zero
- terminated)
- LEN intent(in) the length of the string
- File: gfortran.info, Node: _gfortran_caf_fail_image, Next: _gfortran_caf_atomic_define, Prev: _gfortran_caf_error_stop_str, Up: Function ABI Documentation
- 8.2.27 '_gfortran_caf_fail_image' -- Mark the image failed and end its execution
- --------------------------------------------------------------------------------
- _Description_:
- Invoked for an 'FAIL IMAGE' statement. The function should
- terminate the current image.
- _Syntax_:
- 'void _gfortran_caf_fail_image ()'
- _NOTES_
- This function follows TS18508.
- File: gfortran.info, Node: _gfortran_caf_atomic_define, Next: _gfortran_caf_atomic_ref, Prev: _gfortran_caf_fail_image, Up: Function ABI Documentation
- 8.2.28 '_gfortran_caf_atomic_define' -- Atomic variable assignment
- ------------------------------------------------------------------
- _Description_:
- Assign atomically a value to an integer or logical variable.
- _Syntax_:
- 'void _gfortran_caf_atomic_define (caf_token_t token, size_t
- offset, int image_index, void *value, int *stat, int type, int
- kind)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image when used noncoindexed.
- VALUE intent(in) the value to be assigned, passed by
- reference
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- TYPE intent(in) The data type, i.e. 'BT_INTEGER' (1)
- or 'BT_LOGICAL' (2).
- KIND intent(in) The kind value (only 4; always 'int')
- File: gfortran.info, Node: _gfortran_caf_atomic_ref, Next: _gfortran_caf_atomic_cas, Prev: _gfortran_caf_atomic_define, Up: Function ABI Documentation
- 8.2.29 '_gfortran_caf_atomic_ref' -- Atomic variable reference
- --------------------------------------------------------------
- _Description_:
- Reference atomically a value of a kind-4 integer or logical
- variable.
- _Syntax_:
- 'void _gfortran_caf_atomic_ref (caf_token_t token, size_t offset,
- int image_index, void *value, int *stat, int type, int kind)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image when used noncoindexed.
- VALUE intent(out) The variable assigned the atomically
- referenced variable.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- TYPE the data type, i.e. 'BT_INTEGER' (1) or
- 'BT_LOGICAL' (2).
- KIND The kind value (only 4; always 'int')
- File: gfortran.info, Node: _gfortran_caf_atomic_cas, Next: _gfortran_caf_atomic_op, Prev: _gfortran_caf_atomic_ref, Up: Function ABI Documentation
- 8.2.30 '_gfortran_caf_atomic_cas' -- Atomic compare and swap
- ------------------------------------------------------------
- _Description_:
- Atomic compare and swap of a kind-4 integer or logical variable.
- Assigns atomically the specified value to the atomic variable, if
- the latter has the value specified by the passed condition value.
- _Syntax_:
- 'void _gfortran_caf_atomic_cas (caf_token_t token, size_t offset,
- int image_index, void *old, void *compare, void *new_val, int
- *stat, int type, int kind)'
- _Arguments_:
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image when used noncoindexed.
- OLD intent(out) The value which the atomic variable
- had just before the cas operation.
- COMPARE intent(in) The value used for comparision.
- NEW_VAL intent(in) The new value for the atomic
- variable, assigned to the atomic variable, if
- 'compare' equals the value of the atomic
- variable.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- TYPE intent(in) the data type, i.e. 'BT_INTEGER' (1)
- or 'BT_LOGICAL' (2).
- KIND intent(in) The kind value (only 4; always 'int')
- File: gfortran.info, Node: _gfortran_caf_atomic_op, Next: _gfortran_caf_co_broadcast, Prev: _gfortran_caf_atomic_cas, Up: Function ABI Documentation
- 8.2.31 '_gfortran_caf_atomic_op' -- Atomic operation
- ----------------------------------------------------
- _Description_:
- Apply an operation atomically to an atomic integer or logical
- variable. After the operation, OLD contains the value just before
- the operation, which, respectively, adds (GFC_CAF_ATOMIC_ADD)
- atomically the 'value' to the atomic integer variable or does a
- bitwise AND, OR or exclusive OR between the atomic variable and
- VALUE; the result is then stored in the atomic variable.
- _Syntax_:
- 'void _gfortran_caf_atomic_op (int op, caf_token_t token, size_t
- offset, int image_index, void *value, void *old, int *stat, int
- type, int kind)'
- _Arguments_:
- OP intent(in) the operation to be performed;
- possible values 'GFC_CAF_ATOMIC_ADD' (1),
- 'GFC_CAF_ATOMIC_AND' (2), 'GFC_CAF_ATOMIC_OR'
- (3), 'GFC_CAF_ATOMIC_XOR' (4).
- TOKEN intent(in) An opaque pointer identifying the
- coarray.
- OFFSET intent(in) By which amount of bytes the actual
- data is shifted compared to the base address of
- the coarray.
- IMAGE_INDEX intent(in) The ID of the remote image; must be a
- positive number; zero indicates the current
- image when used noncoindexed.
- OLD intent(out) The value which the atomic variable
- had just before the atomic operation.
- VAL intent(in) The new value for the atomic
- variable, assigned to the atomic variable, if
- 'compare' equals the value of the atomic
- variable.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- TYPE intent(in) the data type, i.e. 'BT_INTEGER' (1)
- or 'BT_LOGICAL' (2)
- KIND intent(in) the kind value (only 4; always 'int')
- File: gfortran.info, Node: _gfortran_caf_co_broadcast, Next: _gfortran_caf_co_max, Prev: _gfortran_caf_atomic_op, Up: Function ABI Documentation
- 8.2.32 '_gfortran_caf_co_broadcast' -- Sending data to all images
- -----------------------------------------------------------------
- _Description_:
- Distribute a value from a given image to all other images in the
- team. Has to be called collectively.
- _Syntax_:
- 'void _gfortran_caf_co_broadcast (gfc_descriptor_t *a, int
- source_image, int *stat, char *errmsg, int errmsg_len)'
- _Arguments_:
- A intent(inout) An array descriptor with the data
- to be broadcasted (on SOURCE_IMAGE) or to be
- received (other images).
- SOURCE_IMAGEintent(in) The ID of the image from which the
- data should be broadcasted.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg.
- File: gfortran.info, Node: _gfortran_caf_co_max, Next: _gfortran_caf_co_min, Prev: _gfortran_caf_co_broadcast, Up: Function ABI Documentation
- 8.2.33 '_gfortran_caf_co_max' -- Collective maximum reduction
- -------------------------------------------------------------
- _Description_:
- Calculates for each array element of the variable A the maximum
- value for that element in the current team; if RESULT_IMAGE has the
- value 0, the result shall be stored on all images, otherwise, only
- on the specified image. This function operates on numeric values
- and character strings.
- _Syntax_:
- 'void _gfortran_caf_co_max (gfc_descriptor_t *a, int result_image,
- int *stat, char *errmsg, int a_len, int errmsg_len)'
- _Arguments_:
- A intent(inout) An array descriptor for the data
- to be processed. On the destination image(s)
- the result overwrites the old content.
- RESULT_IMAGEintent(in) The ID of the image to which the
- reduced value should be copied to; if zero, it
- has to be copied to all images.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- A_LEN intent(in) the string length of argument A
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- If RESULT_IMAGE is nonzero, the data in the array descriptor A on
- all images except of the specified one become undefined; hence, the
- library may make use of this.
- File: gfortran.info, Node: _gfortran_caf_co_min, Next: _gfortran_caf_co_sum, Prev: _gfortran_caf_co_max, Up: Function ABI Documentation
- 8.2.34 '_gfortran_caf_co_min' -- Collective minimum reduction
- -------------------------------------------------------------
- _Description_:
- Calculates for each array element of the variable A the minimum
- value for that element in the current team; if RESULT_IMAGE has the
- value 0, the result shall be stored on all images, otherwise, only
- on the specified image. This function operates on numeric values
- and character strings.
- _Syntax_:
- 'void _gfortran_caf_co_min (gfc_descriptor_t *a, int result_image,
- int *stat, char *errmsg, int a_len, int errmsg_len)'
- _Arguments_:
- A intent(inout) An array descriptor for the data
- to be processed. On the destination image(s)
- the result overwrites the old content.
- RESULT_IMAGEintent(in) The ID of the image to which the
- reduced value should be copied to; if zero, it
- has to be copied to all images.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- A_LEN intent(in) the string length of argument A
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- If RESULT_IMAGE is nonzero, the data in the array descriptor A on
- all images except of the specified one become undefined; hence, the
- library may make use of this.
- File: gfortran.info, Node: _gfortran_caf_co_sum, Next: _gfortran_caf_co_reduce, Prev: _gfortran_caf_co_min, Up: Function ABI Documentation
- 8.2.35 '_gfortran_caf_co_sum' -- Collective summing reduction
- -------------------------------------------------------------
- _Description_:
- Calculates for each array element of the variable A the sum of all
- values for that element in the current team; if RESULT_IMAGE has
- the value 0, the result shall be stored on all images, otherwise,
- only on the specified image. This function operates on numeric
- values only.
- _Syntax_:
- 'void _gfortran_caf_co_sum (gfc_descriptor_t *a, int result_image,
- int *stat, char *errmsg, int errmsg_len)'
- _Arguments_:
- A intent(inout) An array descriptor with the data
- to be processed. On the destination image(s)
- the result overwrites the old content.
- RESULT_IMAGEintent(in) The ID of the image to which the
- reduced value should be copied to; if zero, it
- has to be copied to all images.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- If RESULT_IMAGE is nonzero, the data in the array descriptor A on
- all images except of the specified one become undefined; hence, the
- library may make use of this.
- File: gfortran.info, Node: _gfortran_caf_co_reduce, Prev: _gfortran_caf_co_sum, Up: Function ABI Documentation
- 8.2.36 '_gfortran_caf_co_reduce' -- Generic collective reduction
- ----------------------------------------------------------------
- _Description_:
- Calculates for each array element of the variable A the reduction
- value for that element in the current team; if RESULT_IMAGE has the
- value 0, the result shall be stored on all images, otherwise, only
- on the specified image. The OPR is a pure function doing a
- mathematically commutative and associative operation.
- The OPR_FLAGS denote the following; the values are bitwise ored.
- 'GFC_CAF_BYREF' (1) if the result should be returned by reference;
- 'GFC_CAF_HIDDENLEN' (2) whether the result and argument string
- lengths shall be specified as hidden arguments; 'GFC_CAF_ARG_VALUE'
- (4) whether the arguments shall be passed by value,
- 'GFC_CAF_ARG_DESC' (8) whether the arguments shall be passed by
- descriptor.
- _Syntax_:
- 'void _gfortran_caf_co_reduce (gfc_descriptor_t *a, void * (*opr)
- (void *, void *), int opr_flags, int result_image, int *stat, char
- *errmsg, int a_len, int errmsg_len)'
- _Arguments_:
- A intent(inout) An array descriptor with the data
- to be processed. On the destination image(s)
- the result overwrites the old content.
- OPR intent(in) Function pointer to the reduction
- function
- OPR_FLAGS intent(in) Flags regarding the reduction
- function
- RESULT_IMAGEintent(in) The ID of the image to which the
- reduced value should be copied to; if zero, it
- has to be copied to all images.
- STAT intent(out) Stores the status STAT= and may be
- NULL.
- ERRMSG intent(out) When an error occurs, this will be
- set to an error message; may be NULL.
- A_LEN intent(in) the string length of argument A
- ERRMSG_LEN intent(in) the buffer size of errmsg
- _NOTES_
- If RESULT_IMAGE is nonzero, the data in the array descriptor A on
- all images except of the specified one become undefined; hence, the
- library may make use of this.
- For character arguments, the result is passed as first argument,
- followed by the result string length, next come the two string
- arguments, followed by the two hidden string length arguments.
- With C binding, there are no hidden arguments and by-reference
- passing and either only a single character is passed or an array
- descriptor.
- File: gfortran.info, Node: Intrinsic Procedures, Next: Intrinsic Modules, Prev: Coarray Programming, Up: Top
- 9 Intrinsic Procedures
- **********************
- * Menu:
- * Introduction: Introduction to Intrinsics
- * 'ABORT': ABORT, Abort the program
- * 'ABS': ABS, Absolute value
- * 'ACCESS': ACCESS, Checks file access modes
- * 'ACHAR': ACHAR, Character in ASCII collating sequence
- * 'ACOS': ACOS, Arccosine function
- * 'ACOSD': ACOSD, Arccosine function, degrees
- * 'ACOSH': ACOSH, Inverse hyperbolic cosine function
- * 'ADJUSTL': ADJUSTL, Left adjust a string
- * 'ADJUSTR': ADJUSTR, Right adjust a string
- * 'AIMAG': AIMAG, Imaginary part of complex number
- * 'AINT': AINT, Truncate to a whole number
- * 'ALARM': ALARM, Set an alarm clock
- * 'ALL': ALL, Determine if all values are true
- * 'ALLOCATED': ALLOCATED, Status of allocatable entity
- * 'AND': AND, Bitwise logical AND
- * 'ANINT': ANINT, Nearest whole number
- * 'ANY': ANY, Determine if any values are true
- * 'ASIN': ASIN, Arcsine function
- * 'ASIND': ASIND, Arcsine function, degrees
- * 'ASINH': ASINH, Inverse hyperbolic sine function
- * 'ASSOCIATED': ASSOCIATED, Status of a pointer or pointer/target pair
- * 'ATAN': ATAN, Arctangent function
- * 'ATAND': ATAND, Arctangent function, degrees
- * 'ATAN2': ATAN2, Arctangent function
- * 'ATAN2D': ATAN2D, Arctangent function, degrees
- * 'ATANH': ATANH, Inverse hyperbolic tangent function
- * 'ATOMIC_ADD': ATOMIC_ADD, Atomic ADD operation
- * 'ATOMIC_AND': ATOMIC_AND, Atomic bitwise AND operation
- * 'ATOMIC_CAS': ATOMIC_CAS, Atomic compare and swap
- * 'ATOMIC_DEFINE': ATOMIC_DEFINE, Setting a variable atomically
- * 'ATOMIC_FETCH_ADD': ATOMIC_FETCH_ADD, Atomic ADD operation with prior fetch
- * 'ATOMIC_FETCH_AND': ATOMIC_FETCH_AND, Atomic bitwise AND operation with prior fetch
- * 'ATOMIC_FETCH_OR': ATOMIC_FETCH_OR, Atomic bitwise OR operation with prior fetch
- * 'ATOMIC_FETCH_XOR': ATOMIC_FETCH_XOR, Atomic bitwise XOR operation with prior fetch
- * 'ATOMIC_OR': ATOMIC_OR, Atomic bitwise OR operation
- * 'ATOMIC_REF': ATOMIC_REF, Obtaining the value of a variable atomically
- * 'ATOMIC_XOR': ATOMIC_XOR, Atomic bitwise OR operation
- * 'BACKTRACE': BACKTRACE, Show a backtrace
- * 'BESSEL_J0': BESSEL_J0, Bessel function of the first kind of order 0
- * 'BESSEL_J1': BESSEL_J1, Bessel function of the first kind of order 1
- * 'BESSEL_JN': BESSEL_JN, Bessel function of the first kind
- * 'BESSEL_Y0': BESSEL_Y0, Bessel function of the second kind of order 0
- * 'BESSEL_Y1': BESSEL_Y1, Bessel function of the second kind of order 1
- * 'BESSEL_YN': BESSEL_YN, Bessel function of the second kind
- * 'BGE': BGE, Bitwise greater than or equal to
- * 'BGT': BGT, Bitwise greater than
- * 'BIT_SIZE': BIT_SIZE, Bit size inquiry function
- * 'BLE': BLE, Bitwise less than or equal to
- * 'BLT': BLT, Bitwise less than
- * 'BTEST': BTEST, Bit test function
- * 'C_ASSOCIATED': C_ASSOCIATED, Status of a C pointer
- * 'C_F_POINTER': C_F_POINTER, Convert C into Fortran pointer
- * 'C_F_PROCPOINTER': C_F_PROCPOINTER, Convert C into Fortran procedure pointer
- * 'C_FUNLOC': C_FUNLOC, Obtain the C address of a procedure
- * 'C_LOC': C_LOC, Obtain the C address of an object
- * 'C_SIZEOF': C_SIZEOF, Size in bytes of an expression
- * 'CEILING': CEILING, Integer ceiling function
- * 'CHAR': CHAR, Integer-to-character conversion function
- * 'CHDIR': CHDIR, Change working directory
- * 'CHMOD': CHMOD, Change access permissions of files
- * 'CMPLX': CMPLX, Complex conversion function
- * 'CO_BROADCAST': CO_BROADCAST, Copy a value to all images the current set of images
- * 'CO_MAX': CO_MAX, Maximal value on the current set of images
- * 'CO_MIN': CO_MIN, Minimal value on the current set of images
- * 'CO_REDUCE': CO_REDUCE, Reduction of values on the current set of images
- * 'CO_SUM': CO_SUM, Sum of values on the current set of images
- * 'COMMAND_ARGUMENT_COUNT': COMMAND_ARGUMENT_COUNT, Get number of command line arguments
- * 'COMPILER_OPTIONS': COMPILER_OPTIONS, Options passed to the compiler
- * 'COMPILER_VERSION': COMPILER_VERSION, Compiler version string
- * 'COMPLEX': COMPLEX, Complex conversion function
- * 'CONJG': CONJG, Complex conjugate function
- * 'COS': COS, Cosine function
- * 'COSD': COSD, Cosine function, degrees
- * 'COSH': COSH, Hyperbolic cosine function
- * 'COTAN': COTAN, Cotangent function
- * 'COTAND': COTAND, Cotangent function, degrees
- * 'COUNT': COUNT, Count occurrences of TRUE in an array
- * 'CPU_TIME': CPU_TIME, CPU time subroutine
- * 'CSHIFT': CSHIFT, Circular shift elements of an array
- * 'CTIME': CTIME, Subroutine (or function) to convert a time into a string
- * 'DATE_AND_TIME': DATE_AND_TIME, Date and time subroutine
- * 'DBLE': DBLE, Double precision conversion function
- * 'DCMPLX': DCMPLX, Double complex conversion function
- * 'DIGITS': DIGITS, Significant digits function
- * 'DIM': DIM, Positive difference
- * 'DOT_PRODUCT': DOT_PRODUCT, Dot product function
- * 'DPROD': DPROD, Double product function
- * 'DREAL': DREAL, Double real part function
- * 'DSHIFTL': DSHIFTL, Combined left shift
- * 'DSHIFTR': DSHIFTR, Combined right shift
- * 'DTIME': DTIME, Execution time subroutine (or function)
- * 'EOSHIFT': EOSHIFT, End-off shift elements of an array
- * 'EPSILON': EPSILON, Epsilon function
- * 'ERF': ERF, Error function
- * 'ERFC': ERFC, Complementary error function
- * 'ERFC_SCALED': ERFC_SCALED, Exponentially-scaled complementary error function
- * 'ETIME': ETIME, Execution time subroutine (or function)
- * 'EVENT_QUERY': EVENT_QUERY, Query whether a coarray event has occurred
- * 'EXECUTE_COMMAND_LINE': EXECUTE_COMMAND_LINE, Execute a shell command
- * 'EXIT': EXIT, Exit the program with status.
- * 'EXP': EXP, Exponential function
- * 'EXPONENT': EXPONENT, Exponent function
- * 'EXTENDS_TYPE_OF': EXTENDS_TYPE_OF, Query dynamic type for extension
- * 'FDATE': FDATE, Subroutine (or function) to get the current time as a string
- * 'FGET': FGET, Read a single character in stream mode from stdin
- * 'FGETC': FGETC, Read a single character in stream mode
- * 'FLOOR': FLOOR, Integer floor function
- * 'FLUSH': FLUSH, Flush I/O unit(s)
- * 'FNUM': FNUM, File number function
- * 'FPUT': FPUT, Write a single character in stream mode to stdout
- * 'FPUTC': FPUTC, Write a single character in stream mode
- * 'FRACTION': FRACTION, Fractional part of the model representation
- * 'FREE': FREE, Memory de-allocation subroutine
- * 'FSEEK': FSEEK, Low level file positioning subroutine
- * 'FSTAT': FSTAT, Get file status
- * 'FTELL': FTELL, Current stream position
- * 'GAMMA': GAMMA, Gamma function
- * 'GERROR': GERROR, Get last system error message
- * 'GETARG': GETARG, Get command line arguments
- * 'GET_COMMAND': GET_COMMAND, Get the entire command line
- * 'GET_COMMAND_ARGUMENT': GET_COMMAND_ARGUMENT, Get command line arguments
- * 'GETCWD': GETCWD, Get current working directory
- * 'GETENV': GETENV, Get an environmental variable
- * 'GET_ENVIRONMENT_VARIABLE': GET_ENVIRONMENT_VARIABLE, Get an environmental variable
- * 'GETGID': GETGID, Group ID function
- * 'GETLOG': GETLOG, Get login name
- * 'GETPID': GETPID, Process ID function
- * 'GETUID': GETUID, User ID function
- * 'GMTIME': GMTIME, Convert time to GMT info
- * 'HOSTNM': HOSTNM, Get system host name
- * 'HUGE': HUGE, Largest number of a kind
- * 'HYPOT': HYPOT, Euclidean distance function
- * 'IACHAR': IACHAR, Code in ASCII collating sequence
- * 'IALL': IALL, Bitwise AND of array elements
- * 'IAND': IAND, Bitwise logical and
- * 'IANY': IANY, Bitwise OR of array elements
- * 'IARGC': IARGC, Get the number of command line arguments
- * 'IBCLR': IBCLR, Clear bit
- * 'IBITS': IBITS, Bit extraction
- * 'IBSET': IBSET, Set bit
- * 'ICHAR': ICHAR, Character-to-integer conversion function
- * 'IDATE': IDATE, Current local time (day/month/year)
- * 'IEOR': IEOR, Bitwise logical exclusive or
- * 'IERRNO': IERRNO, Function to get the last system error number
- * 'IMAGE_INDEX': IMAGE_INDEX, Cosubscript to image index conversion
- * 'INDEX': INDEX intrinsic, Position of a substring within a string
- * 'INT': INT, Convert to integer type
- * 'INT2': INT2, Convert to 16-bit integer type
- * 'INT8': INT8, Convert to 64-bit integer type
- * 'IOR': IOR, Bitwise logical or
- * 'IPARITY': IPARITY, Bitwise XOR of array elements
- * 'IRAND': IRAND, Integer pseudo-random number
- * 'IS_IOSTAT_END': IS_IOSTAT_END, Test for end-of-file value
- * 'IS_IOSTAT_EOR': IS_IOSTAT_EOR, Test for end-of-record value
- * 'ISATTY': ISATTY, Whether a unit is a terminal device
- * 'ISHFT': ISHFT, Shift bits
- * 'ISHFTC': ISHFTC, Shift bits circularly
- * 'ISNAN': ISNAN, Tests for a NaN
- * 'ITIME': ITIME, Current local time (hour/minutes/seconds)
- * 'KILL': KILL, Send a signal to a process
- * 'KIND': KIND, Kind of an entity
- * 'LBOUND': LBOUND, Lower dimension bounds of an array
- * 'LCOBOUND': LCOBOUND, Lower codimension bounds of an array
- * 'LEADZ': LEADZ, Number of leading zero bits of an integer
- * 'LEN': LEN, Length of a character entity
- * 'LEN_TRIM': LEN_TRIM, Length of a character entity without trailing blank characters
- * 'LGE': LGE, Lexical greater than or equal
- * 'LGT': LGT, Lexical greater than
- * 'LINK': LINK, Create a hard link
- * 'LLE': LLE, Lexical less than or equal
- * 'LLT': LLT, Lexical less than
- * 'LNBLNK': LNBLNK, Index of the last non-blank character in a string
- * 'LOC': LOC, Returns the address of a variable
- * 'LOG': LOG, Logarithm function
- * 'LOG10': LOG10, Base 10 logarithm function
- * 'LOG_GAMMA': LOG_GAMMA, Logarithm of the Gamma function
- * 'LOGICAL': LOGICAL, Convert to logical type
- * 'LONG': LONG, Convert to integer type
- * 'LSHIFT': LSHIFT, Left shift bits
- * 'LSTAT': LSTAT, Get file status
- * 'LTIME': LTIME, Convert time to local time info
- * 'MALLOC': MALLOC, Dynamic memory allocation function
- * 'MASKL': MASKL, Left justified mask
- * 'MASKR': MASKR, Right justified mask
- * 'MATMUL': MATMUL, matrix multiplication
- * 'MAX': MAX, Maximum value of an argument list
- * 'MAXEXPONENT': MAXEXPONENT, Maximum exponent of a real kind
- * 'MAXLOC': MAXLOC, Location of the maximum value within an array
- * 'MAXVAL': MAXVAL, Maximum value of an array
- * 'MCLOCK': MCLOCK, Time function
- * 'MCLOCK8': MCLOCK8, Time function (64-bit)
- * 'MERGE': MERGE, Merge arrays
- * 'MERGE_BITS': MERGE_BITS, Merge of bits under mask
- * 'MIN': MIN, Minimum value of an argument list
- * 'MINEXPONENT': MINEXPONENT, Minimum exponent of a real kind
- * 'MINLOC': MINLOC, Location of the minimum value within an array
- * 'MINVAL': MINVAL, Minimum value of an array
- * 'MOD': MOD, Remainder function
- * 'MODULO': MODULO, Modulo function
- * 'MOVE_ALLOC': MOVE_ALLOC, Move allocation from one object to another
- * 'MVBITS': MVBITS, Move bits from one integer to another
- * 'NEAREST': NEAREST, Nearest representable number
- * 'NEW_LINE': NEW_LINE, New line character
- * 'NINT': NINT, Nearest whole number
- * 'NORM2': NORM2, Euclidean vector norm
- * 'NOT': NOT, Logical negation
- * 'NULL': NULL, Function that returns an disassociated pointer
- * 'NUM_IMAGES': NUM_IMAGES, Number of images
- * 'OR': OR, Bitwise logical OR
- * 'PACK': PACK, Pack an array into an array of rank one
- * 'PARITY': PARITY, Reduction with exclusive OR
- * 'PERROR': PERROR, Print system error message
- * 'POPCNT': POPCNT, Number of bits set
- * 'POPPAR': POPPAR, Parity of the number of bits set
- * 'PRECISION': PRECISION, Decimal precision of a real kind
- * 'PRESENT': PRESENT, Determine whether an optional dummy argument is specified
- * 'PRODUCT': PRODUCT, Product of array elements
- * 'RADIX': RADIX, Base of a data model
- * 'RAN': RAN, Real pseudo-random number
- * 'RAND': RAND, Real pseudo-random number
- * 'RANDOM_NUMBER': RANDOM_NUMBER, Pseudo-random number
- * 'RANDOM_SEED': RANDOM_SEED, Initialize a pseudo-random number sequence
- * 'RANGE': RANGE, Decimal exponent range
- * 'RANK' : RANK, Rank of a data object
- * 'REAL': REAL, Convert to real type
- * 'RENAME': RENAME, Rename a file
- * 'REPEAT': REPEAT, Repeated string concatenation
- * 'RESHAPE': RESHAPE, Function to reshape an array
- * 'RRSPACING': RRSPACING, Reciprocal of the relative spacing
- * 'RSHIFT': RSHIFT, Right shift bits
- * 'SAME_TYPE_AS': SAME_TYPE_AS, Query dynamic types for equality
- * 'SCALE': SCALE, Scale a real value
- * 'SCAN': SCAN, Scan a string for the presence of a set of characters
- * 'SECNDS': SECNDS, Time function
- * 'SECOND': SECOND, CPU time function
- * 'SELECTED_CHAR_KIND': SELECTED_CHAR_KIND, Choose character kind
- * 'SELECTED_INT_KIND': SELECTED_INT_KIND, Choose integer kind
- * 'SELECTED_REAL_KIND': SELECTED_REAL_KIND, Choose real kind
- * 'SET_EXPONENT': SET_EXPONENT, Set the exponent of the model
- * 'SHAPE': SHAPE, Determine the shape of an array
- * 'SHIFTA': SHIFTA, Right shift with fill
- * 'SHIFTL': SHIFTL, Left shift
- * 'SHIFTR': SHIFTR, Right shift
- * 'SIGN': SIGN, Sign copying function
- * 'SIGNAL': SIGNAL, Signal handling subroutine (or function)
- * 'SIN': SIN, Sine function
- * 'SIND': SIND, Sine function, degrees
- * 'SINH': SINH, Hyperbolic sine function
- * 'SIZE': SIZE, Function to determine the size of an array
- * 'SIZEOF': SIZEOF, Determine the size in bytes of an expression
- * 'SLEEP': SLEEP, Sleep for the specified number of seconds
- * 'SPACING': SPACING, Smallest distance between two numbers of a given type
- * 'SPREAD': SPREAD, Add a dimension to an array
- * 'SQRT': SQRT, Square-root function
- * 'SRAND': SRAND, Reinitialize the random number generator
- * 'STAT': STAT, Get file status
- * 'STORAGE_SIZE': STORAGE_SIZE, Storage size in bits
- * 'SUM': SUM, Sum of array elements
- * 'SYMLNK': SYMLNK, Create a symbolic link
- * 'SYSTEM': SYSTEM, Execute a shell command
- * 'SYSTEM_CLOCK': SYSTEM_CLOCK, Time function
- * 'TAN': TAN, Tangent function
- * 'TAND': TAND, Tangent function, degrees
- * 'TANH': TANH, Hyperbolic tangent function
- * 'THIS_IMAGE': THIS_IMAGE, Cosubscript index of this image
- * 'TIME': TIME, Time function
- * 'TIME8': TIME8, Time function (64-bit)
- * 'TINY': TINY, Smallest positive number of a real kind
- * 'TRAILZ': TRAILZ, Number of trailing zero bits of an integer
- * 'TRANSFER': TRANSFER, Transfer bit patterns
- * 'TRANSPOSE': TRANSPOSE, Transpose an array of rank two
- * 'TRIM': TRIM, Remove trailing blank characters of a string
- * 'TTYNAM': TTYNAM, Get the name of a terminal device.
- * 'UBOUND': UBOUND, Upper dimension bounds of an array
- * 'UCOBOUND': UCOBOUND, Upper codimension bounds of an array
- * 'UMASK': UMASK, Set the file creation mask
- * 'UNLINK': UNLINK, Remove a file from the file system
- * 'UNPACK': UNPACK, Unpack an array of rank one into an array
- * 'VERIFY': VERIFY, Scan a string for the absence of a set of characters
- * 'XOR': XOR, Bitwise logical exclusive or
- File: gfortran.info, Node: Introduction to Intrinsics, Next: ABORT, Up: Intrinsic Procedures
- 9.1 Introduction to intrinsic procedures
- ========================================
- The intrinsic procedures provided by GNU Fortran include all of the
- intrinsic procedures required by the Fortran 95 standard, a set of
- intrinsic procedures for backwards compatibility with G77, and a
- selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
- standards. Any conflict between a description here and a description in
- either the Fortran 95 standard, the Fortran 2003 standard or the Fortran
- 2008 standard is unintentional, and the standard(s) should be considered
- authoritative.
- The enumeration of the 'KIND' type parameter is processor defined in
- the Fortran 95 standard. GNU Fortran defines the default integer type
- and default real type by 'INTEGER(KIND=4)' and 'REAL(KIND=4)',
- respectively. The standard mandates that both data types shall have
- another kind, which have more precision. On typical target
- architectures supported by 'gfortran', this kind type parameter is
- 'KIND=8'. Hence, 'REAL(KIND=8)' and 'DOUBLE PRECISION' are equivalent.
- In the description of generic intrinsic procedures, the kind type
- parameter will be specified by 'KIND=*', and in the description of
- specific names for an intrinsic procedure the kind type parameter will
- be explicitly given (e.g., 'REAL(KIND=4)' or 'REAL(KIND=8)'). Finally,
- for brevity the optional 'KIND=' syntax will be omitted.
- Many of the intrinsic procedures take one or more optional arguments.
- This document follows the convention used in the Fortran 95 standard,
- and denotes such arguments by square brackets.
- GNU Fortran offers the '-std=f95' and '-std=gnu' options, which can
- be used to restrict the set of intrinsic procedures to a given standard.
- By default, 'gfortran' sets the '-std=gnu' option, and so all intrinsic
- procedures described here are accepted. There is one caveat. For a
- select group of intrinsic procedures, 'g77' implemented both a function
- and a subroutine. Both classes have been implemented in 'gfortran' for
- backwards compatibility with 'g77'. It is noted here that these
- functions and subroutines cannot be intermixed in a given subprogram.
- In the descriptions that follow, the applicable standard for each
- intrinsic procedure is noted.
- File: gfortran.info, Node: ABORT, Next: ABS, Prev: Introduction to Intrinsics, Up: Intrinsic Procedures
- 9.2 'ABORT' -- Abort the program
- ================================
- _Description_:
- 'ABORT' causes immediate termination of the program. On operating
- systems that support a core dump, 'ABORT' will produce a core dump.
- It will also print a backtrace, unless '-fno-backtrace' is given.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL ABORT'
- _Return value_:
- Does not return.
- _Example_:
- program test_abort
- integer :: i = 1, j = 2
- if (i /= j) call abort
- end program test_abort
- _See also_:
- *note EXIT::, *note KILL::, *note BACKTRACE::
- File: gfortran.info, Node: ABS, Next: ACCESS, Prev: ABORT, Up: Intrinsic Procedures
- 9.3 'ABS' -- Absolute value
- ===========================
- _Description_:
- 'ABS(A)' computes the absolute value of 'A'.
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ABS(A)'
- _Arguments_:
- A The type of the argument shall be an 'INTEGER',
- 'REAL', or 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as the argument
- except the return value is 'REAL' for a 'COMPLEX' argument.
- _Example_:
- program test_abs
- integer :: i = -1
- real :: x = -1.e0
- complex :: z = (-1.e0,0.e0)
- i = abs(i)
- x = abs(x)
- x = abs(z)
- end program test_abs
- _Specific names_:
- Name Argument Return type Standard
- 'ABS(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and
- later
- 'CABS(A)' 'COMPLEX(4) 'REAL(4)' Fortran 77 and
- A' later
- 'DABS(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and
- later
- 'IABS(A)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- A' later
- 'BABS(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIABS(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIABS(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIABS(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- 'ZABS(A)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- A'
- 'CDABS(A)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- A'
- File: gfortran.info, Node: ACCESS, Next: ACHAR, Prev: ABS, Up: Intrinsic Procedures
- 9.4 'ACCESS' -- Checks file access modes
- ========================================
- _Description_:
- 'ACCESS(NAME, MODE)' checks whether the file NAME exists, is
- readable, writable or executable. Except for the executable check,
- 'ACCESS' can be replaced by Fortran 95's 'INQUIRE'.
- _Standard_:
- GNU extension
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = ACCESS(NAME, MODE)'
- _Arguments_:
- NAME Scalar 'CHARACTER' of default kind with the file
- name. Tailing blank are ignored unless the
- character 'achar(0)' is present, then all
- characters up to and excluding 'achar(0)' are
- used as file name.
- MODE Scalar 'CHARACTER' of default kind with the file
- access mode, may be any concatenation of '"r"'
- (readable), '"w"' (writable) and '"x"'
- (executable), or '" "' to check for existence.
- _Return value_:
- Returns a scalar 'INTEGER', which is '0' if the file is accessible
- in the given mode; otherwise or if an invalid argument has been
- given for 'MODE' the value '1' is returned.
- _Example_:
- program access_test
- implicit none
- character(len=*), parameter :: file = 'test.dat'
- character(len=*), parameter :: file2 = 'test.dat '//achar(0)
- if(access(file,' ') == 0) print *, trim(file),' is exists'
- if(access(file,'r') == 0) print *, trim(file),' is readable'
- if(access(file,'w') == 0) print *, trim(file),' is writable'
- if(access(file,'x') == 0) print *, trim(file),' is executable'
- if(access(file2,'rwx') == 0) &
- print *, trim(file2),' is readable, writable and executable'
- end program access_test
- _Specific names_:
- _See also_:
- File: gfortran.info, Node: ACHAR, Next: ACOS, Prev: ACCESS, Up: Intrinsic Procedures
- 9.5 'ACHAR' -- Character in ASCII collating sequence
- ====================================================
- _Description_:
- 'ACHAR(I)' returns the character located at position 'I' in the
- ASCII collating sequence.
- _Standard_:
- Fortran 77 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ACHAR(I [, KIND])'
- _Arguments_:
- I The type shall be 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'CHARACTER' with a length of one. If
- the KIND argument is present, the return value is of the specified
- kind and of the default kind otherwise.
- _Example_:
- program test_achar
- character c
- c = achar(32)
- end program test_achar
- _Note_:
- See *note ICHAR:: for a discussion of converting between numerical
- values and formatted string representations.
- _See also_:
- *note CHAR::, *note IACHAR::, *note ICHAR::
- File: gfortran.info, Node: ACOS, Next: ACOSD, Prev: ACHAR, Up: Intrinsic Procedures
- 9.6 'ACOS' -- Arccosine function
- ================================
- _Description_:
- 'ACOS(X)' computes the arccosine of X (inverse of 'COS(X)').
- _Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ACOS(X)'
- _Arguments_:
- X The type shall either be 'REAL' with a magnitude
- that is less than or equal to one - or the type
- shall be 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in radians and lies in the range 0 \leq \Re
- \acos(x) \leq \pi.
- _Example_:
- program test_acos
- real(8) :: x = 0.866_8
- x = acos(x)
- end program test_acos
- _Specific names_:
- Name Argument Return type Standard
- 'ACOS(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DACOS(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- Inverse function: *note COS:: Degrees function: *note ACOSD::
- File: gfortran.info, Node: ACOSD, Next: ACOSH, Prev: ACOS, Up: Intrinsic Procedures
- 9.7 'ACOSD' -- Arccosine function, degrees
- ==========================================
- _Description_:
- 'ACOSD(X)' computes the arccosine of X in degrees (inverse of
- 'COSD(X)').
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU Extension, enabled with '-fdec-math'
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ACOSD(X)'
- _Arguments_:
- X The type shall either be 'REAL' with a magnitude
- that is less than or equal to one - or the type
- shall be 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in degrees and lies in the range 0 \leq \Re
- \acos(x) \leq 180.
- _Example_:
- program test_acosd
- real(8) :: x = 0.866_8
- x = acosd(x)
- end program test_acosd
- _Specific names_:
- Name Argument Return type Standard
- 'ACOSD(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DACOSD(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
- _See also_:
- Inverse function: *note COSD:: Radians function: *note ACOS::
- File: gfortran.info, Node: ACOSH, Next: ADJUSTL, Prev: ACOSD, Up: Intrinsic Procedures
- 9.8 'ACOSH' -- Inverse hyperbolic cosine function
- =================================================
- _Description_:
- 'ACOSH(X)' computes the inverse hyperbolic cosine of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ACOSH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has the same type and kind as X. If X is complex,
- the imaginary part of the result is in radians and lies between 0
- \leq \Im \acosh(x) \leq \pi.
- _Example_:
- PROGRAM test_acosh
- REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
- WRITE (*,*) ACOSH(x)
- END PROGRAM
- _Specific names_:
- Name Argument Return type Standard
- 'DACOSH(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Inverse function: *note COSH::
- File: gfortran.info, Node: ADJUSTL, Next: ADJUSTR, Prev: ACOSH, Up: Intrinsic Procedures
- 9.9 'ADJUSTL' -- Left adjust a string
- =====================================
- _Description_:
- 'ADJUSTL(STRING)' will left adjust a string by removing leading
- spaces. Spaces are inserted at the end of the string as needed.
- _Standard_:
- Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ADJUSTL(STRING)'
- _Arguments_:
- STRING The type shall be 'CHARACTER'.
- _Return value_:
- The return value is of type 'CHARACTER' and of the same kind as
- STRING where leading spaces are removed and the same number of
- spaces are inserted on the end of STRING.
- _Example_:
- program test_adjustl
- character(len=20) :: str = ' gfortran'
- str = adjustl(str)
- print *, str
- end program test_adjustl
- _See also_:
- *note ADJUSTR::, *note TRIM::
- File: gfortran.info, Node: ADJUSTR, Next: AIMAG, Prev: ADJUSTL, Up: Intrinsic Procedures
- 9.10 'ADJUSTR' -- Right adjust a string
- =======================================
- _Description_:
- 'ADJUSTR(STRING)' will right adjust a string by removing trailing
- spaces. Spaces are inserted at the start of the string as needed.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ADJUSTR(STRING)'
- _Arguments_:
- STR The type shall be 'CHARACTER'.
- _Return value_:
- The return value is of type 'CHARACTER' and of the same kind as
- STRING where trailing spaces are removed and the same number of
- spaces are inserted at the start of STRING.
- _Example_:
- program test_adjustr
- character(len=20) :: str = 'gfortran'
- str = adjustr(str)
- print *, str
- end program test_adjustr
- _See also_:
- *note ADJUSTL::, *note TRIM::
- File: gfortran.info, Node: AIMAG, Next: AINT, Prev: ADJUSTR, Up: Intrinsic Procedures
- 9.11 'AIMAG' -- Imaginary part of complex number
- ================================================
- _Description_:
- 'AIMAG(Z)' yields the imaginary part of complex argument 'Z'. The
- 'IMAG(Z)' and 'IMAGPART(Z)' intrinsic functions are provided for
- compatibility with 'g77', and their use in new code is strongly
- discouraged.
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = AIMAG(Z)'
- _Arguments_:
- Z The type of the argument shall be 'COMPLEX'.
- _Return value_:
- The return value is of type 'REAL' with the kind type parameter of
- the argument.
- _Example_:
- program test_aimag
- complex(4) z4
- complex(8) z8
- z4 = cmplx(1.e0_4, 0.e0_4)
- z8 = cmplx(0.e0_8, 1.e0_8)
- print *, aimag(z4), dimag(z8)
- end program test_aimag
- _Specific names_:
- Name Argument Return type Standard
- 'AIMAG(Z)' 'COMPLEX Z' 'REAL' GNU extension
- 'DIMAG(Z)' 'COMPLEX(8) 'REAL(8)' GNU extension
- Z'
- 'IMAG(Z)' 'COMPLEX Z' 'REAL' GNU extension
- 'IMAGPART(Z)' 'COMPLEX Z' 'REAL' GNU extension
- File: gfortran.info, Node: AINT, Next: ALARM, Prev: AIMAG, Up: Intrinsic Procedures
- 9.12 'AINT' -- Truncate to a whole number
- =========================================
- _Description_:
- 'AINT(A [, KIND])' truncates its argument to a whole number.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = AINT(A [, KIND])'
- _Arguments_:
- A The type of the argument shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'REAL' with the kind type parameter of
- the argument if the optional KIND is absent; otherwise, the kind
- type parameter will be given by KIND. If the magnitude of X is
- less than one, 'AINT(X)' returns zero. If the magnitude is equal
- to or greater than one then it returns the largest whole number
- that does not exceed its magnitude. The sign is the same as the
- sign of X.
- _Example_:
- program test_aint
- real(4) x4
- real(8) x8
- x4 = 1.234E0_4
- x8 = 4.321_8
- print *, aint(x4), dint(x8)
- x8 = aint(x4,8)
- end program test_aint
- _Specific names_:
- Name Argument Return type Standard
- 'AINT(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and
- later
- 'DINT(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and
- later
- File: gfortran.info, Node: ALARM, Next: ALL, Prev: AINT, Up: Intrinsic Procedures
- 9.13 'ALARM' -- Execute a routine after a given delay
- =====================================================
- _Description_:
- 'ALARM(SECONDS, HANDLER [, STATUS])' causes external subroutine
- HANDLER to be executed after a delay of SECONDS by using 'alarm(2)'
- to set up a signal and 'signal(2)' to catch it. If STATUS is
- supplied, it will be returned with the number of seconds remaining
- until any previously scheduled alarm was due to be delivered, or
- zero if there was no previously scheduled alarm.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL ALARM(SECONDS, HANDLER [, STATUS])'
- _Arguments_:
- SECONDS The type of the argument shall be a scalar
- 'INTEGER'. It is 'INTENT(IN)'.
- HANDLER Signal handler ('INTEGER FUNCTION' or
- 'SUBROUTINE') or dummy/global 'INTEGER' scalar.
- The scalar values may be either 'SIG_IGN=1' to
- ignore the alarm generated or 'SIG_DFL=0' to set
- the default action. It is 'INTENT(IN)'.
- STATUS (Optional) STATUS shall be a scalar variable of
- the default 'INTEGER' kind. It is
- 'INTENT(OUT)'.
- _Example_:
- program test_alarm
- external handler_print
- integer i
- call alarm (3, handler_print, i)
- print *, i
- call sleep(10)
- end program test_alarm
- This will cause the external routine HANDLER_PRINT to be called
- after 3 seconds.
- File: gfortran.info, Node: ALL, Next: ALLOCATED, Prev: ALARM, Up: Intrinsic Procedures
- 9.14 'ALL' -- All values in MASK along DIM are true
- ===================================================
- _Description_:
- 'ALL(MASK [, DIM])' determines if all the values are true in MASK
- in the array along dimension DIM.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = ALL(MASK [, DIM])'
- _Arguments_:
- MASK The type of the argument shall be 'LOGICAL' and
- it shall not be scalar.
- DIM (Optional) DIM shall be a scalar integer with a
- value that lies between one and the rank of
- MASK.
- _Return value_:
- 'ALL(MASK)' returns a scalar value of type 'LOGICAL' where the kind
- type parameter is the same as the kind type parameter of MASK. If
- DIM is present, then 'ALL(MASK, DIM)' returns an array with the
- rank of MASK minus 1. The shape is determined from the shape of
- MASK where the DIM dimension is elided.
- (A)
- 'ALL(MASK)' is true if all elements of MASK are true. It also
- is true if MASK has zero size; otherwise, it is false.
- (B)
- If the rank of MASK is one, then 'ALL(MASK,DIM)' is equivalent
- to 'ALL(MASK)'. If the rank is greater than one, then
- 'ALL(MASK,DIM)' is determined by applying 'ALL' to the array
- sections.
- _Example_:
- program test_all
- logical l
- l = all((/.true., .true., .true./))
- print *, l
- call section
- contains
- subroutine section
- integer a(2,3), b(2,3)
- a = 1
- b = 1
- b(2,2) = 2
- print *, all(a .eq. b, 1)
- print *, all(a .eq. b, 2)
- end subroutine section
- end program test_all
- File: gfortran.info, Node: ALLOCATED, Next: AND, Prev: ALL, Up: Intrinsic Procedures
- 9.15 'ALLOCATED' -- Status of an allocatable entity
- ===================================================
- _Description_:
- 'ALLOCATED(ARRAY)' and 'ALLOCATED(SCALAR)' check the allocation
- status of ARRAY and SCALAR, respectively.
- _Standard_:
- Fortran 95 and later. Note, the 'SCALAR=' keyword and allocatable
- scalar entities are available in Fortran 2003 and later.
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = ALLOCATED(ARRAY)'
- 'RESULT = ALLOCATED(SCALAR)'
- _Arguments_:
- ARRAY The argument shall be an 'ALLOCATABLE' array.
- SCALAR The argument shall be an 'ALLOCATABLE' scalar.
- _Return value_:
- The return value is a scalar 'LOGICAL' with the default logical
- kind type parameter. If the argument is allocated, then the result
- is '.TRUE.'; otherwise, it returns '.FALSE.'
- _Example_:
- program test_allocated
- integer :: i = 4
- real(4), allocatable :: x(:)
- if (.not. allocated(x)) allocate(x(i))
- end program test_allocated
- File: gfortran.info, Node: AND, Next: ANINT, Prev: ALLOCATED, Up: Intrinsic Procedures
- 9.16 'AND' -- Bitwise logical AND
- =================================
- _Description_:
- Bitwise logical 'AND'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. For integer arguments, programmers should consider
- the use of the *note IAND:: intrinsic defined by the Fortran
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = AND(I, J)'
- _Arguments_:
- I The type shall be either a scalar 'INTEGER' type
- or a scalar 'LOGICAL' type.
- J The type shall be the same as the type of I.
- _Return value_:
- The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
- If the kind type parameters differ, then the smaller kind type is
- implicitly converted to larger kind, and the return has the larger
- kind.
- _Example_:
- PROGRAM test_and
- LOGICAL :: T = .TRUE., F = .FALSE.
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
- WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
- WRITE (*,*) AND(a, b)
- END PROGRAM
- _See also_:
- Fortran 95 elemental function: *note IAND::
- File: gfortran.info, Node: ANINT, Next: ANY, Prev: AND, Up: Intrinsic Procedures
- 9.17 'ANINT' -- Nearest whole number
- ====================================
- _Description_:
- 'ANINT(A [, KIND])' rounds its argument to the nearest whole
- number.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ANINT(A [, KIND])'
- _Arguments_:
- A The type of the argument shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type real with the kind type parameter of
- the argument if the optional KIND is absent; otherwise, the kind
- type parameter will be given by KIND. If A is greater than zero,
- 'ANINT(A)' returns 'AINT(X+0.5)'. If A is less than or equal to
- zero then it returns 'AINT(X-0.5)'.
- _Example_:
- program test_anint
- real(4) x4
- real(8) x8
- x4 = 1.234E0_4
- x8 = 4.321_8
- print *, anint(x4), dnint(x8)
- x8 = anint(x4,8)
- end program test_anint
- _Specific names_:
- Name Argument Return type Standard
- 'AINT(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and
- later
- 'DNINT(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and
- later
- File: gfortran.info, Node: ANY, Next: ASIN, Prev: ANINT, Up: Intrinsic Procedures
- 9.18 'ANY' -- Any value in MASK along DIM is true
- =================================================
- _Description_:
- 'ANY(MASK [, DIM])' determines if any of the values in the logical
- array MASK along dimension DIM are '.TRUE.'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = ANY(MASK [, DIM])'
- _Arguments_:
- MASK The type of the argument shall be 'LOGICAL' and
- it shall not be scalar.
- DIM (Optional) DIM shall be a scalar integer with a
- value that lies between one and the rank of
- MASK.
- _Return value_:
- 'ANY(MASK)' returns a scalar value of type 'LOGICAL' where the kind
- type parameter is the same as the kind type parameter of MASK. If
- DIM is present, then 'ANY(MASK, DIM)' returns an array with the
- rank of MASK minus 1. The shape is determined from the shape of
- MASK where the DIM dimension is elided.
- (A)
- 'ANY(MASK)' is true if any element of MASK is true; otherwise,
- it is false. It also is false if MASK has zero size.
- (B)
- If the rank of MASK is one, then 'ANY(MASK,DIM)' is equivalent
- to 'ANY(MASK)'. If the rank is greater than one, then
- 'ANY(MASK,DIM)' is determined by applying 'ANY' to the array
- sections.
- _Example_:
- program test_any
- logical l
- l = any((/.true., .true., .true./))
- print *, l
- call section
- contains
- subroutine section
- integer a(2,3), b(2,3)
- a = 1
- b = 1
- b(2,2) = 2
- print *, any(a .eq. b, 1)
- print *, any(a .eq. b, 2)
- end subroutine section
- end program test_any
- File: gfortran.info, Node: ASIN, Next: ASIND, Prev: ANY, Up: Intrinsic Procedures
- 9.19 'ASIN' -- Arcsine function
- ===============================
- _Description_:
- 'ASIN(X)' computes the arcsine of its X (inverse of 'SIN(X)').
- _Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ASIN(X)'
- _Arguments_:
- X The type shall be either 'REAL' and a magnitude
- that is less than or equal to one - or be
- 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in radians and lies in the range -\pi/2 \leq \Re
- \asin(x) \leq \pi/2.
- _Example_:
- program test_asin
- real(8) :: x = 0.866_8
- x = asin(x)
- end program test_asin
- _Specific names_:
- Name Argument Return type Standard
- 'ASIN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DASIN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- Inverse function: *note SIN:: Degrees function: *note ASIND::
- File: gfortran.info, Node: ASIND, Next: ASINH, Prev: ASIN, Up: Intrinsic Procedures
- 9.20 'ASIND' -- Arcsine function, degrees
- =========================================
- _Description_:
- 'ASIND(X)' computes the arcsine of its X in degrees (inverse of
- 'SIND(X)').
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU Extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ASIND(X)'
- _Arguments_:
- X The type shall be either 'REAL' and a magnitude
- that is less than or equal to one - or be
- 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in degrees and lies in the range -90 \leq \Re
- \asin(x) \leq 90.
- _Example_:
- program test_asind
- real(8) :: x = 0.866_8
- x = asind(x)
- end program test_asind
- _Specific names_:
- Name Argument Return type Standard
- 'ASIND(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DASIND(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
- _See also_:
- Inverse function: *note SIND:: Radians function: *note ASIN::
- File: gfortran.info, Node: ASINH, Next: ASSOCIATED, Prev: ASIND, Up: Intrinsic Procedures
- 9.21 'ASINH' -- Inverse hyperbolic sine function
- ================================================
- _Description_:
- 'ASINH(X)' computes the inverse hyperbolic sine of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ASINH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. If X is
- complex, the imaginary part of the result is in radians and lies
- between -\pi/2 \leq \Im \asinh(x) \leq \pi/2.
- _Example_:
- PROGRAM test_asinh
- REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
- WRITE (*,*) ASINH(x)
- END PROGRAM
- _Specific names_:
- Name Argument Return type Standard
- 'DASINH(X)' 'REAL(8) X' 'REAL(8)' GNU extension.
- _See also_:
- Inverse function: *note SINH::
- File: gfortran.info, Node: ASSOCIATED, Next: ATAN, Prev: ASINH, Up: Intrinsic Procedures
- 9.22 'ASSOCIATED' -- Status of a pointer or pointer/target pair
- ===============================================================
- _Description_:
- 'ASSOCIATED(POINTER [, TARGET])' determines the status of the
- pointer POINTER or if POINTER is associated with the target TARGET.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = ASSOCIATED(POINTER [, TARGET])'
- _Arguments_:
- POINTER POINTER shall have the 'POINTER' attribute and
- it can be of any type.
- TARGET (Optional) TARGET shall be a pointer or a
- target. It must have the same type, kind type
- parameter, and array rank as POINTER.
- The association status of neither POINTER nor TARGET shall be
- undefined.
- _Return value_:
- 'ASSOCIATED(POINTER)' returns a scalar value of type 'LOGICAL(4)'.
- There are several cases:
- (A) When the optional TARGET is not present then
- 'ASSOCIATED(POINTER)' is true if POINTER is associated with a
- target; otherwise, it returns false.
- (B) If TARGET is present and a scalar target, the result is true if
- TARGET is not a zero-sized storage sequence and the target
- associated with POINTER occupies the same storage units. If
- POINTER is disassociated, the result is false.
- (C) If TARGET is present and an array target, the result is true if
- TARGET and POINTER have the same shape, are not zero-sized
- arrays, are arrays whose elements are not zero-sized storage
- sequences, and TARGET and POINTER occupy the same storage
- units in array element order. As in case(B), the result is
- false, if POINTER is disassociated.
- (D) If TARGET is present and an scalar pointer, the result is true
- if TARGET is associated with POINTER, the target associated
- with TARGET are not zero-sized storage sequences and occupy
- the same storage units. The result is false, if either TARGET
- or POINTER is disassociated.
- (E) If TARGET is present and an array pointer, the result is true if
- target associated with POINTER and the target associated with
- TARGET have the same shape, are not zero-sized arrays, are
- arrays whose elements are not zero-sized storage sequences,
- and TARGET and POINTER occupy the same storage units in array
- element order. The result is false, if either TARGET or
- POINTER is disassociated.
- _Example_:
- program test_associated
- implicit none
- real, target :: tgt(2) = (/1., 2./)
- real, pointer :: ptr(:)
- ptr => tgt
- if (associated(ptr) .eqv. .false.) call abort
- if (associated(ptr,tgt) .eqv. .false.) call abort
- end program test_associated
- _See also_:
- *note NULL::
- File: gfortran.info, Node: ATAN, Next: ATAND, Prev: ASSOCIATED, Up: Intrinsic Procedures
- 9.23 'ATAN' -- Arctangent function
- ==================================
- _Description_:
- 'ATAN(X)' computes the arctangent of X.
- _Standard_:
- Fortran 77 and later, for a complex argument and for two arguments
- Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ATAN(X)'
- 'RESULT = ATAN(Y, X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'; if Y is
- present, X shall be REAL.
- Y shall
- be of the
- same type
- and kind
- as X.
- _Return value_:
- The return value is of the same type and kind as X. If Y is
- present, the result is identical to 'ATAN2(Y,X)'. Otherwise, it
- the arcus tangent of X, where the real part of the result is in
- radians and lies in the range -\pi/2 \leq \Re \atan(x) \leq \pi/2.
- _Example_:
- program test_atan
- real(8) :: x = 2.866_8
- x = atan(x)
- end program test_atan
- _Specific names_:
- Name Argument Return type Standard
- 'ATAN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DATAN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- Inverse function: *note TAN:: Degrees function: *note ATAND::
- File: gfortran.info, Node: ATAND, Next: ATAN2, Prev: ATAN, Up: Intrinsic Procedures
- 9.24 'ATAND' -- Arctangent function, degrees
- ============================================
- _Description_:
- 'ATAND(X)' computes the arctangent of X in degrees (inverse of
- *note TAND::).
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU Extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ATAND(X)'
- 'RESULT = ATAND(Y, X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'; if Y is
- present, X shall be REAL.
- Y shall
- be of the
- same type
- and kind
- as X.
- _Return value_:
- The return value is of the same type and kind as X. If Y is
- present, the result is identical to 'ATAND2(Y,X)'. Otherwise, it
- is the arcus tangent of X, where the real part of the result is in
- degrees and lies in the range -90 \leq \Re \atand(x) \leq 90.
- _Example_:
- program test_atand
- real(8) :: x = 2.866_8
- x = atand(x)
- end program test_atand
- _Specific names_:
- Name Argument Return type Standard
- 'ATAND(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DATAND(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
- _See also_:
- Inverse function: *note TAND:: Radians function: *note ATAN::
- File: gfortran.info, Node: ATAN2, Next: ATAN2D, Prev: ATAND, Up: Intrinsic Procedures
- 9.25 'ATAN2' -- Arctangent function
- ===================================
- _Description_:
- 'ATAN2(Y, X)' computes the principal value of the argument function
- of the complex number X + i Y. This function can be used to
- transform from Cartesian into polar coordinates and allows to
- determine the angle in the correct quadrant.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ATAN2(Y, X)'
- _Arguments_:
- Y The type shall be 'REAL'.
- X The type and kind type parameter shall be the
- same as Y. If Y is zero, then X must be
- nonzero.
- _Return value_:
- The return value has the same type and kind type parameter as Y.
- It is the principal value of the complex number X + i Y. If X is
- nonzero, then it lies in the range -\pi \le \atan (x) \leq \pi.
- The sign is positive if Y is positive. If Y is zero, then the
- return value is zero if X is strictly positive, \pi if X is
- negative and Y is positive zero (or the processor does not handle
- signed zeros), and -\pi if X is negative and Y is negative zero.
- Finally, if X is zero, then the magnitude of the result is \pi/2.
- _Example_:
- program test_atan2
- real(4) :: x = 1.e0_4, y = 0.5e0_4
- x = atan2(y,x)
- end program test_atan2
- _Specific names_:
- Name Argument Return type Standard
- 'ATAN2(X, 'REAL(4) X, 'REAL(4)' Fortran 77 and
- Y)' Y' later
- 'DATAN2(X, 'REAL(8) X, 'REAL(8)' Fortran 77 and
- Y)' Y' later
- _See also_:
- Alias: *note ATAN:: Degrees function: *note ATAN2D::
- File: gfortran.info, Node: ATAN2D, Next: ATANH, Prev: ATAN2, Up: Intrinsic Procedures
- 9.26 'ATAN2D' -- Arctangent function, degrees
- =============================================
- _Description_:
- 'ATAN2D(Y, X)' computes the principal value of the argument
- function of the complex number X + i Y in degrees. This function
- can be used to transform from Cartesian into polar coordinates and
- allows to determine the angle in the correct quadrant.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU Extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ATAN2D(Y, X)'
- _Arguments_:
- Y The type shall be 'REAL'.
- X The type and kind type parameter shall be the
- same as Y. If Y is zero, then X must be
- nonzero.
- _Return value_:
- The return value has the same type and kind type parameter as Y.
- It is the principal value of the complex number X + i Y. If X is
- nonzero, then it lies in the range -180 \le \atan (x) \leq 180.
- The sign is positive if Y is positive. If Y is zero, then the
- return value is zero if X is strictly positive, 180 if X is
- negative and Y is positive zero (or the processor does not handle
- signed zeros), and -180 if X is negative and Y is negative zero.
- Finally, if X is zero, then the magnitude of the result is 90.
- _Example_:
- program test_atan2d
- real(4) :: x = 1.e0_4, y = 0.5e0_4
- x = atan2d(y,x)
- end program test_atan2d
- _Specific names_:
- Name Argument Return type Standard
- 'ATAN2D(X, 'REAL(4) X, 'REAL(4)' GNU Extension
- Y)' Y'
- 'DATAN2D(X, 'REAL(8) X, 'REAL(8)' GNU Extension
- Y)' Y'
- _See also_:
- Alias: *note ATAND:: Radians function: *note ATAN2::
- File: gfortran.info, Node: ATANH, Next: ATOMIC_ADD, Prev: ATAN2D, Up: Intrinsic Procedures
- 9.27 'ATANH' -- Inverse hyperbolic tangent function
- ===================================================
- _Description_:
- 'ATANH(X)' computes the inverse hyperbolic tangent of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ATANH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X. If X is complex, the
- imaginary part of the result is in radians and lies between -\pi/2
- \leq \Im \atanh(x) \leq \pi/2.
- _Example_:
- PROGRAM test_atanh
- REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
- WRITE (*,*) ATANH(x)
- END PROGRAM
- _Specific names_:
- Name Argument Return type Standard
- 'DATANH(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- _See also_:
- Inverse function: *note TANH::
- File: gfortran.info, Node: ATOMIC_ADD, Next: ATOMIC_AND, Prev: ATANH, Up: Intrinsic Procedures
- 9.28 'ATOMIC_ADD' -- Atomic ADD operation
- =========================================
- _Description_:
- 'ATOMIC_ADD(ATOM, VALUE)' atomically adds the value of VAR to the
- variable ATOM. When STAT is present and the invocation was
- successful, it is assigned the value 0. If it is present and the
- invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_ADD (ATOM, VALUE [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_add (atom[1], this_image())
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_ADD::, *note
- ISO_FORTRAN_ENV::, *note ATOMIC_AND::, *note ATOMIC_OR::, *note
- ATOMIC_XOR::
- File: gfortran.info, Node: ATOMIC_AND, Next: ATOMIC_CAS, Prev: ATOMIC_ADD, Up: Intrinsic Procedures
- 9.29 'ATOMIC_AND' -- Atomic bitwise AND operation
- =================================================
- _Description_:
- 'ATOMIC_AND(ATOM, VALUE)' atomically defines ATOM with the bitwise
- AND between the values of ATOM and VALUE. When STAT is present and
- the invocation was successful, it is assigned the value 0. If it
- is present and the invocation has failed, it is assigned a positive
- value; in particular, for a coindexed ATOM, if the remote image has
- stopped, it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_AND (ATOM, VALUE [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_and (atom[1], int(b'10100011101'))
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_AND::, *note
- ISO_FORTRAN_ENV::, *note ATOMIC_ADD::, *note ATOMIC_OR::, *note
- ATOMIC_XOR::
- File: gfortran.info, Node: ATOMIC_CAS, Next: ATOMIC_DEFINE, Prev: ATOMIC_AND, Up: Intrinsic Procedures
- 9.30 'ATOMIC_CAS' -- Atomic compare and swap
- ============================================
- _Description_:
- 'ATOMIC_CAS' compares the variable ATOM with the value of COMPARE;
- if the value is the same, ATOM is set to the value of NEW.
- Additionally, OLD is set to the value of ATOM that was used for the
- comparison. When STAT is present and the invocation was
- successful, it is assigned the value 0. If it is present and the
- invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of either
- integer type with 'ATOMIC_INT_KIND' kind or
- logical type with 'ATOMIC_LOGICAL_KIND' kind.
- OLD Scalar of the same type and kind as ATOM.
- COMPARE Scalar variable of the same type and kind as
- ATOM.
- NEW Scalar variable of the same type as ATOM. If
- kind is different, the value is converted to the
- kind of ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- logical(atomic_logical_kind) :: atom[*], prev
- call atomic_cas (atom[1], prev, .false., .true.))
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_REF::, *note ISO_FORTRAN_ENV::
- File: gfortran.info, Node: ATOMIC_DEFINE, Next: ATOMIC_FETCH_ADD, Prev: ATOMIC_CAS, Up: Intrinsic Procedures
- 9.31 'ATOMIC_DEFINE' -- Setting a variable atomically
- =====================================================
- _Description_:
- 'ATOMIC_DEFINE(ATOM, VALUE)' defines the variable ATOM with the
- value VALUE atomically. When STAT is present and the invocation
- was successful, it is assigned the value 0. If it is present and
- the invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- Fortran 2008 and later; with STAT, TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_DEFINE (ATOM, VALUE [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of either
- integer type with 'ATOMIC_INT_KIND' kind or
- logical type with 'ATOMIC_LOGICAL_KIND' kind.
-
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_define (atom[1], this_image())
- end program atomic
- _See also_:
- *note ATOMIC_REF::, *note ATOMIC_CAS::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_ADD::, *note ATOMIC_AND::, *note ATOMIC_OR::, *note
- ATOMIC_XOR::
- File: gfortran.info, Node: ATOMIC_FETCH_ADD, Next: ATOMIC_FETCH_AND, Prev: ATOMIC_DEFINE, Up: Intrinsic Procedures
- 9.32 'ATOMIC_FETCH_ADD' -- Atomic ADD operation with prior fetch
- ================================================================
- _Description_:
- 'ATOMIC_FETCH_ADD(ATOM, VALUE, OLD)' atomically stores the value of
- ATOM in OLD and adds the value of VAR to the variable ATOM. When
- STAT is present and the invocation was successful, it is assigned
- the value 0. If it is present and the invocation has failed, it is
- assigned a positive value; in particular, for a coindexed ATOM, if
- the remote image has stopped, it is assigned the value of
- 'ISO_FORTRAN_ENV''s 'STAT_STOPPED_IMAGE' and if the remote image
- has failed, the value 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_FETCH_ADD (ATOM, VALUE, old [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- 'ATOMIC_LOGICAL_KIND' kind.
-
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- OLD Scalar of the same type and kind as ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*], old
- call atomic_add (atom[1], this_image(), old)
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_ADD::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_FETCH_AND::, *note ATOMIC_FETCH_OR::, *note
- ATOMIC_FETCH_XOR::
- File: gfortran.info, Node: ATOMIC_FETCH_AND, Next: ATOMIC_FETCH_OR, Prev: ATOMIC_FETCH_ADD, Up: Intrinsic Procedures
- 9.33 'ATOMIC_FETCH_AND' -- Atomic bitwise AND operation with prior fetch
- ========================================================================
- _Description_:
- 'ATOMIC_AND(ATOM, VALUE)' atomically stores the value of ATOM in
- OLD and defines ATOM with the bitwise AND between the values of
- ATOM and VALUE. When STAT is present and the invocation was
- successful, it is assigned the value 0. If it is present and the
- invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- OLD Scalar of the same type and kind as ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*], old
- call atomic_fetch_and (atom[1], int(b'10100011101'), old)
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_AND::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_OR::, *note
- ATOMIC_FETCH_XOR::
- File: gfortran.info, Node: ATOMIC_FETCH_OR, Next: ATOMIC_FETCH_XOR, Prev: ATOMIC_FETCH_AND, Up: Intrinsic Procedures
- 9.34 'ATOMIC_FETCH_OR' -- Atomic bitwise OR operation with prior fetch
- ======================================================================
- _Description_:
- 'ATOMIC_OR(ATOM, VALUE)' atomically stores the value of ATOM in OLD
- and defines ATOM with the bitwise OR between the values of ATOM and
- VALUE. When STAT is present and the invocation was successful, it
- is assigned the value 0. If it is present and the invocation has
- failed, it is assigned a positive value; in particular, for a
- coindexed ATOM, if the remote image has stopped, it is assigned the
- value of 'ISO_FORTRAN_ENV''s 'STAT_STOPPED_IMAGE' and if the remote
- image has failed, the value 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- OLD Scalar of the same type and kind as ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*], old
- call atomic_fetch_or (atom[1], int(b'10100011101'), old)
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_OR::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_AND::, *note
- ATOMIC_FETCH_XOR::
- File: gfortran.info, Node: ATOMIC_FETCH_XOR, Next: ATOMIC_OR, Prev: ATOMIC_FETCH_OR, Up: Intrinsic Procedures
- 9.35 'ATOMIC_FETCH_XOR' -- Atomic bitwise XOR operation with prior fetch
- ========================================================================
- _Description_:
- 'ATOMIC_XOR(ATOM, VALUE)' atomically stores the value of ATOM in
- OLD and defines ATOM with the bitwise XOR between the values of
- ATOM and VALUE. When STAT is present and the invocation was
- successful, it is assigned the value 0. If it is present and the
- invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- OLD Scalar of the same type and kind as ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*], old
- call atomic_fetch_xor (atom[1], int(b'10100011101'), old)
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_XOR::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_AND::, *note
- ATOMIC_FETCH_OR::
- File: gfortran.info, Node: ATOMIC_OR, Next: ATOMIC_REF, Prev: ATOMIC_FETCH_XOR, Up: Intrinsic Procedures
- 9.36 'ATOMIC_OR' -- Atomic bitwise OR operation
- ===============================================
- _Description_:
- 'ATOMIC_OR(ATOM, VALUE)' atomically defines ATOM with the bitwise
- AND between the values of ATOM and VALUE. When STAT is present and
- the invocation was successful, it is assigned the value 0. If it
- is present and the invocation has failed, it is assigned a positive
- value; in particular, for a coindexed ATOM, if the remote image has
- stopped, it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_OR (ATOM, VALUE [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_or (atom[1], int(b'10100011101'))
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_OR::, *note
- ISO_FORTRAN_ENV::, *note ATOMIC_ADD::, *note ATOMIC_OR::, *note
- ATOMIC_XOR::
- File: gfortran.info, Node: ATOMIC_REF, Next: ATOMIC_XOR, Prev: ATOMIC_OR, Up: Intrinsic Procedures
- 9.37 'ATOMIC_REF' -- Obtaining the value of a variable atomically
- =================================================================
- _Description_:
- 'ATOMIC_DEFINE(ATOM, VALUE)' atomically assigns the value of the
- variable ATOM to VALUE. When STAT is present and the invocation
- was successful, it is assigned the value 0. If it is present and
- the invocation has failed, it is assigned a positive value; in
- particular, for a coindexed ATOM, if the remote image has stopped,
- it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- Fortran 2008 and later; with STAT, TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_REF(VALUE, ATOM [, STAT])'
- _Arguments_:
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- ATOM Scalar coarray or coindexed variable of either
- integer type with 'ATOMIC_INT_KIND' kind or
- logical type with 'ATOMIC_LOGICAL_KIND' kind.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- logical(atomic_logical_kind) :: atom[*]
- logical :: val
- call atomic_ref (atom, .false.)
- ! ...
- call atomic_ref (atom, val)
- if (val) then
- print *, "Obtained"
- end if
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_CAS::, *note ISO_FORTRAN_ENV::,
- *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_AND::, *note
- ATOMIC_FETCH_OR::, *note ATOMIC_FETCH_XOR::
- File: gfortran.info, Node: ATOMIC_XOR, Next: BACKTRACE, Prev: ATOMIC_REF, Up: Intrinsic Procedures
- 9.38 'ATOMIC_XOR' -- Atomic bitwise OR operation
- ================================================
- _Description_:
- 'ATOMIC_AND(ATOM, VALUE)' atomically defines ATOM with the bitwise
- XOR between the values of ATOM and VALUE. When STAT is present and
- the invocation was successful, it is assigned the value 0. If it
- is present and the invocation has failed, it is assigned a positive
- value; in particular, for a coindexed ATOM, if the remote image has
- stopped, it is assigned the value of 'ISO_FORTRAN_ENV''s
- 'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
- 'STAT_FAILED_IMAGE'.
- _Standard_:
- TS 18508 or later
- _Class_:
- Atomic subroutine
- _Syntax_:
- 'CALL ATOMIC_XOR (ATOM, VALUE [, STAT])'
- _Arguments_:
- ATOM Scalar coarray or coindexed variable of integer
- type with 'ATOMIC_INT_KIND' kind.
- VALUE Scalar of the same type as ATOM. If the kind is
- different, the value is converted to the kind of
- ATOM.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- integer(atomic_int_kind) :: atom[*]
- call atomic_xor (atom[1], int(b'10100011101'))
- end program atomic
- _See also_:
- *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_XOR::, *note
- ISO_FORTRAN_ENV::, *note ATOMIC_ADD::, *note ATOMIC_OR::, *note
- ATOMIC_XOR::
- File: gfortran.info, Node: BACKTRACE, Next: BESSEL_J0, Prev: ATOMIC_XOR, Up: Intrinsic Procedures
- 9.39 'BACKTRACE' -- Show a backtrace
- ====================================
- _Description_:
- 'BACKTRACE' shows a backtrace at an arbitrary place in user code.
- Program execution continues normally afterwards. The backtrace
- information is printed to the unit corresponding to 'ERROR_UNIT' in
- 'ISO_FORTRAN_ENV'.
- _Standard_:
- GNU Extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL BACKTRACE'
- _Arguments_:
- None
- _See also_:
- *note ABORT::
- File: gfortran.info, Node: BESSEL_J0, Next: BESSEL_J1, Prev: BACKTRACE, Up: Intrinsic Procedures
- 9.40 'BESSEL_J0' -- Bessel function of the first kind of order 0
- ================================================================
- _Description_:
- 'BESSEL_J0(X)' computes the Bessel function of the first kind of
- order 0 of X. This function is available under the name 'BESJ0' as
- a GNU extension.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BESSEL_J0(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL' and lies in the range -
- 0.4027... \leq Bessel (0,x) \leq 1. It has the same kind as X.
- _Example_:
- program test_besj0
- real(8) :: x = 0.0_8
- x = bessel_j0(x)
- end program test_besj0
- _Specific names_:
- Name Argument Return type Standard
- 'DBESJ0(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: BESSEL_J1, Next: BESSEL_JN, Prev: BESSEL_J0, Up: Intrinsic Procedures
- 9.41 'BESSEL_J1' -- Bessel function of the first kind of order 1
- ================================================================
- _Description_:
- 'BESSEL_J1(X)' computes the Bessel function of the first kind of
- order 1 of X. This function is available under the name 'BESJ1' as
- a GNU extension.
- _Standard_:
- Fortran 2008
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BESSEL_J1(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL' and lies in the range -
- 0.5818... \leq Bessel (0,x) \leq 0.5818 . It has the same kind as
- X.
- _Example_:
- program test_besj1
- real(8) :: x = 1.0_8
- x = bessel_j1(x)
- end program test_besj1
- _Specific names_:
- Name Argument Return type Standard
- 'DBESJ1(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: BESSEL_JN, Next: BESSEL_Y0, Prev: BESSEL_J1, Up: Intrinsic Procedures
- 9.42 'BESSEL_JN' -- Bessel function of the first kind
- =====================================================
- _Description_:
- 'BESSEL_JN(N, X)' computes the Bessel function of the first kind of
- order N of X. This function is available under the name 'BESJN' as
- a GNU extension. If N and X are arrays, their ranks and shapes
- shall conform.
- 'BESSEL_JN(N1, N2, X)' returns an array with the Bessel functions
- of the first kind of the orders N1 to N2.
- _Standard_:
- Fortran 2008 and later, negative N is allowed as GNU extension
- _Class_:
- Elemental function, except for the transformational function
- 'BESSEL_JN(N1, N2, X)'
- _Syntax_:
- 'RESULT = BESSEL_JN(N, X)'
- 'RESULT = BESSEL_JN(N1, N2, X)'
- _Arguments_:
- N Shall be a scalar or an array of type 'INTEGER'.
- N1 Shall be a non-negative scalar of type
- 'INTEGER'.
- N2 Shall be a non-negative scalar of type
- 'INTEGER'.
- X Shall be a scalar or an array of type 'REAL';
- for 'BESSEL_JN(N1, N2, X)' it shall be scalar.
- _Return value_:
- The return value is a scalar of type 'REAL'. It has the same kind
- as X.
- _Note_:
- The transformational function uses a recurrence algorithm which
- might, for some values of X, lead to different results than calls
- to the elemental function.
- _Example_:
- program test_besjn
- real(8) :: x = 1.0_8
- x = bessel_jn(5,x)
- end program test_besjn
- _Specific names_:
- Name Argument Return type Standard
- 'DBESJN(N, 'INTEGER N' 'REAL(8)' GNU extension
- X)'
- 'REAL(8) X'
- File: gfortran.info, Node: BESSEL_Y0, Next: BESSEL_Y1, Prev: BESSEL_JN, Up: Intrinsic Procedures
- 9.43 'BESSEL_Y0' -- Bessel function of the second kind of order 0
- =================================================================
- _Description_:
- 'BESSEL_Y0(X)' computes the Bessel function of the second kind of
- order 0 of X. This function is available under the name 'BESY0' as
- a GNU extension.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BESSEL_Y0(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL'. It has the same kind as X.
- _Example_:
- program test_besy0
- real(8) :: x = 0.0_8
- x = bessel_y0(x)
- end program test_besy0
- _Specific names_:
- Name Argument Return type Standard
- 'DBESY0(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: BESSEL_Y1, Next: BESSEL_YN, Prev: BESSEL_Y0, Up: Intrinsic Procedures
- 9.44 'BESSEL_Y1' -- Bessel function of the second kind of order 1
- =================================================================
- _Description_:
- 'BESSEL_Y1(X)' computes the Bessel function of the second kind of
- order 1 of X. This function is available under the name 'BESY1' as
- a GNU extension.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BESSEL_Y1(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL'. It has the same kind as X.
- _Example_:
- program test_besy1
- real(8) :: x = 1.0_8
- x = bessel_y1(x)
- end program test_besy1
- _Specific names_:
- Name Argument Return type Standard
- 'DBESY1(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: BESSEL_YN, Next: BGE, Prev: BESSEL_Y1, Up: Intrinsic Procedures
- 9.45 'BESSEL_YN' -- Bessel function of the second kind
- ======================================================
- _Description_:
- 'BESSEL_YN(N, X)' computes the Bessel function of the second kind
- of order N of X. This function is available under the name 'BESYN'
- as a GNU extension. If N and X are arrays, their ranks and shapes
- shall conform.
- 'BESSEL_YN(N1, N2, X)' returns an array with the Bessel functions
- of the first kind of the orders N1 to N2.
- _Standard_:
- Fortran 2008 and later, negative N is allowed as GNU extension
- _Class_:
- Elemental function, except for the transformational function
- 'BESSEL_YN(N1, N2, X)'
- _Syntax_:
- 'RESULT = BESSEL_YN(N, X)'
- 'RESULT = BESSEL_YN(N1, N2, X)'
- _Arguments_:
- N Shall be a scalar or an array of type 'INTEGER'
- .
- N1 Shall be a non-negative scalar of type
- 'INTEGER'.
- N2 Shall be a non-negative scalar of type
- 'INTEGER'.
- X Shall be a scalar or an array of type 'REAL';
- for 'BESSEL_YN(N1, N2, X)' it shall be scalar.
- _Return value_:
- The return value is a scalar of type 'REAL'. It has the same kind
- as X.
- _Note_:
- The transformational function uses a recurrence algorithm which
- might, for some values of X, lead to different results than calls
- to the elemental function.
- _Example_:
- program test_besyn
- real(8) :: x = 1.0_8
- x = bessel_yn(5,x)
- end program test_besyn
- _Specific names_:
- Name Argument Return type Standard
- 'DBESYN(N,X)' 'INTEGER N' 'REAL(8)' GNU extension
- 'REAL(8) X'
- File: gfortran.info, Node: BGE, Next: BGT, Prev: BESSEL_YN, Up: Intrinsic Procedures
- 9.46 'BGE' -- Bitwise greater than or equal to
- ==============================================
- _Description_:
- Determines whether an integral is a bitwise greater than or equal
- to another.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BGE(I, J)'
- _Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
- _Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
- _See also_:
- *note BGT::, *note BLE::, *note BLT::
- File: gfortran.info, Node: BGT, Next: BIT_SIZE, Prev: BGE, Up: Intrinsic Procedures
- 9.47 'BGT' -- Bitwise greater than
- ==================================
- _Description_:
- Determines whether an integral is a bitwise greater than another.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BGT(I, J)'
- _Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
- _Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
- _See also_:
- *note BGE::, *note BLE::, *note BLT::
- File: gfortran.info, Node: BIT_SIZE, Next: BLE, Prev: BGT, Up: Intrinsic Procedures
- 9.48 'BIT_SIZE' -- Bit size inquiry function
- ============================================
- _Description_:
- 'BIT_SIZE(I)' returns the number of bits (integer precision plus
- sign bit) represented by the type of I. The result of
- 'BIT_SIZE(I)' is independent of the actual value of I.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = BIT_SIZE(I)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER'
- _Example_:
- program test_bit_size
- integer :: i = 123
- integer :: size
- size = bit_size(i)
- print *, size
- end program test_bit_size
- File: gfortran.info, Node: BLE, Next: BLT, Prev: BIT_SIZE, Up: Intrinsic Procedures
- 9.49 'BLE' -- Bitwise less than or equal to
- ===========================================
- _Description_:
- Determines whether an integral is a bitwise less than or equal to
- another.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BLE(I, J)'
- _Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
- _Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
- _See also_:
- *note BGT::, *note BGE::, *note BLT::
- File: gfortran.info, Node: BLT, Next: BTEST, Prev: BLE, Up: Intrinsic Procedures
- 9.50 'BLT' -- Bitwise less than
- ===============================
- _Description_:
- Determines whether an integral is a bitwise less than another.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BLT(I, J)'
- _Arguments_:
- I Shall be of 'INTEGER' type.
- J Shall be of 'INTEGER' type, and of the same kind
- as I.
- _Return value_:
- The return value is of type 'LOGICAL' and of the default kind.
- _See also_:
- *note BGE::, *note BGT::, *note BLE::
- File: gfortran.info, Node: BTEST, Next: C_ASSOCIATED, Prev: BLT, Up: Intrinsic Procedures
- 9.51 'BTEST' -- Bit test function
- =================================
- _Description_:
- 'BTEST(I,POS)' returns logical '.TRUE.' if the bit at POS in I is
- set. The counting of the bits starts at 0.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = BTEST(I, POS)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'LOGICAL'
- _Example_:
- program test_btest
- integer :: i = 32768 + 1024 + 64
- integer :: pos
- logical :: bool
- do pos=0,16
- bool = btest(i, pos)
- print *, pos, bool
- end do
- end program test_btest
- _Specific names_:
- Name Argument Return type Standard
- 'BTEST(I,POS)' 'INTEGER 'LOGICAL' F95 and later
- I,POS'
- 'BBTEST(I,POS)''INTEGER(1) 'LOGICAL(1)' GNU extension
- I,POS'
- 'BITEST(I,POS)''INTEGER(2) 'LOGICAL(2)' GNU extension
- I,POS'
- 'BJTEST(I,POS)''INTEGER(4) 'LOGICAL(4)' GNU extension
- I,POS'
- 'BKTEST(I,POS)''INTEGER(8) 'LOGICAL(8)' GNU extension
- I,POS'
- File: gfortran.info, Node: C_ASSOCIATED, Next: C_F_POINTER, Prev: BTEST, Up: Intrinsic Procedures
- 9.52 'C_ASSOCIATED' -- Status of a C pointer
- ============================================
- _Description_:
- 'C_ASSOCIATED(c_ptr_1[, c_ptr_2])' determines the status of the C
- pointer C_PTR_1 or if C_PTR_1 is associated with the target
- C_PTR_2.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = C_ASSOCIATED(c_ptr_1[, c_ptr_2])'
- _Arguments_:
- C_PTR_1 Scalar of the type 'C_PTR' or 'C_FUNPTR'.
- C_PTR_2 (Optional) Scalar of the same type as C_PTR_1.
- _Return value_:
- The return value is of type 'LOGICAL'; it is '.false.' if either
- C_PTR_1 is a C NULL pointer or if C_PTR1 and C_PTR_2 point to
- different addresses.
- _Example_:
- subroutine association_test(a,b)
- use iso_c_binding, only: c_associated, c_loc, c_ptr
- implicit none
- real, pointer :: a
- type(c_ptr) :: b
- if(c_associated(b, c_loc(a))) &
- stop 'b and a do not point to same target'
- end subroutine association_test
- _See also_:
- *note C_LOC::, *note C_FUNLOC::
- File: gfortran.info, Node: C_F_POINTER, Next: C_F_PROCPOINTER, Prev: C_ASSOCIATED, Up: Intrinsic Procedures
- 9.53 'C_F_POINTER' -- Convert C into Fortran pointer
- ====================================================
- _Description_:
- 'C_F_POINTER(CPTR, FPTR[, SHAPE])' assigns the target of the C
- pointer CPTR to the Fortran pointer FPTR and specifies its shape.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL C_F_POINTER(CPTR, FPTR[, SHAPE])'
- _Arguments_:
- CPTR scalar of the type 'C_PTR'. It is 'INTENT(IN)'.
- FPTR pointer interoperable with CPTR. It is
- 'INTENT(OUT)'.
- SHAPE (Optional) Rank-one array of type 'INTEGER' with
- 'INTENT(IN)'. It shall be present if and only
- if FPTR is an array. The size must be equal to
- the rank of FPTR.
- _Example_:
- program main
- use iso_c_binding
- implicit none
- interface
- subroutine my_routine(p) bind(c,name='myC_func')
- import :: c_ptr
- type(c_ptr), intent(out) :: p
- end subroutine
- end interface
- type(c_ptr) :: cptr
- real,pointer :: a(:)
- call my_routine(cptr)
- call c_f_pointer(cptr, a, [12])
- end program main
- _See also_:
- *note C_LOC::, *note C_F_PROCPOINTER::
- File: gfortran.info, Node: C_F_PROCPOINTER, Next: C_FUNLOC, Prev: C_F_POINTER, Up: Intrinsic Procedures
- 9.54 'C_F_PROCPOINTER' -- Convert C into Fortran procedure pointer
- ==================================================================
- _Description_:
- 'C_F_PROCPOINTER(CPTR, FPTR)' Assign the target of the C function
- pointer CPTR to the Fortran procedure pointer FPTR.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL C_F_PROCPOINTER(cptr, fptr)'
- _Arguments_:
- CPTR scalar of the type 'C_FUNPTR'. It is
- 'INTENT(IN)'.
- FPTR procedure pointer interoperable with CPTR. It
- is 'INTENT(OUT)'.
- _Example_:
- program main
- use iso_c_binding
- implicit none
- abstract interface
- function func(a)
- import :: c_float
- real(c_float), intent(in) :: a
- real(c_float) :: func
- end function
- end interface
- interface
- function getIterFunc() bind(c,name="getIterFunc")
- import :: c_funptr
- type(c_funptr) :: getIterFunc
- end function
- end interface
- type(c_funptr) :: cfunptr
- procedure(func), pointer :: myFunc
- cfunptr = getIterFunc()
- call c_f_procpointer(cfunptr, myFunc)
- end program main
- _See also_:
- *note C_LOC::, *note C_F_POINTER::
- File: gfortran.info, Node: C_FUNLOC, Next: C_LOC, Prev: C_F_PROCPOINTER, Up: Intrinsic Procedures
- 9.55 'C_FUNLOC' -- Obtain the C address of a procedure
- ======================================================
- _Description_:
- 'C_FUNLOC(x)' determines the C address of the argument.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = C_FUNLOC(x)'
- _Arguments_:
- X Interoperable function or pointer to such
- function.
- _Return value_:
- The return value is of type 'C_FUNPTR' and contains the C address
- of the argument.
- _Example_:
- module x
- use iso_c_binding
- implicit none
- contains
- subroutine sub(a) bind(c)
- real(c_float) :: a
- a = sqrt(a)+5.0
- end subroutine sub
- end module x
- program main
- use iso_c_binding
- use x
- implicit none
- interface
- subroutine my_routine(p) bind(c,name='myC_func')
- import :: c_funptr
- type(c_funptr), intent(in) :: p
- end subroutine
- end interface
- call my_routine(c_funloc(sub))
- end program main
- _See also_:
- *note C_ASSOCIATED::, *note C_LOC::, *note C_F_POINTER::, *note
- C_F_PROCPOINTER::
- File: gfortran.info, Node: C_LOC, Next: C_SIZEOF, Prev: C_FUNLOC, Up: Intrinsic Procedures
- 9.56 'C_LOC' -- Obtain the C address of an object
- =================================================
- _Description_:
- 'C_LOC(X)' determines the C address of the argument.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = C_LOC(X)'
- _Arguments_:
- X Shall have either the POINTER or TARGET attribute.
- It shall not be a coindexed object. It shall either
- be a variable with interoperable type and kind type
- parameters, or be a scalar, nonpolymorphic variable
- with no length type parameters.
-
- _Return value_:
- The return value is of type 'C_PTR' and contains the C address of
- the argument.
- _Example_:
- subroutine association_test(a,b)
- use iso_c_binding, only: c_associated, c_loc, c_ptr
- implicit none
- real, pointer :: a
- type(c_ptr) :: b
- if(c_associated(b, c_loc(a))) &
- stop 'b and a do not point to same target'
- end subroutine association_test
- _See also_:
- *note C_ASSOCIATED::, *note C_FUNLOC::, *note C_F_POINTER::, *note
- C_F_PROCPOINTER::
- File: gfortran.info, Node: C_SIZEOF, Next: CEILING, Prev: C_LOC, Up: Intrinsic Procedures
- 9.57 'C_SIZEOF' -- Size in bytes of an expression
- =================================================
- _Description_:
- 'C_SIZEOF(X)' calculates the number of bytes of storage the
- expression 'X' occupies.
- _Standard_:
- Fortran 2008
- _Class_:
- Inquiry function of the module 'ISO_C_BINDING'
- _Syntax_:
- 'N = C_SIZEOF(X)'
- _Arguments_:
- X The argument shall be an interoperable data
- entity.
- _Return value_:
- The return value is of type integer and of the system-dependent
- kind 'C_SIZE_T' (from the 'ISO_C_BINDING' module). Its value is
- the number of bytes occupied by the argument. If the argument has
- the 'POINTER' attribute, the number of bytes of the storage area
- pointed to is returned. If the argument is of a derived type with
- 'POINTER' or 'ALLOCATABLE' components, the return value does not
- account for the sizes of the data pointed to by these components.
- _Example_:
- use iso_c_binding
- integer(c_int) :: i
- real(c_float) :: r, s(5)
- print *, (c_sizeof(s)/c_sizeof(r) == 5)
- end
- The example will print '.TRUE.' unless you are using a platform
- where default 'REAL' variables are unusually padded.
- _See also_:
- *note SIZEOF::, *note STORAGE_SIZE::
- File: gfortran.info, Node: CEILING, Next: CHAR, Prev: C_SIZEOF, Up: Intrinsic Procedures
- 9.58 'CEILING' -- Integer ceiling function
- ==========================================
- _Description_:
- 'CEILING(A)' returns the least integer greater than or equal to A.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = CEILING(A [, KIND])'
- _Arguments_:
- A The type shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER(KIND)' if KIND is present and
- a default-kind 'INTEGER' otherwise.
- _Example_:
- program test_ceiling
- real :: x = 63.29
- real :: y = -63.59
- print *, ceiling(x) ! returns 64
- print *, ceiling(y) ! returns -63
- end program test_ceiling
- _See also_:
- *note FLOOR::, *note NINT::
- File: gfortran.info, Node: CHAR, Next: CHDIR, Prev: CEILING, Up: Intrinsic Procedures
- 9.59 'CHAR' -- Character conversion function
- ============================================
- _Description_:
- 'CHAR(I [, KIND])' returns the character represented by the integer
- I.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = CHAR(I [, KIND])'
- _Arguments_:
- I The type shall be 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'CHARACTER(1)'
- _Example_:
- program test_char
- integer :: i = 74
- character(1) :: c
- c = char(i)
- print *, i, c ! returns 'J'
- end program test_char
- _Specific names_:
- Name Argument Return type Standard
- 'CHAR(I)' 'INTEGER I' 'CHARACTER(LEN=1)'F77 and later
- _Note_:
- See *note ICHAR:: for a discussion of converting between numerical
- values and formatted string representations.
- _See also_:
- *note ACHAR::, *note IACHAR::, *note ICHAR::
- File: gfortran.info, Node: CHDIR, Next: CHMOD, Prev: CHAR, Up: Intrinsic Procedures
- 9.60 'CHDIR' -- Change working directory
- ========================================
- _Description_:
- Change current working directory to a specified path.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL CHDIR(NAME [, STATUS])'
- 'STATUS = CHDIR(NAME)'
- _Arguments_:
- NAME The type shall be 'CHARACTER' of default kind
- and shall specify a valid path within the file
- system.
- STATUS (Optional) 'INTEGER' status flag of the default
- kind. Returns 0 on success, and a system
- specific and nonzero error code otherwise.
- _Example_:
- PROGRAM test_chdir
- CHARACTER(len=255) :: path
- CALL getcwd(path)
- WRITE(*,*) TRIM(path)
- CALL chdir("/tmp")
- CALL getcwd(path)
- WRITE(*,*) TRIM(path)
- END PROGRAM
- _See also_:
- *note GETCWD::
- File: gfortran.info, Node: CHMOD, Next: CMPLX, Prev: CHDIR, Up: Intrinsic Procedures
- 9.61 'CHMOD' -- Change access permissions of files
- ==================================================
- _Description_:
- 'CHMOD' changes the permissions of a file.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL CHMOD(NAME, MODE[, STATUS])'
- 'STATUS = CHMOD(NAME, MODE)'
- _Arguments_:
- NAME Scalar 'CHARACTER' of default kind with the file
- name. Trailing blanks are ignored unless the
- character 'achar(0)' is present, then all
- characters up to and excluding 'achar(0)' are
- used as the file name.
-
- MODE Scalar 'CHARACTER' of default kind giving the
- file permission. MODE uses the same syntax as
- the 'chmod' utility as defined by the POSIX
- standard. The argument shall either be a string
- of a nonnegative octal number or a symbolic
- mode.
-
- STATUS (optional) scalar 'INTEGER', which is '0' on
- success and nonzero otherwise.
- _Return value_:
- In either syntax, STATUS is set to '0' on success and nonzero
- otherwise.
- _Example_:
- 'CHMOD' as subroutine
- program chmod_test
- implicit none
- integer :: status
- call chmod('test.dat','u+x',status)
- print *, 'Status: ', status
- end program chmod_test
- 'CHMOD' as function:
- program chmod_test
- implicit none
- integer :: status
- status = chmod('test.dat','u+x')
- print *, 'Status: ', status
- end program chmod_test
- File: gfortran.info, Node: CMPLX, Next: CO_BROADCAST, Prev: CHMOD, Up: Intrinsic Procedures
- 9.62 'CMPLX' -- Complex conversion function
- ===========================================
- _Description_:
- 'CMPLX(X [, Y [, KIND]])' returns a complex number where X is
- converted to the real component. If Y is present it is converted
- to the imaginary component. If Y is not present then the imaginary
- component is set to 0.0. If X is complex then Y must not be
- present.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = CMPLX(X [, Y [, KIND]])'
- _Arguments_:
- X The type may be 'INTEGER', 'REAL', or 'COMPLEX'.
- Y (Optional; only allowed if X is not 'COMPLEX'.)
- May be 'INTEGER' or 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of 'COMPLEX' type, with a kind equal to KIND if
- it is specified. If KIND is not specified, the result is of the
- default 'COMPLEX' kind, regardless of the kinds of X and Y.
- _Example_:
- program test_cmplx
- integer :: i = 42
- real :: x = 3.14
- complex :: z
- z = cmplx(i, x)
- print *, z, cmplx(x)
- end program test_cmplx
- _See also_:
- *note COMPLEX::
- File: gfortran.info, Node: CO_BROADCAST, Next: CO_MAX, Prev: CMPLX, Up: Intrinsic Procedures
- 9.63 'CO_BROADCAST' -- Copy a value to all images the current set of images
- ===========================================================================
- _Description_:
- 'CO_BROADCAST' copies the value of argument A on the image with
- image index 'SOURCE_IMAGE' to all images in the current team. A
- becomes defined as if by intrinsic assignment. If the execution
- was successful and STAT is present, it is assigned the value zero.
- If the execution failed, STAT gets assigned a nonzero value and, if
- present, ERRMSG gets assigned a value describing the occurred
- error.
- _Standard_:
- Technical Specification (TS) 18508 or later
- _Class_:
- Collective subroutine
- _Syntax_:
- 'CALL CO_BROADCAST(A, SOURCE_IMAGE [, STAT, ERRMSG])'
- _Arguments_:
- A INTENT(INOUT) argument; shall have the same
- dynamic type and type paramters on all images of
- the current team. If it is an array, it shall
- have the same shape on all images.
- SOURCE_IMAGEa scalar integer expression. It shall have the
- same the same value on all images and refer to
- an image of the current team.
- STAT (optional) a scalar integer variable
- ERRMSG (optional) a scalar character variable
- _Example_:
- program test
- integer :: val(3)
- if (this_image() == 1) then
- val = [1, 5, 3]
- end if
- call co_broadcast (val, source_image=1)
- print *, this_image, ":", val
- end program test
- _See also_:
- *note CO_MAX::, *note CO_MIN::, *note CO_SUM::, *note CO_REDUCE::
- File: gfortran.info, Node: CO_MAX, Next: CO_MIN, Prev: CO_BROADCAST, Up: Intrinsic Procedures
- 9.64 'CO_MAX' -- Maximal value on the current set of images
- ===========================================================
- _Description_:
- 'CO_MAX' determines element-wise the maximal value of A on all
- images of the current team. If RESULT_IMAGE is present, the
- maximum values are returned in A on the specified image only and
- the value of A on the other images become undefined. If
- RESULT_IMAGE is not present, the value is returned on all images.
- If the execution was successful and STAT is present, it is assigned
- the value zero. If the execution failed, STAT gets assigned a
- nonzero value and, if present, ERRMSG gets assigned a value
- describing the occurred error.
- _Standard_:
- Technical Specification (TS) 18508 or later
- _Class_:
- Collective subroutine
- _Syntax_:
- 'CALL CO_MAX(A [, RESULT_IMAGE, STAT, ERRMSG])'
- _Arguments_:
- A shall be an integer, real or character variable,
- which has the same type and type parameters on
- all images of the team.
- RESULT_IMAGE(optional) a scalar integer expression; if
- present, it shall have the same the same value
- on all images and refer to an image of the
- current team.
- STAT (optional) a scalar integer variable
- ERRMSG (optional) a scalar character variable
- _Example_:
- program test
- integer :: val
- val = this_image ()
- call co_max (val, result_image=1)
- if (this_image() == 1) then
- write(*,*) "Maximal value", val ! prints num_images()
- end if
- end program test
- _See also_:
- *note CO_MIN::, *note CO_SUM::, *note CO_REDUCE::, *note
- CO_BROADCAST::
- File: gfortran.info, Node: CO_MIN, Next: CO_REDUCE, Prev: CO_MAX, Up: Intrinsic Procedures
- 9.65 'CO_MIN' -- Minimal value on the current set of images
- ===========================================================
- _Description_:
- 'CO_MIN' determines element-wise the minimal value of A on all
- images of the current team. If RESULT_IMAGE is present, the
- minimal values are returned in A on the specified image only and
- the value of A on the other images become undefined. If
- RESULT_IMAGE is not present, the value is returned on all images.
- If the execution was successful and STAT is present, it is assigned
- the value zero. If the execution failed, STAT gets assigned a
- nonzero value and, if present, ERRMSG gets assigned a value
- describing the occurred error.
- _Standard_:
- Technical Specification (TS) 18508 or later
- _Class_:
- Collective subroutine
- _Syntax_:
- 'CALL CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])'
- _Arguments_:
- A shall be an integer, real or character variable,
- which has the same type and type parameters on
- all images of the team.
- RESULT_IMAGE(optional) a scalar integer expression; if
- present, it shall have the same the same value
- on all images and refer to an image of the
- current team.
- STAT (optional) a scalar integer variable
- ERRMSG (optional) a scalar character variable
- _Example_:
- program test
- integer :: val
- val = this_image ()
- call co_min (val, result_image=1)
- if (this_image() == 1) then
- write(*,*) "Minimal value", val ! prints 1
- end if
- end program test
- _See also_:
- *note CO_MAX::, *note CO_SUM::, *note CO_REDUCE::, *note
- CO_BROADCAST::
- File: gfortran.info, Node: CO_REDUCE, Next: CO_SUM, Prev: CO_MIN, Up: Intrinsic Procedures
- 9.66 'CO_REDUCE' -- Reduction of values on the current set of images
- ====================================================================
- _Description_:
- 'CO_REDUCE' determines element-wise the reduction of the value of A
- on all images of the current team. The pure function passed as
- OPERATOR is used to pairwise reduce the values of A by passing
- either the value of A of different images or the result values of
- such a reduction as argument. If A is an array, the deduction is
- done element wise. If RESULT_IMAGE is present, the result values
- are returned in A on the specified image only and the value of A on
- the other images become undefined. If RESULT_IMAGE is not present,
- the value is returned on all images. If the execution was
- successful and STAT is present, it is assigned the value zero. If
- the execution failed, STAT gets assigned a nonzero value and, if
- present, ERRMSG gets assigned a value describing the occurred
- error.
- _Standard_:
- Technical Specification (TS) 18508 or later
- _Class_:
- Collective subroutine
- _Syntax_:
- 'CALL CO_REDUCE(A, OPERATOR, [, RESULT_IMAGE, STAT, ERRMSG])'
- _Arguments_:
- A is an 'INTENT(INOUT)' argument and shall be
- nonpolymorphic. If it is allocatable, it shall
- be allocated; if it is a pointer, it shall be
- associated. A shall have the same type and type
- parameters on all images of the team; if it is
- an array, it shall have the same shape on all
- images.
- OPERATOR pure function with two scalar nonallocatable
- arguments, which shall be nonpolymorphic and
- have the same type and type parameters as A.
- The function shall return a nonallocatable
- scalar of the same type and type parameters as
- A. The function shall be the same on all images
- and with regards to the arguments mathematically
- commutative and associative. Note that OPERATOR
- may not be an elemental function, unless it is
- an intrisic function.
- RESULT_IMAGE(optional) a scalar integer expression; if
- present, it shall have the same the same value
- on all images and refer to an image of the
- current team.
- STAT (optional) a scalar integer variable
- ERRMSG (optional) a scalar character variable
- _Example_:
- program test
- integer :: val
- val = this_image ()
- call co_reduce (val, result_image=1, operator=myprod)
- if (this_image() == 1) then
- write(*,*) "Product value", val ! prints num_images() factorial
- end if
- contains
- pure function myprod(a, b)
- integer, value :: a, b
- integer :: myprod
- myprod = a * b
- end function myprod
- end program test
- _Note_:
- While the rules permit in principle an intrinsic function, none of
- the intrinsics in the standard fulfill the criteria of having a
- specific function, which takes two arguments of the same type and
- returning that type as result.
- _See also_:
- *note CO_MIN::, *note CO_MAX::, *note CO_SUM::, *note
- CO_BROADCAST::
- File: gfortran.info, Node: CO_SUM, Next: COMMAND_ARGUMENT_COUNT, Prev: CO_REDUCE, Up: Intrinsic Procedures
- 9.67 'CO_SUM' -- Sum of values on the current set of images
- ===========================================================
- _Description_:
- 'CO_SUM' sums up the values of each element of A on all images of
- the current team. If RESULT_IMAGE is present, the summed-up values
- are returned in A on the specified image only and the value of A on
- the other images become undefined. If RESULT_IMAGE is not present,
- the value is returned on all images. If the execution was
- successful and STAT is present, it is assigned the value zero. If
- the execution failed, STAT gets assigned a nonzero value and, if
- present, ERRMSG gets assigned a value describing the occurred
- error.
- _Standard_:
- Technical Specification (TS) 18508 or later
- _Class_:
- Collective subroutine
- _Syntax_:
- 'CALL CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])'
- _Arguments_:
- A shall be an integer, real or complex variable,
- which has the same type and type parameters on
- all images of the team.
- RESULT_IMAGE(optional) a scalar integer expression; if
- present, it shall have the same the same value
- on all images and refer to an image of the
- current team.
- STAT (optional) a scalar integer variable
- ERRMSG (optional) a scalar character variable
- _Example_:
- program test
- integer :: val
- val = this_image ()
- call co_sum (val, result_image=1)
- if (this_image() == 1) then
- write(*,*) "The sum is ", val ! prints (n**2 + n)/2, with n = num_images()
- end if
- end program test
- _See also_:
- *note CO_MAX::, *note CO_MIN::, *note CO_REDUCE::, *note
- CO_BROADCAST::
- File: gfortran.info, Node: COMMAND_ARGUMENT_COUNT, Next: COMPILER_OPTIONS, Prev: CO_SUM, Up: Intrinsic Procedures
- 9.68 'COMMAND_ARGUMENT_COUNT' -- Get number of command line arguments
- =====================================================================
- _Description_:
- 'COMMAND_ARGUMENT_COUNT' returns the number of arguments passed on
- the command line when the containing program was invoked.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = COMMAND_ARGUMENT_COUNT()'
- _Arguments_:
- None
- _Return value_:
- The return value is an 'INTEGER' of default kind.
- _Example_:
- program test_command_argument_count
- integer :: count
- count = command_argument_count()
- print *, count
- end program test_command_argument_count
- _See also_:
- *note GET_COMMAND::, *note GET_COMMAND_ARGUMENT::
- File: gfortran.info, Node: COMPILER_OPTIONS, Next: COMPILER_VERSION, Prev: COMMAND_ARGUMENT_COUNT, Up: Intrinsic Procedures
- 9.69 'COMPILER_OPTIONS' -- Options passed to the compiler
- =========================================================
- _Description_:
- 'COMPILER_OPTIONS' returns a string with the options used for
- compiling.
- _Standard_:
- Fortran 2008
- _Class_:
- Inquiry function of the module 'ISO_FORTRAN_ENV'
- _Syntax_:
- 'STR = COMPILER_OPTIONS()'
- _Arguments_:
- None.
- _Return value_:
- The return value is a default-kind string with system-dependent
- length. It contains the compiler flags used to compile the file,
- which called the 'COMPILER_OPTIONS' intrinsic.
- _Example_:
- use iso_fortran_env
- print '(4a)', 'This file was compiled by ', &
- compiler_version(), ' using the options ', &
- compiler_options()
- end
- _See also_:
- *note COMPILER_VERSION::, *note ISO_FORTRAN_ENV::
- File: gfortran.info, Node: COMPILER_VERSION, Next: COMPLEX, Prev: COMPILER_OPTIONS, Up: Intrinsic Procedures
- 9.70 'COMPILER_VERSION' -- Compiler version string
- ==================================================
- _Description_:
- 'COMPILER_VERSION' returns a string with the name and the version
- of the compiler.
- _Standard_:
- Fortran 2008
- _Class_:
- Inquiry function of the module 'ISO_FORTRAN_ENV'
- _Syntax_:
- 'STR = COMPILER_VERSION()'
- _Arguments_:
- None.
- _Return value_:
- The return value is a default-kind string with system-dependent
- length. It contains the name of the compiler and its version
- number.
- _Example_:
- use iso_fortran_env
- print '(4a)', 'This file was compiled by ', &
- compiler_version(), ' using the options ', &
- compiler_options()
- end
- _See also_:
- *note COMPILER_OPTIONS::, *note ISO_FORTRAN_ENV::
- File: gfortran.info, Node: COMPLEX, Next: CONJG, Prev: COMPILER_VERSION, Up: Intrinsic Procedures
- 9.71 'COMPLEX' -- Complex conversion function
- =============================================
- _Description_:
- 'COMPLEX(X, Y)' returns a complex number where X is converted to
- the real component and Y is converted to the imaginary component.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = COMPLEX(X, Y)'
- _Arguments_:
- X The type may be 'INTEGER' or 'REAL'.
- Y The type may be 'INTEGER' or 'REAL'.
- _Return value_:
- If X and Y are both of 'INTEGER' type, then the return value is of
- default 'COMPLEX' type.
- If X and Y are of 'REAL' type, or one is of 'REAL' type and one is
- of 'INTEGER' type, then the return value is of 'COMPLEX' type with
- a kind equal to that of the 'REAL' argument with the highest
- precision.
- _Example_:
- program test_complex
- integer :: i = 42
- real :: x = 3.14
- print *, complex(i, x)
- end program test_complex
- _See also_:
- *note CMPLX::
- File: gfortran.info, Node: CONJG, Next: COS, Prev: COMPLEX, Up: Intrinsic Procedures
- 9.72 'CONJG' -- Complex conjugate function
- ==========================================
- _Description_:
- 'CONJG(Z)' returns the conjugate of Z. If Z is '(x, y)' then the
- result is '(x, -y)'
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'Z = CONJG(Z)'
- _Arguments_:
- Z The type shall be 'COMPLEX'.
- _Return value_:
- The return value is of type 'COMPLEX'.
- _Example_:
- program test_conjg
- complex :: z = (2.0, 3.0)
- complex(8) :: dz = (2.71_8, -3.14_8)
- z= conjg(z)
- print *, z
- dz = dconjg(dz)
- print *, dz
- end program test_conjg
- _Specific names_:
- Name Argument Return type Standard
- 'CONJG(Z)' 'COMPLEX Z' 'COMPLEX' GNU extension
- 'DCONJG(Z)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- Z'
- File: gfortran.info, Node: COS, Next: COSD, Prev: CONJG, Up: Intrinsic Procedures
- 9.73 'COS' -- Cosine function
- =============================
- _Description_:
- 'COS(X)' computes the cosine of X.
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = COS(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in radians. If X is of the type 'REAL', the
- return value lies in the range -1 \leq \cos (x) \leq 1.
- _Example_:
- program test_cos
- real :: x = 0.0
- x = cos(x)
- end program test_cos
- _Specific names_:
- Name Argument Return type Standard
- 'COS(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DCOS(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- 'CCOS(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and
- X' later
- 'ZCOS(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDCOS(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- _See also_:
- Inverse function: *note ACOS:: Degrees function: *note COSD::
- File: gfortran.info, Node: COSD, Next: COSH, Prev: COS, Up: Intrinsic Procedures
- 9.74 'COSD' -- Cosine function, degrees
- =======================================
- _Description_:
- 'COSD(X)' computes the cosine of X in degrees.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU Extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = COSD(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of the same type and kind as X. The real part
- of the result is in degrees. If X is of the type 'REAL', the
- return value lies in the range -1 \leq \cosd (x) \leq 1.
- _Example_:
- program test_cosd
- real :: x = 0.0
- x = cosd(x)
- end program test_cosd
- _Specific names_:
- Name Argument Return type Standard
- 'COSD(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DCOSD(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
- 'CCOSD(X)' 'COMPLEX(4) 'COMPLEX(4)' GNU Extension
- X'
- 'ZCOSD(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDCOSD(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- _See also_:
- Inverse function: *note ACOSD:: Radians function: *note COS::
- File: gfortran.info, Node: COSH, Next: COTAN, Prev: COSD, Up: Intrinsic Procedures
- 9.75 'COSH' -- Hyperbolic cosine function
- =========================================
- _Description_:
- 'COSH(X)' computes the hyperbolic cosine of X.
- _Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'X = COSH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X. If X is complex, the
- imaginary part of the result is in radians. If X is 'REAL', the
- return value has a lower bound of one, \cosh (x) \geq 1.
- _Example_:
- program test_cosh
- real(8) :: x = 1.0_8
- x = cosh(x)
- end program test_cosh
- _Specific names_:
- Name Argument Return type Standard
- 'COSH(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DCOSH(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- Inverse function: *note ACOSH::
- File: gfortran.info, Node: COTAN, Next: COTAND, Prev: COSH, Up: Intrinsic Procedures
- 9.76 'COTAN' -- Cotangent function
- ==================================
- _Description_:
- 'COTAN(X)' computes the cotangent of X. Equivalent to 'COS(x)'
- divided by 'SIN(x)', or '1 / TAN(x)'.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU Extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = COTAN(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X, and its value is in
- radians.
- _Example_:
- program test_cotan
- real(8) :: x = 0.165_8
- x = cotan(x)
- end program test_cotan
- _Specific names_:
- Name Argument Return type Standard
- 'COTAN(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DCOTAN(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
- _See also_:
- Converse function: *note TAN:: Degrees function: *note COTAND::
- File: gfortran.info, Node: COTAND, Next: COUNT, Prev: COTAN, Up: Intrinsic Procedures
- 9.77 'COTAND' -- Cotangent function, degrees
- ============================================
- _Description_:
- 'COTAND(X)' computes the cotangent of X in degrees. Equivalent to
- 'COSD(x)' divided by 'SIND(x)', or '1 / TAND(x)'.
- _Standard_:
- GNU Extension, enabled with '-fdec-math'.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = COTAND(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X, and its value is in
- degrees.
- _Example_:
- program test_cotand
- real(8) :: x = 0.165_8
- x = cotand(x)
- end program test_cotand
- _Specific names_:
- Name Argument Return type Standard
- 'COTAND(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DCOTAND(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
- _See also_:
- Converse function: *note TAND:: Radians function: *note COTAN::
- File: gfortran.info, Node: COUNT, Next: CPU_TIME, Prev: COTAND, Up: Intrinsic Procedures
- 9.78 'COUNT' -- Count function
- ==============================
- _Description_:
- Counts the number of '.TRUE.' elements in a logical MASK, or, if
- the DIM argument is supplied, counts the number of elements along
- each row of the array in the DIM direction. If the array has zero
- size, or all of the elements of MASK are '.FALSE.', then the result
- is '0'.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = COUNT(MASK [, DIM, KIND])'
- _Arguments_:
- MASK The type shall be 'LOGICAL'.
- DIM (Optional) The type shall be 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- present, the result is an array with a rank one less than the rank
- of ARRAY, and a size corresponding to the shape of ARRAY with the
- DIM dimension removed.
- _Example_:
- program test_count
- integer, dimension(2,3) :: a, b
- logical, dimension(2,3) :: mask
- a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))
- b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print *
- print '(3i3)', b(1,:)
- print '(3i3)', b(2,:)
- print *
- mask = a.ne.b
- print '(3l3)', mask(1,:)
- print '(3l3)', mask(2,:)
- print *
- print '(3i3)', count(mask)
- print *
- print '(3i3)', count(mask, 1)
- print *
- print '(3i3)', count(mask, 2)
- end program test_count
- File: gfortran.info, Node: CPU_TIME, Next: CSHIFT, Prev: COUNT, Up: Intrinsic Procedures
- 9.79 'CPU_TIME' -- CPU elapsed time in seconds
- ==============================================
- _Description_:
- Returns a 'REAL' value representing the elapsed CPU time in
- seconds. This is useful for testing segments of code to determine
- execution time.
- If a time source is available, time will be reported with
- microsecond resolution. If no time source is available, TIME is
- set to '-1.0'.
- Note that TIME may contain a, system dependent, arbitrary offset
- and may not start with '0.0'. For 'CPU_TIME', the absolute value
- is meaningless, only differences between subsequent calls to this
- subroutine, as shown in the example below, should be used.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL CPU_TIME(TIME)'
- _Arguments_:
- TIME The type shall be 'REAL' with 'INTENT(OUT)'.
- _Return value_:
- None
- _Example_:
- program test_cpu_time
- real :: start, finish
- call cpu_time(start)
- ! put code to test here
- call cpu_time(finish)
- print '("Time = ",f6.3," seconds.")',finish-start
- end program test_cpu_time
- _See also_:
- *note SYSTEM_CLOCK::, *note DATE_AND_TIME::
- File: gfortran.info, Node: CSHIFT, Next: CTIME, Prev: CPU_TIME, Up: Intrinsic Procedures
- 9.80 'CSHIFT' -- Circular shift elements of an array
- ====================================================
- _Description_:
- 'CSHIFT(ARRAY, SHIFT [, DIM])' performs a circular shift on
- elements of ARRAY along the dimension of DIM. If DIM is omitted it
- is taken to be '1'. DIM is a scalar of type 'INTEGER' in the range
- of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the rank of
- ARRAY is one, then all elements of ARRAY are shifted by SHIFT
- places. If rank is greater than one, then all complete rank one
- sections of ARRAY along the given dimension are shifted. Elements
- shifted out one end of each rank one section are shifted back in
- the other end.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = CSHIFT(ARRAY, SHIFT [, DIM])'
- _Arguments_:
- ARRAY Shall be an array of any type.
- SHIFT The type shall be 'INTEGER'.
- DIM The type shall be 'INTEGER'.
- _Return value_:
- Returns an array of same type and rank as the ARRAY argument.
- _Example_:
- program test_cshift
- integer, dimension(3,3) :: a
- a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
- print *
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- end program test_cshift
- File: gfortran.info, Node: CTIME, Next: DATE_AND_TIME, Prev: CSHIFT, Up: Intrinsic Procedures
- 9.81 'CTIME' -- Convert a time into a string
- ============================================
- _Description_:
- 'CTIME' converts a system time value, such as returned by *note
- TIME8::, to a string. The output will be of the form 'Sat Aug 19
- 18:13:14 1995'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL CTIME(TIME, RESULT)'.
- 'RESULT = CTIME(TIME)'.
- _Arguments_:
- TIME The type shall be of type 'INTEGER'.
- RESULT The type shall be of type 'CHARACTER' and of
- default kind. It is an 'INTENT(OUT)' argument.
- If the length of this variable is too short for
- the time and date string to fit completely, it
- will be blank on procedure return.
- _Return value_:
- The converted date and time as a string.
- _Example_:
- program test_ctime
- integer(8) :: i
- character(len=30) :: date
- i = time8()
- ! Do something, main part of the program
- call ctime(i,date)
- print *, 'Program was started on ', date
- end program test_ctime
- _See Also_:
- *note DATE_AND_TIME::, *note GMTIME::, *note LTIME::, *note TIME::,
- *note TIME8::
- File: gfortran.info, Node: DATE_AND_TIME, Next: DBLE, Prev: CTIME, Up: Intrinsic Procedures
- 9.82 'DATE_AND_TIME' -- Date and time subroutine
- ================================================
- _Description_:
- 'DATE_AND_TIME(DATE, TIME, ZONE, VALUES)' gets the corresponding
- date and time information from the real-time system clock. DATE is
- 'INTENT(OUT)' and has form ccyymmdd. TIME is 'INTENT(OUT)' and has
- form hhmmss.sss. ZONE is 'INTENT(OUT)' and has form (+-)hhmm,
- representing the difference with respect to Coordinated Universal
- Time (UTC). Unavailable time and date parameters return blanks.
- VALUES is 'INTENT(OUT)' and provides the following:
- 'VALUE(1)': The year
- 'VALUE(2)': The month
- 'VALUE(3)': The day of the month
- 'VALUE(4)': Time difference with UTC in
- minutes
- 'VALUE(5)': The hour of the day
- 'VALUE(6)': The minutes of the hour
- 'VALUE(7)': The seconds of the minute
- 'VALUE(8)': The milliseconds of the
- second
- _Standard_:
- Fortran 95 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])'
- _Arguments_:
- DATE (Optional) The type shall be 'CHARACTER(LEN=8)'
- or larger, and of default kind.
- TIME (Optional) The type shall be 'CHARACTER(LEN=10)'
- or larger, and of default kind.
- ZONE (Optional) The type shall be 'CHARACTER(LEN=5)'
- or larger, and of default kind.
- VALUES (Optional) The type shall be 'INTEGER(8)'.
- _Return value_:
- None
- _Example_:
- program test_time_and_date
- character(8) :: date
- character(10) :: time
- character(5) :: zone
- integer,dimension(8) :: values
- ! using keyword arguments
- call date_and_time(date,time,zone,values)
- call date_and_time(DATE=date,ZONE=zone)
- call date_and_time(TIME=time)
- call date_and_time(VALUES=values)
- print '(a,2x,a,2x,a)', date, time, zone
- print '(8i5)', values
- end program test_time_and_date
- _See also_:
- *note CPU_TIME::, *note SYSTEM_CLOCK::
- File: gfortran.info, Node: DBLE, Next: DCMPLX, Prev: DATE_AND_TIME, Up: Intrinsic Procedures
- 9.83 'DBLE' -- Double conversion function
- =========================================
- _Description_:
- 'DBLE(A)' Converts A to double precision real type.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DBLE(A)'
- _Arguments_:
- A The type shall be 'INTEGER', 'REAL', or
- 'COMPLEX'.
- _Return value_:
- The return value is of type double precision real.
- _Example_:
- program test_dble
- real :: x = 2.18
- integer :: i = 5
- complex :: z = (2.3,1.14)
- print *, dble(x), dble(i), dble(z)
- end program test_dble
- _See also_:
- *note REAL::
- File: gfortran.info, Node: DCMPLX, Next: DIGITS, Prev: DBLE, Up: Intrinsic Procedures
- 9.84 'DCMPLX' -- Double complex conversion function
- ===================================================
- _Description_:
- 'DCMPLX(X [,Y])' returns a double complex number where X is
- converted to the real component. If Y is present it is converted
- to the imaginary component. If Y is not present then the imaginary
- component is set to 0.0. If X is complex then Y must not be
- present.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DCMPLX(X [, Y])'
- _Arguments_:
- X The type may be 'INTEGER', 'REAL', or 'COMPLEX'.
- Y (Optional if X is not 'COMPLEX'.) May be
- 'INTEGER' or 'REAL'.
- _Return value_:
- The return value is of type 'COMPLEX(8)'
- _Example_:
- program test_dcmplx
- integer :: i = 42
- real :: x = 3.14
- complex :: z
- z = cmplx(i, x)
- print *, dcmplx(i)
- print *, dcmplx(x)
- print *, dcmplx(z)
- print *, dcmplx(x,i)
- end program test_dcmplx
- File: gfortran.info, Node: DIGITS, Next: DIM, Prev: DCMPLX, Up: Intrinsic Procedures
- 9.85 'DIGITS' -- Significant binary digits function
- ===================================================
- _Description_:
- 'DIGITS(X)' returns the number of significant binary digits of the
- internal model representation of X. For example, on a system using
- a 32-bit floating point representation, a default real number would
- likely return 24.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = DIGITS(X)'
- _Arguments_:
- X The type may be 'INTEGER' or 'REAL'.
- _Return value_:
- The return value is of type 'INTEGER'.
- _Example_:
- program test_digits
- integer :: i = 12345
- real :: x = 3.143
- real(8) :: y = 2.33
- print *, digits(i)
- print *, digits(x)
- print *, digits(y)
- end program test_digits
- File: gfortran.info, Node: DIM, Next: DOT_PRODUCT, Prev: DIGITS, Up: Intrinsic Procedures
- 9.86 'DIM' -- Positive difference
- =================================
- _Description_:
- 'DIM(X,Y)' returns the difference 'X-Y' if the result is positive;
- otherwise returns zero.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DIM(X, Y)'
- _Arguments_:
- X The type shall be 'INTEGER' or 'REAL'
- Y The type shall be the same type and kind as X.
- _Return value_:
- The return value is of type 'INTEGER' or 'REAL'.
- _Example_:
- program test_dim
- integer :: i
- real(8) :: x
- i = dim(4, 15)
- x = dim(4.345_8, 2.111_8)
- print *, i
- print *, x
- end program test_dim
- _Specific names_:
- Name Argument Return type Standard
- 'DIM(X,Y)' 'REAL(4) X, 'REAL(4)' Fortran 77 and
- Y' later
- 'IDIM(X,Y)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- X, Y' later
- 'DDIM(X,Y)' 'REAL(8) X, 'REAL(8)' Fortran 77 and
- Y' later
- File: gfortran.info, Node: DOT_PRODUCT, Next: DPROD, Prev: DIM, Up: Intrinsic Procedures
- 9.87 'DOT_PRODUCT' -- Dot product function
- ==========================================
- _Description_:
- 'DOT_PRODUCT(VECTOR_A, VECTOR_B)' computes the dot product
- multiplication of two vectors VECTOR_A and VECTOR_B. The two
- vectors may be either numeric or logical and must be arrays of rank
- one and of equal size. If the vectors are 'INTEGER' or 'REAL', the
- result is 'SUM(VECTOR_A*VECTOR_B)'. If the vectors are 'COMPLEX',
- the result is 'SUM(CONJG(VECTOR_A)*VECTOR_B)'. If the vectors are
- 'LOGICAL', the result is 'ANY(VECTOR_A .AND. VECTOR_B)'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)'
- _Arguments_:
- VECTOR_A The type shall be numeric or 'LOGICAL', rank 1.
- VECTOR_B The type shall be numeric if VECTOR_A is of
- numeric type or 'LOGICAL' if VECTOR_A is of type
- 'LOGICAL'. VECTOR_B shall be a rank-one array.
- _Return value_:
- If the arguments are numeric, the return value is a scalar of
- numeric type, 'INTEGER', 'REAL', or 'COMPLEX'. If the arguments
- are 'LOGICAL', the return value is '.TRUE.' or '.FALSE.'.
- _Example_:
- program test_dot_prod
- integer, dimension(3) :: a, b
- a = (/ 1, 2, 3 /)
- b = (/ 4, 5, 6 /)
- print '(3i3)', a
- print *
- print '(3i3)', b
- print *
- print *, dot_product(a,b)
- end program test_dot_prod
- File: gfortran.info, Node: DPROD, Next: DREAL, Prev: DOT_PRODUCT, Up: Intrinsic Procedures
- 9.88 'DPROD' -- Double product function
- =======================================
- _Description_:
- 'DPROD(X,Y)' returns the product 'X*Y'.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DPROD(X, Y)'
- _Arguments_:
- X The type shall be 'REAL'.
- Y The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL(8)'.
- _Example_:
- program test_dprod
- real :: x = 5.2
- real :: y = 2.3
- real(8) :: d
- d = dprod(x,y)
- print *, d
- end program test_dprod
- _Specific names_:
- Name Argument Return type Standard
- 'DPROD(X,Y)' 'REAL(4) X, 'REAL(8)' Fortran 77 and
- Y' later
- File: gfortran.info, Node: DREAL, Next: DSHIFTL, Prev: DPROD, Up: Intrinsic Procedures
- 9.89 'DREAL' -- Double real part function
- =========================================
- _Description_:
- 'DREAL(Z)' returns the real part of complex variable Z.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DREAL(A)'
- _Arguments_:
- A The type shall be 'COMPLEX(8)'.
- _Return value_:
- The return value is of type 'REAL(8)'.
- _Example_:
- program test_dreal
- complex(8) :: z = (1.3_8,7.2_8)
- print *, dreal(z)
- end program test_dreal
- _See also_:
- *note AIMAG::
- File: gfortran.info, Node: DSHIFTL, Next: DSHIFTR, Prev: DREAL, Up: Intrinsic Procedures
- 9.90 'DSHIFTL' -- Combined left shift
- =====================================
- _Description_:
- 'DSHIFTL(I, J, SHIFT)' combines bits of I and J. The rightmost
- SHIFT bits of the result are the leftmost SHIFT bits of J, and the
- remaining bits are the rightmost bits of I.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DSHIFTL(I, J, SHIFT)'
- _Arguments_:
- I Shall be of type 'INTEGER' or a BOZ constant.
- J Shall be of type 'INTEGER' or a BOZ constant.
- If both I and J have integer type, then they
- shall have the same kind type parameter. I and
- J shall not both be BOZ constants.
- SHIFT Shall be of type 'INTEGER'. It shall be
- nonnegative. If I is not a BOZ constant, then
- SHIFT shall be less than or equal to
- 'BIT_SIZE(I)'; otherwise, SHIFT shall be less
- than or equal to 'BIT_SIZE(J)'.
- _Return value_:
- If either I or J is a BOZ constant, it is first converted as if by
- the intrinsic function 'INT' to an integer type with the kind type
- parameter of the other.
- _See also_:
- *note DSHIFTR::
- File: gfortran.info, Node: DSHIFTR, Next: DTIME, Prev: DSHIFTL, Up: Intrinsic Procedures
- 9.91 'DSHIFTR' -- Combined right shift
- ======================================
- _Description_:
- 'DSHIFTR(I, J, SHIFT)' combines bits of I and J. The leftmost
- SHIFT bits of the result are the rightmost SHIFT bits of I, and the
- remaining bits are the leftmost bits of J.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = DSHIFTR(I, J, SHIFT)'
- _Arguments_:
- I Shall be of type 'INTEGER' or a BOZ constant.
- J Shall be of type 'INTEGER' or a BOZ constant.
- If both I and J have integer type, then they
- shall have the same kind type parameter. I and
- J shall not both be BOZ constants.
- SHIFT Shall be of type 'INTEGER'. It shall be
- nonnegative. If I is not a BOZ constant, then
- SHIFT shall be less than or equal to
- 'BIT_SIZE(I)'; otherwise, SHIFT shall be less
- than or equal to 'BIT_SIZE(J)'.
- _Return value_:
- If either I or J is a BOZ constant, it is first converted as if by
- the intrinsic function 'INT' to an integer type with the kind type
- parameter of the other.
- _See also_:
- *note DSHIFTL::
- File: gfortran.info, Node: DTIME, Next: EOSHIFT, Prev: DSHIFTR, Up: Intrinsic Procedures
- 9.92 'DTIME' -- Execution time subroutine (or function)
- =======================================================
- _Description_:
- 'DTIME(VALUES, TIME)' initially returns the number of seconds of
- runtime since the start of the process's execution in TIME. VALUES
- returns the user and system components of this time in 'VALUES(1)'
- and 'VALUES(2)' respectively. TIME is equal to 'VALUES(1) +
- VALUES(2)'.
- Subsequent invocations of 'DTIME' return values accumulated since
- the previous invocation.
- On some systems, the underlying timings are represented using types
- with sufficiently small limits that overflows (wrap around) are
- possible, such as 32-bit types. Therefore, the values returned by
- this intrinsic might be, or become, negative, or numerically less
- than previous values, during a single run of the compiled program.
- Please note, that this implementation is thread safe if used within
- OpenMP directives, i.e., its state will be consistent while called
- from multiple threads. However, if 'DTIME' is called from multiple
- threads, the result is still the time since the last invocation.
- This may not give the intended results. If possible, use
- 'CPU_TIME' instead.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- VALUES and TIME are 'INTENT(OUT)' and provide the following:
- 'VALUES(1)': User time in seconds.
- 'VALUES(2)': System time in seconds.
- 'TIME': Run time since start in
- seconds.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL DTIME(VALUES, TIME)'.
- 'TIME = DTIME(VALUES)', (not recommended).
- _Arguments_:
- VALUES The type shall be 'REAL(4), DIMENSION(2)'.
- TIME The type shall be 'REAL(4)'.
- _Return value_:
- Elapsed time in seconds since the last invocation or since the
- start of program execution if not called before.
- _Example_:
- program test_dtime
- integer(8) :: i, j
- real, dimension(2) :: tarray
- real :: result
- call dtime(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- do i=1,100000000 ! Just a delay
- j = i * i - i
- end do
- call dtime(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- end program test_dtime
- _See also_:
- *note CPU_TIME::
- File: gfortran.info, Node: EOSHIFT, Next: EPSILON, Prev: DTIME, Up: Intrinsic Procedures
- 9.93 'EOSHIFT' -- End-off shift elements of an array
- ====================================================
- _Description_:
- 'EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])' performs an end-off shift
- on elements of ARRAY along the dimension of DIM. If DIM is omitted
- it is taken to be '1'. DIM is a scalar of type 'INTEGER' in the
- range of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the
- rank of ARRAY is one, then all elements of ARRAY are shifted by
- SHIFT places. If rank is greater than one, then all complete rank
- one sections of ARRAY along the given dimension are shifted.
- Elements shifted out one end of each rank one section are dropped.
- If BOUNDARY is present then the corresponding value of from
- BOUNDARY is copied back in the other end. If BOUNDARY is not
- present then the following are copied in depending on the type of
- ARRAY.
- _Array _Boundary Value_
- Type_
- Numeric 0 of the type and kind of ARRAY.
- Logical '.FALSE.'.
- Character(LEN)LEN blanks.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])'
- _Arguments_:
- ARRAY May be any type, not scalar.
- SHIFT The type shall be 'INTEGER'.
- BOUNDARY Same type as ARRAY.
- DIM The type shall be 'INTEGER'.
- _Return value_:
- Returns an array of same type and rank as the ARRAY argument.
- _Example_:
- program test_eoshift
- integer, dimension(3,3) :: a
- a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
- print *
- print '(3i3)', a(1,:)
- print '(3i3)', a(2,:)
- print '(3i3)', a(3,:)
- end program test_eoshift
- File: gfortran.info, Node: EPSILON, Next: ERF, Prev: EOSHIFT, Up: Intrinsic Procedures
- 9.94 'EPSILON' -- Epsilon function
- ==================================
- _Description_:
- 'EPSILON(X)' returns the smallest number E of the same kind as X
- such that 1 + E > 1.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = EPSILON(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of same type as the argument.
- _Example_:
- program test_epsilon
- real :: x = 3.143
- real(8) :: y = 2.33
- print *, EPSILON(x)
- print *, EPSILON(y)
- end program test_epsilon
- File: gfortran.info, Node: ERF, Next: ERFC, Prev: EPSILON, Up: Intrinsic Procedures
- 9.95 'ERF' -- Error function
- ============================
- _Description_:
- 'ERF(X)' computes the error function of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ERF(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL', of the same kind as X and lies
- in the range -1 \leq erf (x) \leq 1 .
- _Example_:
- program test_erf
- real(8) :: x = 0.17_8
- x = erf(x)
- end program test_erf
- _Specific names_:
- Name Argument Return type Standard
- 'DERF(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: ERFC, Next: ERFC_SCALED, Prev: ERF, Up: Intrinsic Procedures
- 9.96 'ERFC' -- Error function
- =============================
- _Description_:
- 'ERFC(X)' computes the complementary error function of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ERFC(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL' and of the same kind as X. It
- lies in the range 0 \leq erfc (x) \leq 2 .
- _Example_:
- program test_erfc
- real(8) :: x = 0.17_8
- x = erfc(x)
- end program test_erfc
- _Specific names_:
- Name Argument Return type Standard
- 'DERFC(X)' 'REAL(8) X' 'REAL(8)' GNU extension
- File: gfortran.info, Node: ERFC_SCALED, Next: ETIME, Prev: ERFC, Up: Intrinsic Procedures
- 9.97 'ERFC_SCALED' -- Error function
- ====================================
- _Description_:
- 'ERFC_SCALED(X)' computes the exponentially-scaled complementary
- error function of X.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ERFC_SCALED(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL' and of the same kind as X.
- _Example_:
- program test_erfc_scaled
- real(8) :: x = 0.17_8
- x = erfc_scaled(x)
- end program test_erfc_scaled
- File: gfortran.info, Node: ETIME, Next: EVENT_QUERY, Prev: ERFC_SCALED, Up: Intrinsic Procedures
- 9.98 'ETIME' -- Execution time subroutine (or function)
- =======================================================
- _Description_:
- 'ETIME(VALUES, TIME)' returns the number of seconds of runtime
- since the start of the process's execution in TIME. VALUES returns
- the user and system components of this time in 'VALUES(1)' and
- 'VALUES(2)' respectively. TIME is equal to 'VALUES(1) +
- VALUES(2)'.
- On some systems, the underlying timings are represented using types
- with sufficiently small limits that overflows (wrap around) are
- possible, such as 32-bit types. Therefore, the values returned by
- this intrinsic might be, or become, negative, or numerically less
- than previous values, during a single run of the compiled program.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- VALUES and TIME are 'INTENT(OUT)' and provide the following:
- 'VALUES(1)': User time in seconds.
- 'VALUES(2)': System time in seconds.
- 'TIME': Run time since start in seconds.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL ETIME(VALUES, TIME)'.
- 'TIME = ETIME(VALUES)', (not recommended).
- _Arguments_:
- VALUES The type shall be 'REAL(4), DIMENSION(2)'.
- TIME The type shall be 'REAL(4)'.
- _Return value_:
- Elapsed time in seconds since the start of program execution.
- _Example_:
- program test_etime
- integer(8) :: i, j
- real, dimension(2) :: tarray
- real :: result
- call ETIME(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- do i=1,100000000 ! Just a delay
- j = i * i - i
- end do
- call ETIME(tarray, result)
- print *, result
- print *, tarray(1)
- print *, tarray(2)
- end program test_etime
- _See also_:
- *note CPU_TIME::
- File: gfortran.info, Node: EVENT_QUERY, Next: EXECUTE_COMMAND_LINE, Prev: ETIME, Up: Intrinsic Procedures
- 9.99 'EVENT_QUERY' -- Query whether a coarray event has occurred
- ================================================================
- _Description_:
- 'EVENT_QUERY' assignes the number of events to COUNT which have
- been posted to the EVENT variable and not yet been removed by
- calling 'EVENT WAIT'. When STAT is present and the invocation was
- successful, it is assigned the value 0. If it is present and the
- invocation has failed, it is assigned a positive value and COUNT is
- assigned the value -1.
- _Standard_:
- TS 18508 or later
- _Class_:
- subroutine
- _Syntax_:
- 'CALL EVENT_QUERY (EVENT, COUNT [, STAT])'
- _Arguments_:
- EVENT (intent(IN)) Scalar of type 'EVENT_TYPE',
- defined in 'ISO_FORTRAN_ENV'; shall not be
- coindexed.
- COUNT (intent(out))Scalar integer with at least the
- precision of default integer.
- STAT (optional) Scalar default-kind integer variable.
- _Example_:
- program atomic
- use iso_fortran_env
- implicit none
- type(event_type) :: event_value_has_been_set[*]
- integer :: cnt
- if (this_image() == 1) then
- call event_query (event_value_has_been_set, cnt)
- if (cnt > 0) write(*,*) "Value has been set"
- elseif (this_image() == 2) then
- event post (event_value_has_been_set[1])
- end if
- end program atomic
- File: gfortran.info, Node: EXECUTE_COMMAND_LINE, Next: EXIT, Prev: EVENT_QUERY, Up: Intrinsic Procedures
- 9.100 'EXECUTE_COMMAND_LINE' -- Execute a shell command
- =======================================================
- _Description_:
- 'EXECUTE_COMMAND_LINE' runs a shell command, synchronously or
- asynchronously.
- The 'COMMAND' argument is passed to the shell and executed, using
- the C library's 'system' call. (The shell is 'sh' on Unix systems,
- and 'cmd.exe' on Windows.) If 'WAIT' is present and has the value
- false, the execution of the command is asynchronous if the system
- supports it; otherwise, the command is executed synchronously.
- The three last arguments allow the user to get status information.
- After synchronous execution, 'EXITSTAT' contains the integer exit
- code of the command, as returned by 'system'. 'CMDSTAT' is set to
- zero if the command line was executed (whatever its exit status
- was). 'CMDMSG' is assigned an error message if an error has
- occurred.
- Note that the 'system' function need not be thread-safe. It is the
- responsibility of the user to ensure that 'system' is not called
- concurrently.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT,
- CMDMSG ])'
- _Arguments_:
- COMMAND Shall be a default 'CHARACTER' scalar.
- WAIT (Optional) Shall be a default 'LOGICAL' scalar.
- EXITSTAT (Optional) Shall be an 'INTEGER' of the default
- kind.
- CMDSTAT (Optional) Shall be an 'INTEGER' of the default
- kind.
- CMDMSG (Optional) Shall be an 'CHARACTER' scalar of the
- default kind.
- _Example_:
- program test_exec
- integer :: i
- call execute_command_line ("external_prog.exe", exitstat=i)
- print *, "Exit status of external_prog.exe was ", i
- call execute_command_line ("reindex_files.exe", wait=.false.)
- print *, "Now reindexing files in the background"
- end program test_exec
- _Note_:
- Because this intrinsic is implemented in terms of the 'system'
- function call, its behavior with respect to signaling is processor
- dependent. In particular, on POSIX-compliant systems, the SIGINT
- and SIGQUIT signals will be ignored, and the SIGCHLD will be
- blocked. As such, if the parent process is terminated, the child
- process might not be terminated alongside.
- _See also_:
- *note SYSTEM::
- File: gfortran.info, Node: EXIT, Next: EXP, Prev: EXECUTE_COMMAND_LINE, Up: Intrinsic Procedures
- 9.101 'EXIT' -- Exit the program with status.
- =============================================
- _Description_:
- 'EXIT' causes immediate termination of the program with status. If
- status is omitted it returns the canonical _success_ for the
- system. All Fortran I/O units are closed.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL EXIT([STATUS])'
- _Arguments_:
- STATUS Shall be an 'INTEGER' of the default kind.
- _Return value_:
- 'STATUS' is passed to the parent process on exit.
- _Example_:
- program test_exit
- integer :: STATUS = 0
- print *, 'This program is going to exit.'
- call EXIT(STATUS)
- end program test_exit
- _See also_:
- *note ABORT::, *note KILL::
- File: gfortran.info, Node: EXP, Next: EXPONENT, Prev: EXIT, Up: Intrinsic Procedures
- 9.102 'EXP' -- Exponential function
- ===================================
- _Description_:
- 'EXP(X)' computes the base e exponential of X.
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = EXP(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X.
- _Example_:
- program test_exp
- real :: x = 1.0
- x = exp(x)
- end program test_exp
- _Specific names_:
- Name Argument Return type Standard
- 'EXP(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and
- later
- 'DEXP(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and
- later
- 'CEXP(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and
- X' later
- 'ZEXP(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDEXP(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- File: gfortran.info, Node: EXPONENT, Next: EXTENDS_TYPE_OF, Prev: EXP, Up: Intrinsic Procedures
- 9.103 'EXPONENT' -- Exponent function
- =====================================
- _Description_:
- 'EXPONENT(X)' returns the value of the exponent part of X. If X is
- zero the value returned is zero.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = EXPONENT(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type default 'INTEGER'.
- _Example_:
- program test_exponent
- real :: x = 1.0
- integer :: i
- i = exponent(x)
- print *, i
- print *, exponent(0.0)
- end program test_exponent
- File: gfortran.info, Node: EXTENDS_TYPE_OF, Next: FDATE, Prev: EXPONENT, Up: Intrinsic Procedures
- 9.104 'EXTENDS_TYPE_OF' -- Query dynamic type for extension
- ===========================================================
- _Description_:
- Query dynamic type for extension.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = EXTENDS_TYPE_OF(A, MOLD)'
- _Arguments_:
- A Shall be an object of extensible declared type
- or unlimited polymorphic.
- MOLD Shall be an object of extensible declared type
- or unlimited polymorphic.
- _Return value_:
- The return value is a scalar of type default logical. It is true
- if and only if the dynamic type of A is an extension type of the
- dynamic type of MOLD.
- _See also_:
- *note SAME_TYPE_AS::
- File: gfortran.info, Node: FDATE, Next: FGET, Prev: EXTENDS_TYPE_OF, Up: Intrinsic Procedures
- 9.105 'FDATE' -- Get the current time as a string
- =================================================
- _Description_:
- 'FDATE(DATE)' returns the current date (using the same format as
- *note CTIME::) in DATE. It is equivalent to 'CALL CTIME(DATE,
- TIME())'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FDATE(DATE)'.
- 'DATE = FDATE()'.
- _Arguments_:
- DATE The type shall be of type 'CHARACTER' of the
- default kind. It is an 'INTENT(OUT)' argument.
- If the length of this variable is too short for
- the date and time string to fit completely, it
- will be blank on procedure return.
- _Return value_:
- The current date and time as a string.
- _Example_:
- program test_fdate
- integer(8) :: i, j
- character(len=30) :: date
- call fdate(date)
- print *, 'Program started on ', date
- do i = 1, 100000000 ! Just a delay
- j = i * i - i
- end do
- call fdate(date)
- print *, 'Program ended on ', date
- end program test_fdate
- _See also_:
- *note DATE_AND_TIME::, *note CTIME::
- File: gfortran.info, Node: FGET, Next: FGETC, Prev: FDATE, Up: Intrinsic Procedures
- 9.106 'FGET' -- Read a single character in stream mode from stdin
- =================================================================
- _Description_:
- Read a single character in stream mode from stdin by bypassing
- normal formatted output. Stream I/O should not be mixed with
- normal record-oriented (formatted or unformatted) I/O on the same
- unit; the results are unpredictable.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FGET(C [, STATUS])'
- 'STATUS = FGET(C)'
- _Arguments_:
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file, and a
- system specific positive error code otherwise.
- _Example_:
- PROGRAM test_fget
- INTEGER, PARAMETER :: strlen = 100
- INTEGER :: status, i = 1
- CHARACTER(len=strlen) :: str = ""
- WRITE (*,*) 'Enter text:'
- DO
- CALL fget(str(i:i), status)
- if (status /= 0 .OR. i > strlen) exit
- i = i + 1
- END DO
- WRITE (*,*) TRIM(str)
- END PROGRAM
- _See also_:
- *note FGETC::, *note FPUT::, *note FPUTC::
- File: gfortran.info, Node: FGETC, Next: FLOOR, Prev: FGET, Up: Intrinsic Procedures
- 9.107 'FGETC' -- Read a single character in stream mode
- =======================================================
- _Description_:
- Read a single character in stream mode by bypassing normal
- formatted output. Stream I/O should not be mixed with normal
- record-oriented (formatted or unformatted) I/O on the same unit;
- the results are unpredictable.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FGETC(UNIT, C [, STATUS])'
- 'STATUS = FGETC(UNIT, C)'
- _Arguments_:
- UNIT The type shall be 'INTEGER'.
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file and a
- system specific positive error code otherwise.
- _Example_:
- PROGRAM test_fgetc
- INTEGER :: fd = 42, status
- CHARACTER :: c
- OPEN(UNIT=fd, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
- DO
- CALL fgetc(fd, c, status)
- IF (status /= 0) EXIT
- call fput(c)
- END DO
- CLOSE(UNIT=fd)
- END PROGRAM
- _See also_:
- *note FGET::, *note FPUT::, *note FPUTC::
- File: gfortran.info, Node: FLOOR, Next: FLUSH, Prev: FGETC, Up: Intrinsic Procedures
- 9.108 'FLOOR' -- Integer floor function
- =======================================
- _Description_:
- 'FLOOR(A)' returns the greatest integer less than or equal to X.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = FLOOR(A [, KIND])'
- _Arguments_:
- A The type shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER(KIND)' if KIND is present and
- of default-kind 'INTEGER' otherwise.
- _Example_:
- program test_floor
- real :: x = 63.29
- real :: y = -63.59
- print *, floor(x) ! returns 63
- print *, floor(y) ! returns -64
- end program test_floor
- _See also_:
- *note CEILING::, *note NINT::
- File: gfortran.info, Node: FLUSH, Next: FNUM, Prev: FLOOR, Up: Intrinsic Procedures
- 9.109 'FLUSH' -- Flush I/O unit(s)
- ==================================
- _Description_:
- Flushes Fortran unit(s) currently open for output. Without the
- optional argument, all units are flushed, otherwise just the unit
- specified.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL FLUSH(UNIT)'
- _Arguments_:
- UNIT (Optional) The type shall be 'INTEGER'.
- _Note_:
- Beginning with the Fortran 2003 standard, there is a 'FLUSH'
- statement that should be preferred over the 'FLUSH' intrinsic.
- The 'FLUSH' intrinsic and the Fortran 2003 'FLUSH' statement have
- identical effect: they flush the runtime library's I/O buffer so
- that the data becomes visible to other processes. This does not
- guarantee that the data is committed to disk.
- On POSIX systems, you can request that all data is transferred to
- the storage device by calling the 'fsync' function, with the POSIX
- file descriptor of the I/O unit as argument (retrieved with GNU
- intrinsic 'FNUM'). The following example shows how:
- ! Declare the interface for POSIX fsync function
- interface
- function fsync (fd) bind(c,name="fsync")
- use iso_c_binding, only: c_int
- integer(c_int), value :: fd
- integer(c_int) :: fsync
- end function fsync
- end interface
- ! Variable declaration
- integer :: ret
- ! Opening unit 10
- open (10,file="foo")
- ! ...
- ! Perform I/O on unit 10
- ! ...
- ! Flush and sync
- flush(10)
- ret = fsync(fnum(10))
- ! Handle possible error
- if (ret /= 0) stop "Error calling FSYNC"
- File: gfortran.info, Node: FNUM, Next: FPUT, Prev: FLUSH, Up: Intrinsic Procedures
- 9.110 'FNUM' -- File number function
- ====================================
- _Description_:
- 'FNUM(UNIT)' returns the POSIX file descriptor number corresponding
- to the open Fortran I/O unit 'UNIT'.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = FNUM(UNIT)'
- _Arguments_:
- UNIT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER'
- _Example_:
- program test_fnum
- integer :: i
- open (unit=10, status = "scratch")
- i = fnum(10)
- print *, i
- close (10)
- end program test_fnum
- File: gfortran.info, Node: FPUT, Next: FPUTC, Prev: FNUM, Up: Intrinsic Procedures
- 9.111 'FPUT' -- Write a single character in stream mode to stdout
- =================================================================
- _Description_:
- Write a single character in stream mode to stdout by bypassing
- normal formatted output. Stream I/O should not be mixed with
- normal record-oriented (formatted or unformatted) I/O on the same
- unit; the results are unpredictable.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FPUT(C [, STATUS])'
- 'STATUS = FPUT(C)'
- _Arguments_:
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file and a
- system specific positive error code otherwise.
- _Example_:
- PROGRAM test_fput
- CHARACTER(len=10) :: str = "gfortran"
- INTEGER :: i
- DO i = 1, len_trim(str)
- CALL fput(str(i:i))
- END DO
- END PROGRAM
- _See also_:
- *note FPUTC::, *note FGET::, *note FGETC::
- File: gfortran.info, Node: FPUTC, Next: FRACTION, Prev: FPUT, Up: Intrinsic Procedures
- 9.112 'FPUTC' -- Write a single character in stream mode
- ========================================================
- _Description_:
- Write a single character in stream mode by bypassing normal
- formatted output. Stream I/O should not be mixed with normal
- record-oriented (formatted or unformatted) I/O on the same unit;
- the results are unpredictable.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- Note that the 'FGET' intrinsic is provided for backwards
- compatibility with 'g77'. GNU Fortran provides the Fortran 2003
- Stream facility. Programmers should consider the use of new stream
- IO feature in new code for future portability. See also *note
- Fortran 2003 status::.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FPUTC(UNIT, C [, STATUS])'
- 'STATUS = FPUTC(UNIT, C)'
- _Arguments_:
- UNIT The type shall be 'INTEGER'.
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, -1 on end-of-file and a
- system specific positive error code otherwise.
- _Example_:
- PROGRAM test_fputc
- CHARACTER(len=10) :: str = "gfortran"
- INTEGER :: fd = 42, i
- OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
- DO i = 1, len_trim(str)
- CALL fputc(fd, str(i:i))
- END DO
- CLOSE(fd)
- END PROGRAM
- _See also_:
- *note FPUT::, *note FGET::, *note FGETC::
- File: gfortran.info, Node: FRACTION, Next: FREE, Prev: FPUTC, Up: Intrinsic Procedures
- 9.113 'FRACTION' -- Fractional part of the model representation
- ===============================================================
- _Description_:
- 'FRACTION(X)' returns the fractional part of the model
- representation of 'X'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'Y = FRACTION(X)'
- _Arguments_:
- X The type of the argument shall be a 'REAL'.
- _Return value_:
- The return value is of the same type and kind as the argument. The
- fractional part of the model representation of 'X' is returned; it
- is 'X * RADIX(X)**(-EXPONENT(X))'.
- _Example_:
- program test_fraction
- real :: x
- x = 178.1387e-4
- print *, fraction(x), x * radix(x)**(-exponent(x))
- end program test_fraction
- File: gfortran.info, Node: FREE, Next: FSEEK, Prev: FRACTION, Up: Intrinsic Procedures
- 9.114 'FREE' -- Frees memory
- ============================
- _Description_:
- Frees memory previously allocated by 'MALLOC'. The 'FREE'
- intrinsic is an extension intended to be used with Cray pointers,
- and is provided in GNU Fortran to allow user to compile legacy
- code. For new code using Fortran 95 pointers, the memory
- de-allocation intrinsic is 'DEALLOCATE'.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL FREE(PTR)'
- _Arguments_:
- PTR The type shall be 'INTEGER'. It represents the
- location of the memory that should be
- de-allocated.
- _Return value_:
- None
- _Example_:
- See 'MALLOC' for an example.
- _See also_:
- *note MALLOC::
- File: gfortran.info, Node: FSEEK, Next: FSTAT, Prev: FREE, Up: Intrinsic Procedures
- 9.115 'FSEEK' -- Low level file positioning subroutine
- ======================================================
- _Description_:
- Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the
- OFFSET is taken as an absolute value 'SEEK_SET', if set to 1,
- OFFSET is taken to be relative to the current position 'SEEK_CUR',
- and if set to 2 relative to the end of the file 'SEEK_END'. On
- error, STATUS is set to a nonzero value. If STATUS the seek fails
- silently.
- This intrinsic routine is not fully backwards compatible with
- 'g77'. In 'g77', the 'FSEEK' takes a statement label instead of a
- STATUS variable. If FSEEK is used in old code, change
- CALL FSEEK(UNIT, OFFSET, WHENCE, *label)
- to
- INTEGER :: status
- CALL FSEEK(UNIT, OFFSET, WHENCE, status)
- IF (status /= 0) GOTO label
- Please note that GNU Fortran provides the Fortran 2003 Stream
- facility. Programmers should consider the use of new stream IO
- feature in new code for future portability. See also *note Fortran
- 2003 status::.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])'
- _Arguments_:
- UNIT Shall be a scalar of type 'INTEGER'.
- OFFSET Shall be a scalar of type 'INTEGER'.
- WHENCE Shall be a scalar of type 'INTEGER'. Its value
- shall be either 0, 1 or 2.
- STATUS (Optional) shall be a scalar of type
- 'INTEGER(4)'.
- _Example_:
- PROGRAM test_fseek
- INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
- INTEGER :: fd, offset, ierr
- ierr = 0
- offset = 5
- fd = 10
- OPEN(UNIT=fd, FILE="fseek.test")
- CALL FSEEK(fd, offset, SEEK_SET, ierr) ! move to OFFSET
- print *, FTELL(fd), ierr
- CALL FSEEK(fd, 0, SEEK_END, ierr) ! move to end
- print *, FTELL(fd), ierr
- CALL FSEEK(fd, 0, SEEK_SET, ierr) ! move to beginning
- print *, FTELL(fd), ierr
- CLOSE(UNIT=fd)
- END PROGRAM
- _See also_:
- *note FTELL::
- File: gfortran.info, Node: FSTAT, Next: FTELL, Prev: FSEEK, Up: Intrinsic Procedures
- 9.116 'FSTAT' -- Get file status
- ================================
- _Description_:
- 'FSTAT' is identical to *note STAT::, except that information about
- an already opened file is obtained.
- The elements in 'VALUES' are the same as described by *note STAT::.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FSTAT(UNIT, VALUES [, STATUS])'
- 'STATUS = FSTAT(UNIT, VALUES)'
- _Arguments_:
- UNIT An open I/O unit number of type 'INTEGER'.
- VALUES The type shall be 'INTEGER(4), DIMENSION(13)'.
- STATUS (Optional) status flag of type 'INTEGER(4)'.
- Returns 0 on success and a system specific error
- code otherwise.
- _Example_:
- See *note STAT:: for an example.
- _See also_:
- To stat a link: *note LSTAT::, to stat a file: *note STAT::
- File: gfortran.info, Node: FTELL, Next: GAMMA, Prev: FSTAT, Up: Intrinsic Procedures
- 9.117 'FTELL' -- Current stream position
- ========================================
- _Description_:
- Retrieves the current position within an open file.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL FTELL(UNIT, OFFSET)'
- 'OFFSET = FTELL(UNIT)'
- _Arguments_:
- OFFSET Shall of type 'INTEGER'.
- UNIT Shall of type 'INTEGER'.
- _Return value_:
- In either syntax, OFFSET is set to the current offset of unit
- number UNIT, or to -1 if the unit is not currently open.
- _Example_:
- PROGRAM test_ftell
- INTEGER :: i
- OPEN(10, FILE="temp.dat")
- CALL ftell(10,i)
- WRITE(*,*) i
- END PROGRAM
- _See also_:
- *note FSEEK::
- File: gfortran.info, Node: GAMMA, Next: GERROR, Prev: FTELL, Up: Intrinsic Procedures
- 9.118 'GAMMA' -- Gamma function
- ===============================
- _Description_:
- 'GAMMA(X)' computes Gamma (\Gamma) of X. For positive, integer
- values of X the Gamma function simplifies to the factorial function
- \Gamma(x)=(x-1)!.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'X = GAMMA(X)'
- _Arguments_:
- X Shall be of type 'REAL' and neither zero nor a
- negative integer.
- _Return value_:
- The return value is of type 'REAL' of the same kind as X.
- _Example_:
- program test_gamma
- real :: x = 1.0
- x = gamma(x) ! returns 1.0
- end program test_gamma
- _Specific names_:
- Name Argument Return type Standard
- 'GAMMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DGAMMA(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
- _See also_:
- Logarithm of the Gamma function: *note LOG_GAMMA::
- File: gfortran.info, Node: GERROR, Next: GETARG, Prev: GAMMA, Up: Intrinsic Procedures
- 9.119 'GERROR' -- Get last system error message
- ===============================================
- _Description_:
- Returns the system error message corresponding to the last system
- error. This resembles the functionality of 'strerror(3)' in C.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GERROR(RESULT)'
- _Arguments_:
- RESULT Shall of type 'CHARACTER' and of default
- _Example_:
- PROGRAM test_gerror
- CHARACTER(len=100) :: msg
- CALL gerror(msg)
- WRITE(*,*) msg
- END PROGRAM
- _See also_:
- *note IERRNO::, *note PERROR::
- File: gfortran.info, Node: GETARG, Next: GET_COMMAND, Prev: GERROR, Up: Intrinsic Procedures
- 9.120 'GETARG' -- Get command line arguments
- ============================================
- _Description_:
- Retrieve the POS-th argument that was passed on the command line
- when the containing program was invoked.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note GET_COMMAND_ARGUMENT:: intrinsic defined by the
- Fortran 2003 standard.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GETARG(POS, VALUE)'
- _Arguments_:
- POS Shall be of type 'INTEGER' and not wider than
- the default integer kind; POS \geq 0
- VALUE Shall be of type 'CHARACTER' and of default
- kind.
- VALUE Shall be of type 'CHARACTER'.
- _Return value_:
- After 'GETARG' returns, the VALUE argument holds the POSth command
- line argument. If VALUE can not hold the argument, it is truncated
- to fit the length of VALUE. If there are less than POS arguments
- specified at the command line, VALUE will be filled with blanks.
- If POS = 0, VALUE is set to the name of the program (on systems
- that support this feature).
- _Example_:
- PROGRAM test_getarg
- INTEGER :: i
- CHARACTER(len=32) :: arg
- DO i = 1, iargc()
- CALL getarg(i, arg)
- WRITE (*,*) arg
- END DO
- END PROGRAM
- _See also_:
- GNU Fortran 77 compatibility function: *note IARGC::
- Fortran 2003 functions and subroutines: *note GET_COMMAND::, *note
- GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
- File: gfortran.info, Node: GET_COMMAND, Next: GET_COMMAND_ARGUMENT, Prev: GETARG, Up: Intrinsic Procedures
- 9.121 'GET_COMMAND' -- Get the entire command line
- ==================================================
- _Description_:
- Retrieve the entire command line that was used to invoke the
- program.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GET_COMMAND([COMMAND, LENGTH, STATUS])'
- _Arguments_:
- COMMAND (Optional) shall be of type 'CHARACTER' and of
- default kind.
- LENGTH (Optional) Shall be of type 'INTEGER' and of
- default kind.
- STATUS (Optional) Shall be of type 'INTEGER' and of
- default kind.
- _Return value_:
- If COMMAND is present, stores the entire command line that was used
- to invoke the program in COMMAND. If LENGTH is present, it is
- assigned the length of the command line. If STATUS is present, it
- is assigned 0 upon success of the command, -1 if COMMAND is too
- short to store the command line, or a positive value in case of an
- error.
- _Example_:
- PROGRAM test_get_command
- CHARACTER(len=255) :: cmd
- CALL get_command(cmd)
- WRITE (*,*) TRIM(cmd)
- END PROGRAM
- _See also_:
- *note GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
- File: gfortran.info, Node: GET_COMMAND_ARGUMENT, Next: GETCWD, Prev: GET_COMMAND, Up: Intrinsic Procedures
- 9.122 'GET_COMMAND_ARGUMENT' -- Get command line arguments
- ==========================================================
- _Description_:
- Retrieve the NUMBER-th argument that was passed on the command line
- when the containing program was invoked.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])'
- _Arguments_:
- NUMBER Shall be a scalar of type 'INTEGER' and of
- default kind, NUMBER \geq 0
- VALUE (Optional) Shall be a scalar of type 'CHARACTER'
- and of default kind.
- LENGTH (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- STATUS (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- _Return value_:
- After 'GET_COMMAND_ARGUMENT' returns, the VALUE argument holds the
- NUMBER-th command line argument. If VALUE can not hold the
- argument, it is truncated to fit the length of VALUE. If there are
- less than NUMBER arguments specified at the command line, VALUE
- will be filled with blanks. If NUMBER = 0, VALUE is set to the
- name of the program (on systems that support this feature). The
- LENGTH argument contains the length of the NUMBER-th command line
- argument. If the argument retrieval fails, STATUS is a positive
- number; if VALUE contains a truncated command line argument, STATUS
- is -1; and otherwise the STATUS is zero.
- _Example_:
- PROGRAM test_get_command_argument
- INTEGER :: i
- CHARACTER(len=32) :: arg
- i = 0
- DO
- CALL get_command_argument(i, arg)
- IF (LEN_TRIM(arg) == 0) EXIT
- WRITE (*,*) TRIM(arg)
- i = i+1
- END DO
- END PROGRAM
- _See also_:
- *note GET_COMMAND::, *note COMMAND_ARGUMENT_COUNT::
- File: gfortran.info, Node: GETCWD, Next: GETENV, Prev: GET_COMMAND_ARGUMENT, Up: Intrinsic Procedures
- 9.123 'GETCWD' -- Get current working directory
- ===============================================
- _Description_:
- Get current working directory.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL GETCWD(C [, STATUS])'
- 'STATUS = GETCWD(C)'
- _Arguments_:
- C The type shall be 'CHARACTER' and of default
- kind.
- STATUS (Optional) status flag. Returns 0 on success, a
- system specific and nonzero error code
- otherwise.
- _Example_:
- PROGRAM test_getcwd
- CHARACTER(len=255) :: cwd
- CALL getcwd(cwd)
- WRITE(*,*) TRIM(cwd)
- END PROGRAM
- _See also_:
- *note CHDIR::
- File: gfortran.info, Node: GETENV, Next: GET_ENVIRONMENT_VARIABLE, Prev: GETCWD, Up: Intrinsic Procedures
- 9.124 'GETENV' -- Get an environmental variable
- ===============================================
- _Description_:
- Get the VALUE of the environmental variable NAME.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note GET_ENVIRONMENT_VARIABLE:: intrinsic defined by the
- Fortran 2003 standard.
- Note that 'GETENV' need not be thread-safe. It is the
- responsibility of the user to ensure that the environment is not
- being updated concurrently with a call to the 'GETENV' intrinsic.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GETENV(NAME, VALUE)'
- _Arguments_:
- NAME Shall be of type 'CHARACTER' and of default
- kind.
- VALUE Shall be of type 'CHARACTER' and of default
- kind.
- _Return value_:
- Stores the value of NAME in VALUE. If VALUE is not large enough to
- hold the data, it is truncated. If NAME is not set, VALUE will be
- filled with blanks.
- _Example_:
- PROGRAM test_getenv
- CHARACTER(len=255) :: homedir
- CALL getenv("HOME", homedir)
- WRITE (*,*) TRIM(homedir)
- END PROGRAM
- _See also_:
- *note GET_ENVIRONMENT_VARIABLE::
- File: gfortran.info, Node: GET_ENVIRONMENT_VARIABLE, Next: GETGID, Prev: GETENV, Up: Intrinsic Procedures
- 9.125 'GET_ENVIRONMENT_VARIABLE' -- Get an environmental variable
- =================================================================
- _Description_:
- Get the VALUE of the environmental variable NAME.
- Note that 'GET_ENVIRONMENT_VARIABLE' need not be thread-safe. It
- is the responsibility of the user to ensure that the environment is
- not being updated concurrently with a call to the
- 'GET_ENVIRONMENT_VARIABLE' intrinsic.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS,
- TRIM_NAME)'
- _Arguments_:
- NAME Shall be a scalar of type 'CHARACTER' and of
- default kind.
- VALUE (Optional) Shall be a scalar of type 'CHARACTER'
- and of default kind.
- LENGTH (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- STATUS (Optional) Shall be a scalar of type 'INTEGER'
- and of default kind.
- TRIM_NAME (Optional) Shall be a scalar of type 'LOGICAL'
- and of default kind.
- _Return value_:
- Stores the value of NAME in VALUE. If VALUE is not large enough to
- hold the data, it is truncated. If NAME is not set, VALUE will be
- filled with blanks. Argument LENGTH contains the length needed for
- storing the environment variable NAME or zero if it is not present.
- STATUS is -1 if VALUE is present but too short for the environment
- variable; it is 1 if the environment variable does not exist and 2
- if the processor does not support environment variables; in all
- other cases STATUS is zero. If TRIM_NAME is present with the value
- '.FALSE.', the trailing blanks in NAME are significant; otherwise
- they are not part of the environment variable name.
- _Example_:
- PROGRAM test_getenv
- CHARACTER(len=255) :: homedir
- CALL get_environment_variable("HOME", homedir)
- WRITE (*,*) TRIM(homedir)
- END PROGRAM
- File: gfortran.info, Node: GETGID, Next: GETLOG, Prev: GET_ENVIRONMENT_VARIABLE, Up: Intrinsic Procedures
- 9.126 'GETGID' -- Group ID function
- ===================================
- _Description_:
- Returns the numerical group ID of the current process.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = GETGID()'
- _Return value_:
- The return value of 'GETGID' is an 'INTEGER' of the default kind.
- _Example_:
- See 'GETPID' for an example.
- _See also_:
- *note GETPID::, *note GETUID::
- File: gfortran.info, Node: GETLOG, Next: GETPID, Prev: GETGID, Up: Intrinsic Procedures
- 9.127 'GETLOG' -- Get login name
- ================================
- _Description_:
- Gets the username under which the program is running.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GETLOG(C)'
- _Arguments_:
- C Shall be of type 'CHARACTER' and of default
- kind.
- _Return value_:
- Stores the current user name in LOGIN. (On systems where POSIX
- functions 'geteuid' and 'getpwuid' are not available, and the
- 'getlogin' function is not implemented either, this will return a
- blank string.)
- _Example_:
- PROGRAM TEST_GETLOG
- CHARACTER(32) :: login
- CALL GETLOG(login)
- WRITE(*,*) login
- END PROGRAM
- _See also_:
- *note GETUID::
- File: gfortran.info, Node: GETPID, Next: GETUID, Prev: GETLOG, Up: Intrinsic Procedures
- 9.128 'GETPID' -- Process ID function
- =====================================
- _Description_:
- Returns the numerical process identifier of the current process.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = GETPID()'
- _Return value_:
- The return value of 'GETPID' is an 'INTEGER' of the default kind.
- _Example_:
- program info
- print *, "The current process ID is ", getpid()
- print *, "Your numerical user ID is ", getuid()
- print *, "Your numerical group ID is ", getgid()
- end program info
- _See also_:
- *note GETGID::, *note GETUID::
- File: gfortran.info, Node: GETUID, Next: GMTIME, Prev: GETPID, Up: Intrinsic Procedures
- 9.129 'GETUID' -- User ID function
- ==================================
- _Description_:
- Returns the numerical user ID of the current process.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = GETUID()'
- _Return value_:
- The return value of 'GETUID' is an 'INTEGER' of the default kind.
- _Example_:
- See 'GETPID' for an example.
- _See also_:
- *note GETPID::, *note GETLOG::
- File: gfortran.info, Node: GMTIME, Next: HOSTNM, Prev: GETUID, Up: Intrinsic Procedures
- 9.130 'GMTIME' -- Convert time to GMT info
- ==========================================
- _Description_:
- Given a system time value TIME (as provided by the *note TIME::
- intrinsic), fills VALUES with values extracted from it appropriate
- to the UTC time zone (Universal Coordinated Time, also known in
- some countries as GMT, Greenwich Mean Time), using 'gmtime(3)'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL GMTIME(TIME, VALUES)'
- _Arguments_:
- TIME An 'INTEGER' scalar expression corresponding to
- a system time, with 'INTENT(IN)'.
- VALUES A default 'INTEGER' array with 9 elements, with
- 'INTENT(OUT)'.
- _Return value_:
- The elements of VALUES are assigned as follows:
- 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
- seconds
- 2. Minutes after the hour, range 0-59
- 3. Hours past midnight, range 0-23
- 4. Day of month, range 1-31
- 5. Number of months since January, range 0-11
- 6. Years since 1900
- 7. Number of days since Sunday, range 0-6
- 8. Days since January 1, range 0-365
- 9. Daylight savings indicator: positive if daylight savings is in
- effect, zero if not, and negative if the information is not
- available.
- _See also_:
- *note DATE_AND_TIME::, *note CTIME::, *note LTIME::, *note TIME::,
- *note TIME8::
- File: gfortran.info, Node: HOSTNM, Next: HUGE, Prev: GMTIME, Up: Intrinsic Procedures
- 9.131 'HOSTNM' -- Get system host name
- ======================================
- _Description_:
- Retrieves the host name of the system on which the program is
- running.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL HOSTNM(C [, STATUS])'
- 'STATUS = HOSTNM(NAME)'
- _Arguments_:
- C Shall of type 'CHARACTER' and of default kind.
- STATUS (Optional) status flag of type 'INTEGER'.
- Returns 0 on success, or a system specific error
- code otherwise.
- _Return value_:
- In either syntax, NAME is set to the current hostname if it can be
- obtained, or to a blank string otherwise.
- File: gfortran.info, Node: HUGE, Next: HYPOT, Prev: HOSTNM, Up: Intrinsic Procedures
- 9.132 'HUGE' -- Largest number of a kind
- ========================================
- _Description_:
- 'HUGE(X)' returns the largest number that is not an infinity in the
- model of the type of 'X'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = HUGE(X)'
- _Arguments_:
- X Shall be of type 'REAL' or 'INTEGER'.
- _Return value_:
- The return value is of the same type and kind as X
- _Example_:
- program test_huge_tiny
- print *, huge(0), huge(0.0), huge(0.0d0)
- print *, tiny(0.0), tiny(0.0d0)
- end program test_huge_tiny
- File: gfortran.info, Node: HYPOT, Next: IACHAR, Prev: HUGE, Up: Intrinsic Procedures
- 9.133 'HYPOT' -- Euclidean distance function
- ============================================
- _Description_:
- 'HYPOT(X,Y)' is the Euclidean distance function. It is equal to
- \sqrt{X^2 + Y^2}, without undue underflow or overflow.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = HYPOT(X, Y)'
- _Arguments_:
- X The type shall be 'REAL'.
- Y The type and kind type parameter shall be the
- same as X.
- _Return value_:
- The return value has the same type and kind type parameter as X.
- _Example_:
- program test_hypot
- real(4) :: x = 1.e0_4, y = 0.5e0_4
- x = hypot(x,y)
- end program test_hypot
- File: gfortran.info, Node: IACHAR, Next: IALL, Prev: HYPOT, Up: Intrinsic Procedures
- 9.134 'IACHAR' -- Code in ASCII collating sequence
- ==================================================
- _Description_:
- 'IACHAR(C)' returns the code for the ASCII character in the first
- character position of 'C'.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IACHAR(C [, KIND])'
- _Arguments_:
- C Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Example_:
- program test_iachar
- integer i
- i = iachar(' ')
- end program test_iachar
- _Note_:
- See *note ICHAR:: for a discussion of converting between numerical
- values and formatted string representations.
- _See also_:
- *note ACHAR::, *note CHAR::, *note ICHAR::
- File: gfortran.info, Node: IALL, Next: IAND, Prev: IACHAR, Up: Intrinsic Procedures
- 9.135 'IALL' -- Bitwise AND of array elements
- =============================================
- _Description_:
- Reduces with bitwise AND the elements of ARRAY along dimension DIM
- if the corresponding element in MASK is 'TRUE'.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = IALL(ARRAY[, MASK])'
- 'RESULT = IALL(ARRAY, DIM[, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the bitwise ALL of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_iall
- INTEGER(1) :: a(2)
- a(1) = b'00100100'
- a(2) = b'01101010'
- ! prints 00100000
- PRINT '(b8.8)', IALL(a)
- END PROGRAM
- _See also_:
- *note IANY::, *note IPARITY::, *note IAND::
- File: gfortran.info, Node: IAND, Next: IANY, Prev: IALL, Up: Intrinsic Procedures
- 9.136 'IAND' -- Bitwise logical and
- ===================================
- _Description_:
- Bitwise logical 'AND'.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IAND(I, J)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- J The type shall be 'INTEGER', of the same kind as
- I. (As a GNU extension, different kinds are
- also permitted.)
- _Return value_:
- The return type is 'INTEGER', of the same kind as the arguments.
- (If the argument kinds differ, it is of the same kind as the larger
- argument.)
- _Example_:
- PROGRAM test_iand
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
- WRITE (*,*) IAND(a, b)
- END PROGRAM
- _Specific names_:
- Name Argument Return type Standard
- 'IAND(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BIAND(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIAND(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIAND(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIAND(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IOR::, *note IEOR::, *note IBITS::, *note IBSET::, *note
- IBCLR::, *note NOT::
- File: gfortran.info, Node: IANY, Next: IARGC, Prev: IAND, Up: Intrinsic Procedures
- 9.137 'IANY' -- Bitwise OR of array elements
- ============================================
- _Description_:
- Reduces with bitwise OR (inclusive or) the elements of ARRAY along
- dimension DIM if the corresponding element in MASK is 'TRUE'.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = IANY(ARRAY[, MASK])'
- 'RESULT = IANY(ARRAY, DIM[, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the bitwise OR of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_iany
- INTEGER(1) :: a(2)
- a(1) = b'00100100'
- a(2) = b'01101010'
- ! prints 01101110
- PRINT '(b8.8)', IANY(a)
- END PROGRAM
- _See also_:
- *note IPARITY::, *note IALL::, *note IOR::
- File: gfortran.info, Node: IARGC, Next: IBCLR, Prev: IANY, Up: Intrinsic Procedures
- 9.138 'IARGC' -- Get the number of command line arguments
- =========================================================
- _Description_:
- 'IARGC' returns the number of arguments passed on the command line
- when the containing program was invoked.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note COMMAND_ARGUMENT_COUNT:: intrinsic defined by the
- Fortran 2003 standard.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = IARGC()'
- _Arguments_:
- None.
- _Return value_:
- The number of command line arguments, type 'INTEGER(4)'.
- _Example_:
- See *note GETARG::
- _See also_:
- GNU Fortran 77 compatibility subroutine: *note GETARG::
- Fortran 2003 functions and subroutines: *note GET_COMMAND::, *note
- GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
- File: gfortran.info, Node: IBCLR, Next: IBITS, Prev: IARGC, Up: Intrinsic Procedures
- 9.139 'IBCLR' -- Clear bit
- ==========================
- _Description_:
- 'IBCLR' returns the value of I with the bit at position POS set to
- zero.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IBCLR(I, POS)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _Specific names_:
- Name Argument Return type Standard
- 'IBCLR(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BBCLR(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIBCLR(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIBCLR(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIBCLR(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IBITS::, *note IBSET::, *note IAND::, *note IOR::, *note
- IEOR::, *note MVBITS::
- File: gfortran.info, Node: IBITS, Next: IBSET, Prev: IBCLR, Up: Intrinsic Procedures
- 9.140 'IBITS' -- Bit extraction
- ===============================
- _Description_:
- 'IBITS' extracts a field of length LEN from I, starting from bit
- position POS and extending left for LEN bits. The result is
- right-justified and the remaining bits are zeroed. The value of
- 'POS+LEN' must be less than or equal to the value 'BIT_SIZE(I)'.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IBITS(I, POS, LEN)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
- LEN The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _Specific names_:
- Name Argument Return type Standard
- 'IBITS(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BBITS(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIBITS(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIBITS(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIBITS(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note BIT_SIZE::, *note IBCLR::, *note IBSET::, *note IAND::, *note
- IOR::, *note IEOR::
- File: gfortran.info, Node: IBSET, Next: ICHAR, Prev: IBITS, Up: Intrinsic Procedures
- 9.141 'IBSET' -- Set bit
- ========================
- _Description_:
- 'IBSET' returns the value of I with the bit at position POS set to
- one.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IBSET(I, POS)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- POS The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _Specific names_:
- Name Argument Return type Standard
- 'IBSET(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BBSET(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIBSET(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIBSET(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIBSET(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IBCLR::, *note IBITS::, *note IAND::, *note IOR::, *note
- IEOR::, *note MVBITS::
- File: gfortran.info, Node: ICHAR, Next: IDATE, Prev: IBSET, Up: Intrinsic Procedures
- 9.142 'ICHAR' -- Character-to-integer conversion function
- =========================================================
- _Description_:
- 'ICHAR(C)' returns the code for the character in the first
- character position of 'C' in the system's native character set.
- The correspondence between characters and their codes is not
- necessarily the same across different GNU Fortran implementations.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ICHAR(C [, KIND])'
- _Arguments_:
- C Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Example_:
- program test_ichar
- integer i
- i = ichar(' ')
- end program test_ichar
- _Specific names_:
- Name Argument Return type Standard
- 'ICHAR(C)' 'CHARACTER 'INTEGER(4)' Fortran 77 and
- C' later
- _Note_:
- No intrinsic exists to convert between a numeric value and a
- formatted character string representation - for instance, given the
- 'CHARACTER' value ''154'', obtaining an 'INTEGER' or 'REAL' value
- with the value 154, or vice versa. Instead, this functionality is
- provided by internal-file I/O, as in the following example:
- program read_val
- integer value
- character(len=10) string, string2
- string = '154'
- ! Convert a string to a numeric value
- read (string,'(I10)') value
- print *, value
- ! Convert a value to a formatted string
- write (string2,'(I10)') value
- print *, string2
- end program read_val
- _See also_:
- *note ACHAR::, *note CHAR::, *note IACHAR::
- File: gfortran.info, Node: IDATE, Next: IEOR, Prev: ICHAR, Up: Intrinsic Procedures
- 9.143 'IDATE' -- Get current local time subroutine (day/month/year)
- ===================================================================
- _Description_:
- 'IDATE(VALUES)' Fills VALUES with the numerical values at the
- current local time. The day (in the range 1-31), month (in the
- range 1-12), and year appear in elements 1, 2, and 3 of VALUES,
- respectively. The year has four significant digits.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL IDATE(VALUES)'
- _Arguments_:
- VALUES The type shall be 'INTEGER, DIMENSION(3)' and
- the kind shall be the default integer kind.
- _Return value_:
- Does not return anything.
- _Example_:
- program test_idate
- integer, dimension(3) :: tarray
- call idate(tarray)
- print *, tarray(1)
- print *, tarray(2)
- print *, tarray(3)
- end program test_idate
- _See also_:
- *note DATE_AND_TIME::
- File: gfortran.info, Node: IEOR, Next: IERRNO, Prev: IDATE, Up: Intrinsic Procedures
- 9.144 'IEOR' -- Bitwise logical exclusive or
- ============================================
- _Description_:
- 'IEOR' returns the bitwise Boolean exclusive-OR of I and J.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IEOR(I, J)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- J The type shall be 'INTEGER', of the same kind as
- I. (As a GNU extension, different kinds are
- also permitted.)
- _Return value_:
- The return type is 'INTEGER', of the same kind as the arguments.
- (If the argument kinds differ, it is of the same kind as the larger
- argument.)
- _Specific names_:
- Name Argument Return type Standard
- 'IEOR(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BIEOR(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIEOR(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIEOR(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIEOR(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
- IBCLR::, *note NOT::
- File: gfortran.info, Node: IERRNO, Next: IMAGE_INDEX, Prev: IEOR, Up: Intrinsic Procedures
- 9.145 'IERRNO' -- Get the last system error number
- ==================================================
- _Description_:
- Returns the last system error number, as given by the C 'errno'
- variable.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = IERRNO()'
- _Arguments_:
- None.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _See also_:
- *note PERROR::
- File: gfortran.info, Node: IMAGE_INDEX, Next: INDEX intrinsic, Prev: IERRNO, Up: Intrinsic Procedures
- 9.146 'IMAGE_INDEX' -- Function that converts a cosubscript to an image index
- =============================================================================
- _Description_:
- Returns the image index belonging to a cosubscript.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Inquiry function.
- _Syntax_:
- 'RESULT = IMAGE_INDEX(COARRAY, SUB)'
- _Arguments_: None.
- COARRAY Coarray of any type.
- SUB default integer rank-1 array of a size equal to
- the corank of COARRAY.
- _Return value_:
- Scalar default integer with the value of the image index which
- corresponds to the cosubscripts. For invalid cosubscripts the
- result is zero.
- _Example_:
- INTEGER :: array[2,-1:4,8,*]
- ! Writes 28 (or 0 if there are fewer than 28 images)
- WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1])
- _See also_:
- *note THIS_IMAGE::, *note NUM_IMAGES::
- File: gfortran.info, Node: INDEX intrinsic, Next: INT, Prev: IMAGE_INDEX, Up: Intrinsic Procedures
- 9.147 'INDEX' -- Position of a substring within a string
- ========================================================
- _Description_:
- Returns the position of the start of the first occurrence of string
- SUBSTRING as a substring in STRING, counting from one. If
- SUBSTRING is not present in STRING, zero is returned. If the BACK
- argument is present and true, the return value is the start of the
- last occurrence rather than the first.
- _Standard_:
- Fortran 77 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])'
- _Arguments_:
- STRING Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- SUBSTRING Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
- BACK (Optional) Shall be a scalar 'LOGICAL', with
- 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Specific names_:
- Name Argument Return type Standard
- 'INDEX(STRING, 'CHARACTER' 'INTEGER(4)' Fortran 77 and
- SUBSTRING)' later
- _See also_:
- *note SCAN::, *note VERIFY::
- File: gfortran.info, Node: INT, Next: INT2, Prev: INDEX intrinsic, Up: Intrinsic Procedures
- 9.148 'INT' -- Convert to integer type
- ======================================
- _Description_:
- Convert to integer type
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = INT(A [, KIND))'
- _Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- These functions return a 'INTEGER' variable or array under the
- following rules:
- (A)
- If A is of type 'INTEGER', 'INT(A) = A'
- (B)
- If A is of type 'REAL' and |A| < 1, 'INT(A)' equals '0'. If
- |A| \geq 1, then 'INT(A)' is the integer whose magnitude is
- the largest integer that does not exceed the magnitude of A
- and whose sign is the same as the sign of A.
- (C)
- If A is of type 'COMPLEX', rule B is applied to the real part
- of A.
- _Example_:
- program test_int
- integer :: i = 42
- complex :: z = (-3.7, 1.0)
- print *, int(i)
- print *, int(z), int(z,8)
- end program
- _Specific names_:
- Name Argument Return type Standard
- 'INT(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and
- later
- 'IFIX(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and
- later
- 'IDINT(A)' 'REAL(8) A' 'INTEGER' Fortran 77 and
- later
- File: gfortran.info, Node: INT2, Next: INT8, Prev: INT, Up: Intrinsic Procedures
- 9.149 'INT2' -- Convert to 16-bit integer type
- ==============================================
- _Description_:
- Convert to a 'KIND=2' integer type. This is equivalent to the
- standard 'INT' intrinsic with an optional argument of 'KIND=2', and
- is only included for backwards compatibility.
- The 'SHORT' intrinsic is equivalent to 'INT2'.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = INT2(A)'
- _Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
- _Return value_:
- The return value is a 'INTEGER(2)' variable.
- _See also_:
- *note INT::, *note INT8::, *note LONG::
- File: gfortran.info, Node: INT8, Next: IOR, Prev: INT2, Up: Intrinsic Procedures
- 9.150 'INT8' -- Convert to 64-bit integer type
- ==============================================
- _Description_:
- Convert to a 'KIND=8' integer type. This is equivalent to the
- standard 'INT' intrinsic with an optional argument of 'KIND=8', and
- is only included for backwards compatibility.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = INT8(A)'
- _Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
- _Return value_:
- The return value is a 'INTEGER(8)' variable.
- _See also_:
- *note INT::, *note INT2::, *note LONG::
- File: gfortran.info, Node: IOR, Next: IPARITY, Prev: INT8, Up: Intrinsic Procedures
- 9.151 'IOR' -- Bitwise logical or
- =================================
- _Description_:
- 'IOR' returns the bitwise Boolean inclusive-OR of I and J.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IOR(I, J)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- J The type shall be 'INTEGER', of the same kind as
- I. (As a GNU extension, different kinds are
- also permitted.)
- _Return value_:
- The return type is 'INTEGER', of the same kind as the arguments.
- (If the argument kinds differ, it is of the same kind as the larger
- argument.)
- _Specific names_:
- Name Argument Return type Standard
- 'IOR(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BIOR(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IIOR(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JIOR(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KIOR(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IEOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
- IBCLR::, *note NOT::
- File: gfortran.info, Node: IPARITY, Next: IRAND, Prev: IOR, Up: Intrinsic Procedures
- 9.152 'IPARITY' -- Bitwise XOR of array elements
- ================================================
- _Description_:
- Reduces with bitwise XOR (exclusive or) the elements of ARRAY along
- dimension DIM if the corresponding element in MASK is 'TRUE'.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = IPARITY(ARRAY[, MASK])'
- 'RESULT = IPARITY(ARRAY, DIM[, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the bitwise XOR of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_iparity
- INTEGER(1) :: a(2)
- a(1) = b'00100100'
- a(2) = b'01101010'
- ! prints 01001110
- PRINT '(b8.8)', IPARITY(a)
- END PROGRAM
- _See also_:
- *note IANY::, *note IALL::, *note IEOR::, *note PARITY::
- File: gfortran.info, Node: IRAND, Next: IS_IOSTAT_END, Prev: IPARITY, Up: Intrinsic Procedures
- 9.153 'IRAND' -- Integer pseudo-random number
- =============================================
- _Description_:
- 'IRAND(FLAG)' returns a pseudo-random number from a uniform
- distribution between 0 and a system-dependent limit (which is in
- most cases 2147483647). If FLAG is 0, the next number in the
- current sequence is returned; if FLAG is 1, the generator is
- restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is
- used as a new seed with 'SRAND'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. It implements a simple modulo generator as
- provided by 'g77'. For new code, one should consider the use of
- *note RANDOM_NUMBER:: as it implements a superior algorithm.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = IRAND(I)'
- _Arguments_:
- I Shall be a scalar 'INTEGER' of kind 4.
- _Return value_:
- The return value is of 'INTEGER(kind=4)' type.
- _Example_:
- program test_irand
- integer,parameter :: seed = 86456
- call srand(seed)
- print *, irand(), irand(), irand(), irand()
- print *, irand(seed), irand(), irand(), irand()
- end program test_irand
- File: gfortran.info, Node: IS_IOSTAT_END, Next: IS_IOSTAT_EOR, Prev: IRAND, Up: Intrinsic Procedures
- 9.154 'IS_IOSTAT_END' -- Test for end-of-file value
- ===================================================
- _Description_:
- 'IS_IOSTAT_END' tests whether an variable has the value of the I/O
- status "end of file". The function is equivalent to comparing the
- variable with the 'IOSTAT_END' parameter of the intrinsic module
- 'ISO_FORTRAN_ENV'.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IS_IOSTAT_END(I)'
- _Arguments_:
- I Shall be of the type 'INTEGER'.
- _Return value_:
- Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has
- the value which indicates an end of file condition for 'IOSTAT='
- specifiers, and is '.FALSE.' otherwise.
- _Example_:
- PROGRAM iostat
- IMPLICIT NONE
- INTEGER :: stat, i
- OPEN(88, FILE='test.dat')
- READ(88, *, IOSTAT=stat) i
- IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
- END PROGRAM
- File: gfortran.info, Node: IS_IOSTAT_EOR, Next: ISATTY, Prev: IS_IOSTAT_END, Up: Intrinsic Procedures
- 9.155 'IS_IOSTAT_EOR' -- Test for end-of-record value
- =====================================================
- _Description_:
- 'IS_IOSTAT_EOR' tests whether an variable has the value of the I/O
- status "end of record". The function is equivalent to comparing
- the variable with the 'IOSTAT_EOR' parameter of the intrinsic
- module 'ISO_FORTRAN_ENV'.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = IS_IOSTAT_EOR(I)'
- _Arguments_:
- I Shall be of the type 'INTEGER'.
- _Return value_:
- Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has
- the value which indicates an end of file condition for 'IOSTAT='
- specifiers, and is '.FALSE.' otherwise.
- _Example_:
- PROGRAM iostat
- IMPLICIT NONE
- INTEGER :: stat, i(50)
- OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
- READ(88, IOSTAT=stat) i
- IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
- END PROGRAM
- File: gfortran.info, Node: ISATTY, Next: ISHFT, Prev: IS_IOSTAT_EOR, Up: Intrinsic Procedures
- 9.156 'ISATTY' -- Whether a unit is a terminal device.
- ======================================================
- _Description_:
- Determine whether a unit is connected to a terminal device.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = ISATTY(UNIT)'
- _Arguments_:
- UNIT Shall be a scalar 'INTEGER'.
- _Return value_:
- Returns '.TRUE.' if the UNIT is connected to a terminal device,
- '.FALSE.' otherwise.
- _Example_:
- PROGRAM test_isatty
- INTEGER(kind=1) :: unit
- DO unit = 1, 10
- write(*,*) isatty(unit=unit)
- END DO
- END PROGRAM
- _See also_:
- *note TTYNAM::
- File: gfortran.info, Node: ISHFT, Next: ISHFTC, Prev: ISATTY, Up: Intrinsic Procedures
- 9.157 'ISHFT' -- Shift bits
- ===========================
- _Description_:
- 'ISHFT' returns a value corresponding to I with all of the bits
- shifted SHIFT places. A value of SHIFT greater than zero
- corresponds to a left shift, a value of zero corresponds to no
- shift, and a value less than zero corresponds to a right shift. If
- the absolute value of SHIFT is greater than 'BIT_SIZE(I)', the
- value is undefined. Bits shifted out from the left end or right
- end are lost; zeros are shifted in from the opposite end.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ISHFT(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _Specific names_:
- Name Argument Return type Standard
- 'ISHFT(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BSHFT(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IISHFT(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JISHFT(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KISHFT(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note ISHFTC::
- File: gfortran.info, Node: ISHFTC, Next: ISNAN, Prev: ISHFT, Up: Intrinsic Procedures
- 9.158 'ISHFTC' -- Shift bits circularly
- =======================================
- _Description_:
- 'ISHFTC' returns a value corresponding to I with the rightmost SIZE
- bits shifted circularly SHIFT places; that is, bits shifted out one
- end are shifted into the opposite end. A value of SHIFT greater
- than zero corresponds to a left shift, a value of zero corresponds
- to no shift, and a value less than zero corresponds to a right
- shift. The absolute value of SHIFT must be less than SIZE. If the
- SIZE argument is omitted, it is taken to be equivalent to
- 'BIT_SIZE(I)'.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = ISHFTC(I, SHIFT [, SIZE])'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- SIZE (Optional) The type shall be 'INTEGER'; the
- value must be greater than zero and less than or
- equal to 'BIT_SIZE(I)'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _Specific names_:
- Name Argument Return type Standard
- 'ISHFTC(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BSHFTC(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IISHFTC(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JISHFTC(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KISHFTC(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note ISHFT::
- File: gfortran.info, Node: ISNAN, Next: ITIME, Prev: ISHFTC, Up: Intrinsic Procedures
- 9.159 'ISNAN' -- Test for a NaN
- ===============================
- _Description_:
- 'ISNAN' tests whether a floating-point value is an IEEE
- Not-a-Number (NaN).
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'ISNAN(X)'
- _Arguments_:
- X Variable of the type 'REAL'.
-
- _Return value_:
- Returns a default-kind 'LOGICAL'. The returned value is 'TRUE' if
- X is a NaN and 'FALSE' otherwise.
- _Example_:
- program test_nan
- implicit none
- real :: x
- x = -1.0
- x = sqrt(x)
- if (isnan(x)) stop '"x" is a NaN'
- end program test_nan
- File: gfortran.info, Node: ITIME, Next: KILL, Prev: ISNAN, Up: Intrinsic Procedures
- 9.160 'ITIME' -- Get current local time subroutine (hour/minutes/seconds)
- =========================================================================
- _Description_:
- 'ITIME(VALUES)' Fills VALUES with the numerical values at the
- current local time. The hour (in the range 1-24), minute (in the
- range 1-60), and seconds (in the range 1-60) appear in elements 1,
- 2, and 3 of VALUES, respectively.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL ITIME(VALUES)'
- _Arguments_:
- VALUES The type shall be 'INTEGER, DIMENSION(3)' and
- the kind shall be the default integer kind.
- _Return value_:
- Does not return anything.
- _Example_:
- program test_itime
- integer, dimension(3) :: tarray
- call itime(tarray)
- print *, tarray(1)
- print *, tarray(2)
- print *, tarray(3)
- end program test_itime
- _See also_:
- *note DATE_AND_TIME::
- File: gfortran.info, Node: KILL, Next: KIND, Prev: ITIME, Up: Intrinsic Procedures
- 9.161 'KILL' -- Send a signal to a process
- ==========================================
- _Description_:
- _Standard_:
- Sends the signal specified by SIGNAL to the process PID. See
- 'kill(2)'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL KILL(C, VALUE [, STATUS])'
- 'STATUS = KILL(C, VALUE)'
- _Arguments_:
- C Shall be a scalar 'INTEGER', with 'INTENT(IN)'
- VALUE Shall be a scalar 'INTEGER', with 'INTENT(IN)'
- STATUS (Optional) status flag of type 'INTEGER(4)' or
- 'INTEGER(8)'. Returns 0 on success, or a
- system-specific error code otherwise.
- _See also_:
- *note ABORT::, *note EXIT::
- File: gfortran.info, Node: KIND, Next: LBOUND, Prev: KILL, Up: Intrinsic Procedures
- 9.162 'KIND' -- Kind of an entity
- =================================
- _Description_:
- 'KIND(X)' returns the kind value of the entity X.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'K = KIND(X)'
- _Arguments_:
- X Shall be of type 'LOGICAL', 'INTEGER', 'REAL',
- 'COMPLEX' or 'CHARACTER'.
- _Return value_:
- The return value is a scalar of type 'INTEGER' and of the default
- integer kind.
- _Example_:
- program test_kind
- integer,parameter :: kc = kind(' ')
- integer,parameter :: kl = kind(.true.)
- print *, "The default character kind is ", kc
- print *, "The default logical kind is ", kl
- end program test_kind
- File: gfortran.info, Node: LBOUND, Next: LCOBOUND, Prev: KIND, Up: Intrinsic Procedures
- 9.163 'LBOUND' -- Lower dimension bounds of an array
- ====================================================
- _Description_:
- Returns the lower bounds of an array, or a single lower bound along
- the DIM dimension.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = LBOUND(ARRAY [, DIM [, KIND]])'
- _Arguments_:
- ARRAY Shall be an array, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the lower bounds of ARRAY. If
- DIM is present, the result is a scalar corresponding to the lower
- bound of the array along that dimension. If ARRAY is an expression
- rather than a whole array or array structure component, or if it
- has a zero extent along the relevant dimension, the lower bound is
- taken to be 1.
- _See also_:
- *note UBOUND::, *note LCOBOUND::
- File: gfortran.info, Node: LCOBOUND, Next: LEADZ, Prev: LBOUND, Up: Intrinsic Procedures
- 9.164 'LCOBOUND' -- Lower codimension bounds of an array
- ========================================================
- _Description_:
- Returns the lower bounds of a coarray, or a single lower cobound
- along the DIM codimension.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])'
- _Arguments_:
- ARRAY Shall be an coarray, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the lower cobounds of COARRAY.
- If DIM is present, the result is a scalar corresponding to the
- lower cobound of the array along that codimension.
- _See also_:
- *note UCOBOUND::, *note LBOUND::
- File: gfortran.info, Node: LEADZ, Next: LEN, Prev: LCOBOUND, Up: Intrinsic Procedures
- 9.165 'LEADZ' -- Number of leading zero bits of an integer
- ==========================================================
- _Description_:
- 'LEADZ' returns the number of leading zero bits of an integer.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LEADZ(I)'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- _Return value_:
- The type of the return value is the default 'INTEGER'. If all the
- bits of 'I' are zero, the result value is 'BIT_SIZE(I)'.
- _Example_:
- PROGRAM test_leadz
- WRITE (*,*) BIT_SIZE(1) ! prints 32
- WRITE (*,*) LEADZ(1) ! prints 31
- END PROGRAM
- _See also_:
- *note BIT_SIZE::, *note TRAILZ::, *note POPCNT::, *note POPPAR::
- File: gfortran.info, Node: LEN, Next: LEN_TRIM, Prev: LEADZ, Up: Intrinsic Procedures
- 9.166 'LEN' -- Length of a character entity
- ===========================================
- _Description_:
- Returns the length of a character string. If STRING is an array,
- the length of an element of STRING is returned. Note that STRING
- need not be defined when this intrinsic is invoked, since only the
- length, not the content, of STRING is needed.
- _Standard_:
- Fortran 77 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'L = LEN(STRING [, KIND])'
- _Arguments_:
- STRING Shall be a scalar or array of type 'CHARACTER',
- with 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Specific names_:
- Name Argument Return type Standard
- 'LEN(STRING)' 'CHARACTER' 'INTEGER' Fortran 77 and
- later
- _See also_:
- *note LEN_TRIM::, *note ADJUSTL::, *note ADJUSTR::
- File: gfortran.info, Node: LEN_TRIM, Next: LGE, Prev: LEN, Up: Intrinsic Procedures
- 9.167 'LEN_TRIM' -- Length of a character entity without trailing blank characters
- ==================================================================================
- _Description_:
- Returns the length of a character string, ignoring any trailing
- blanks.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LEN_TRIM(STRING [, KIND])'
- _Arguments_:
- STRING Shall be a scalar of type 'CHARACTER', with
- 'INTENT(IN)'
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _See also_:
- *note LEN::, *note ADJUSTL::, *note ADJUSTR::
- File: gfortran.info, Node: LGE, Next: LGT, Prev: LEN_TRIM, Up: Intrinsic Procedures
- 9.168 'LGE' -- Lexical greater than or equal
- ============================================
- _Description_:
- Determines whether one string is lexically greater than or equal to
- another string, where the two strings are interpreted as containing
- ASCII character codes. If the String A and String B are not the
- same length, the shorter is compared as if spaces were appended to
- it to form a value that has the same length as the longer.
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LGE(STRING_A, STRING_B)'
- _Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
- _Return value_:
- Returns '.TRUE.' if 'STRING_A >= STRING_B', and '.FALSE.'
- otherwise, based on the ASCII ordering.
- _Specific names_:
- Name Argument Return type Standard
- 'LGE(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
- _See also_:
- *note LGT::, *note LLE::, *note LLT::
- File: gfortran.info, Node: LGT, Next: LINK, Prev: LGE, Up: Intrinsic Procedures
- 9.169 'LGT' -- Lexical greater than
- ===================================
- _Description_:
- Determines whether one string is lexically greater than another
- string, where the two strings are interpreted as containing ASCII
- character codes. If the String A and String B are not the same
- length, the shorter is compared as if spaces were appended to it to
- form a value that has the same length as the longer.
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LGT(STRING_A, STRING_B)'
- _Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
- _Return value_:
- Returns '.TRUE.' if 'STRING_A > STRING_B', and '.FALSE.' otherwise,
- based on the ASCII ordering.
- _Specific names_:
- Name Argument Return type Standard
- 'LGT(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
- _See also_:
- *note LGE::, *note LLE::, *note LLT::
- File: gfortran.info, Node: LINK, Next: LLE, Prev: LGT, Up: Intrinsic Procedures
- 9.170 'LINK' -- Create a hard link
- ==================================
- _Description_:
- Makes a (hard) link from file PATH1 to PATH2. A null character
- ('CHAR(0)') can be used to mark the end of the names in PATH1 and
- PATH2; otherwise, trailing blanks in the file names are ignored.
- If the STATUS argument is supplied, it contains 0 on success or a
- nonzero error code upon return; see 'link(2)'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL LINK(PATH1, PATH2 [, STATUS])'
- 'STATUS = LINK(PATH1, PATH2)'
- _Arguments_:
- PATH1 Shall be of default 'CHARACTER' type.
- PATH2 Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
- _See also_:
- *note SYMLNK::, *note UNLINK::
- File: gfortran.info, Node: LLE, Next: LLT, Prev: LINK, Up: Intrinsic Procedures
- 9.171 'LLE' -- Lexical less than or equal
- =========================================
- _Description_:
- Determines whether one string is lexically less than or equal to
- another string, where the two strings are interpreted as containing
- ASCII character codes. If the String A and String B are not the
- same length, the shorter is compared as if spaces were appended to
- it to form a value that has the same length as the longer.
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LLE(STRING_A, STRING_B)'
- _Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
- _Return value_:
- Returns '.TRUE.' if 'STRING_A <= STRING_B', and '.FALSE.'
- otherwise, based on the ASCII ordering.
- _Specific names_:
- Name Argument Return type Standard
- 'LLE(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
- _See also_:
- *note LGE::, *note LGT::, *note LLT::
- File: gfortran.info, Node: LLT, Next: LNBLNK, Prev: LLE, Up: Intrinsic Procedures
- 9.172 'LLT' -- Lexical less than
- ================================
- _Description_:
- Determines whether one string is lexically less than another
- string, where the two strings are interpreted as containing ASCII
- character codes. If the String A and String B are not the same
- length, the shorter is compared as if spaces were appended to it to
- form a value that has the same length as the longer.
- In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
- and 'LLT' differ from the corresponding intrinsic operators '.GE.',
- '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
- character ordering (which is not ASCII on some targets), whereas
- the former always use the ASCII ordering.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LLT(STRING_A, STRING_B)'
- _Arguments_:
- STRING_A Shall be of default 'CHARACTER' type.
- STRING_B Shall be of default 'CHARACTER' type.
- _Return value_:
- Returns '.TRUE.' if 'STRING_A < STRING_B', and '.FALSE.' otherwise,
- based on the ASCII ordering.
- _Specific names_:
- Name Argument Return type Standard
- 'LLT(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and
- STRING_B)' later
- _See also_:
- *note LGE::, *note LGT::, *note LLE::
- File: gfortran.info, Node: LNBLNK, Next: LOC, Prev: LLT, Up: Intrinsic Procedures
- 9.173 'LNBLNK' -- Index of the last non-blank character in a string
- ===================================================================
- _Description_:
- Returns the length of a character string, ignoring any trailing
- blanks. This is identical to the standard 'LEN_TRIM' intrinsic,
- and is only included for backwards compatibility.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LNBLNK(STRING)'
- _Arguments_:
- STRING Shall be a scalar of type 'CHARACTER', with
- 'INTENT(IN)'
- _Return value_:
- The return value is of 'INTEGER(kind=4)' type.
- _See also_:
- *note INDEX intrinsic::, *note LEN_TRIM::
- File: gfortran.info, Node: LOC, Next: LOG, Prev: LNBLNK, Up: Intrinsic Procedures
- 9.174 'LOC' -- Returns the address of a variable
- ================================================
- _Description_:
- 'LOC(X)' returns the address of X as an integer.
- _Standard_:
- GNU extension
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = LOC(X)'
- _Arguments_:
- X Variable of any type.
- _Return value_:
- The return value is of type 'INTEGER', with a 'KIND' corresponding
- to the size (in bytes) of a memory address on the target machine.
- _Example_:
- program test_loc
- integer :: i
- real :: r
- i = loc(r)
- print *, i
- end program test_loc
- File: gfortran.info, Node: LOG, Next: LOG10, Prev: LOC, Up: Intrinsic Procedures
- 9.175 'LOG' -- Natural logarithm function
- =========================================
- _Description_:
- 'LOG(X)' computes the natural logarithm of X, i.e. the logarithm
- to the base e.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LOG(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of type 'REAL' or 'COMPLEX'. The kind type
- parameter is the same as X. If X is 'COMPLEX', the imaginary part
- \omega is in the range -\pi < \omega \leq \pi.
- _Example_:
- program test_log
- real(8) :: x = 2.7182818284590451_8
- complex :: z = (1.0, 2.0)
- x = log(x) ! will yield (approximately) 1
- z = log(z)
- end program test_log
- _Specific names_:
- Name Argument Return type Standard
- 'ALOG(X)' 'REAL(4) X' 'REAL(4)' f95, gnu
- 'DLOG(X)' 'REAL(8) X' 'REAL(8)' f95, gnu
- 'CLOG(X)' 'COMPLEX(4) 'COMPLEX(4)' f95, gnu
- X'
- 'ZLOG(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu
- X'
- 'CDLOG(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu
- X'
- File: gfortran.info, Node: LOG10, Next: LOG_GAMMA, Prev: LOG, Up: Intrinsic Procedures
- 9.176 'LOG10' -- Base 10 logarithm function
- ===========================================
- _Description_:
- 'LOG10(X)' computes the base 10 logarithm of X.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LOG10(X)'
- _Arguments_:
- X The type shall be 'REAL'.
- _Return value_:
- The return value is of type 'REAL' or 'COMPLEX'. The kind type
- parameter is the same as X.
- _Example_:
- program test_log10
- real(8) :: x = 10.0_8
- x = log10(x)
- end program test_log10
- _Specific names_:
- Name Argument Return type Standard
- 'ALOG10(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and
- later
- 'DLOG10(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and
- later
- File: gfortran.info, Node: LOG_GAMMA, Next: LOGICAL, Prev: LOG10, Up: Intrinsic Procedures
- 9.177 'LOG_GAMMA' -- Logarithm of the Gamma function
- ====================================================
- _Description_:
- 'LOG_GAMMA(X)' computes the natural logarithm of the absolute value
- of the Gamma (\Gamma) function.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'X = LOG_GAMMA(X)'
- _Arguments_:
- X Shall be of type 'REAL' and neither zero nor a
- negative integer.
- _Return value_:
- The return value is of type 'REAL' of the same kind as X.
- _Example_:
- program test_log_gamma
- real :: x = 1.0
- x = lgamma(x) ! returns 0.0
- end program test_log_gamma
- _Specific names_:
- Name Argument Return type Standard
- 'LGAMMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'ALGAMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DLGAMA(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
- _See also_:
- Gamma function: *note GAMMA::
- File: gfortran.info, Node: LOGICAL, Next: LONG, Prev: LOG_GAMMA, Up: Intrinsic Procedures
- 9.178 'LOGICAL' -- Convert to logical type
- ==========================================
- _Description_:
- Converts one kind of 'LOGICAL' variable to another.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LOGICAL(L [, KIND])'
- _Arguments_:
- L The type shall be 'LOGICAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is a 'LOGICAL' value equal to L, with a kind
- corresponding to KIND, or of the default logical kind if KIND is
- not given.
- _See also_:
- *note INT::, *note REAL::, *note CMPLX::
- File: gfortran.info, Node: LONG, Next: LSHIFT, Prev: LOGICAL, Up: Intrinsic Procedures
- 9.179 'LONG' -- Convert to integer type
- =======================================
- _Description_:
- Convert to a 'KIND=4' integer type, which is the same size as a C
- 'long' integer. This is equivalent to the standard 'INT' intrinsic
- with an optional argument of 'KIND=4', and is only included for
- backwards compatibility.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LONG(A)'
- _Arguments_:
- A Shall be of type 'INTEGER', 'REAL', or
- 'COMPLEX'.
- _Return value_:
- The return value is a 'INTEGER(4)' variable.
- _See also_:
- *note INT::, *note INT2::, *note INT8::
- File: gfortran.info, Node: LSHIFT, Next: LSTAT, Prev: LONG, Up: Intrinsic Procedures
- 9.180 'LSHIFT' -- Left shift bits
- =================================
- _Description_:
- 'LSHIFT' returns a value corresponding to I with all of the bits
- shifted left by SHIFT places. If the absolute value of SHIFT is
- greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted
- out from the left end are lost; zeros are shifted in from the
- opposite end.
- This function has been superseded by the 'ISHFT' intrinsic, which
- is standard in Fortran 95 and later, and the 'SHIFTL' intrinsic,
- which is standard in Fortran 2008 and later.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = LSHIFT(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _See also_:
- *note ISHFT::, *note ISHFTC::, *note RSHIFT::, *note SHIFTA::,
- *note SHIFTL::, *note SHIFTR::
- File: gfortran.info, Node: LSTAT, Next: LTIME, Prev: LSHIFT, Up: Intrinsic Procedures
- 9.181 'LSTAT' -- Get file status
- ================================
- _Description_:
- 'LSTAT' is identical to *note STAT::, except that if path is a
- symbolic link, then the link itself is statted, not the file that
- it refers to.
- The elements in 'VALUES' are the same as described by *note STAT::.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL LSTAT(NAME, VALUES [, STATUS])'
- 'STATUS = LSTAT(NAME, VALUES)'
- _Arguments_:
- NAME The type shall be 'CHARACTER' of the default
- kind, a valid path within the file system.
- VALUES The type shall be 'INTEGER(4), DIMENSION(13)'.
- STATUS (Optional) status flag of type 'INTEGER(4)'.
- Returns 0 on success and a system specific error
- code otherwise.
- _Example_:
- See *note STAT:: for an example.
- _See also_:
- To stat an open file: *note FSTAT::, to stat a file: *note STAT::
- File: gfortran.info, Node: LTIME, Next: MALLOC, Prev: LSTAT, Up: Intrinsic Procedures
- 9.182 'LTIME' -- Convert time to local time info
- ================================================
- _Description_:
- Given a system time value TIME (as provided by the *note TIME::
- intrinsic), fills VALUES with values extracted from it appropriate
- to the local time zone using 'localtime(3)'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. In new code, programmers should consider the use
- of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL LTIME(TIME, VALUES)'
- _Arguments_:
- TIME An 'INTEGER' scalar expression corresponding to
- a system time, with 'INTENT(IN)'.
- VALUES A default 'INTEGER' array with 9 elements, with
- 'INTENT(OUT)'.
- _Return value_:
- The elements of VALUES are assigned as follows:
- 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
- seconds
- 2. Minutes after the hour, range 0-59
- 3. Hours past midnight, range 0-23
- 4. Day of month, range 1-31
- 5. Number of months since January, range 0-11
- 6. Years since 1900
- 7. Number of days since Sunday, range 0-6
- 8. Days since January 1, range 0-365
- 9. Daylight savings indicator: positive if daylight savings is in
- effect, zero if not, and negative if the information is not
- available.
- _See also_:
- *note DATE_AND_TIME::, *note CTIME::, *note GMTIME::, *note TIME::,
- *note TIME8::
- File: gfortran.info, Node: MALLOC, Next: MASKL, Prev: LTIME, Up: Intrinsic Procedures
- 9.183 'MALLOC' -- Allocate dynamic memory
- =========================================
- _Description_:
- 'MALLOC(SIZE)' allocates SIZE bytes of dynamic memory and returns
- the address of the allocated memory. The 'MALLOC' intrinsic is an
- extension intended to be used with Cray pointers, and is provided
- in GNU Fortran to allow the user to compile legacy code. For new
- code using Fortran 95 pointers, the memory allocation intrinsic is
- 'ALLOCATE'.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'PTR = MALLOC(SIZE)'
- _Arguments_:
- SIZE The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER(K)', with K such that
- variables of type 'INTEGER(K)' have the same size as C pointers
- ('sizeof(void *)').
- _Example_:
- The following example demonstrates the use of 'MALLOC' and 'FREE'
- with Cray pointers.
- program test_malloc
- implicit none
- integer i
- real*8 x(*), z
- pointer(ptr_x,x)
- ptr_x = malloc(20*8)
- do i = 1, 20
- x(i) = sqrt(1.0d0 / i)
- end do
- z = 0
- do i = 1, 20
- z = z + x(i)
- print *, z
- end do
- call free(ptr_x)
- end program test_malloc
- _See also_:
- *note FREE::
- File: gfortran.info, Node: MASKL, Next: MASKR, Prev: MALLOC, Up: Intrinsic Procedures
- 9.184 'MASKL' -- Left justified mask
- ====================================
- _Description_:
- 'MASKL(I[, KIND])' has its leftmost I bits set to 1, and the
- remaining bits set to 0.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MASKL(I[, KIND])'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- KIND Shall be a scalar constant expression of type
- 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER'. If KIND is present, it
- specifies the kind value of the return type; otherwise, it is of
- the default integer kind.
- _See also_:
- *note MASKR::
- File: gfortran.info, Node: MASKR, Next: MATMUL, Prev: MASKL, Up: Intrinsic Procedures
- 9.185 'MASKR' -- Right justified mask
- =====================================
- _Description_:
- 'MASKL(I[, KIND])' has its rightmost I bits set to 1, and the
- remaining bits set to 0.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MASKR(I[, KIND])'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- KIND Shall be a scalar constant expression of type
- 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER'. If KIND is present, it
- specifies the kind value of the return type; otherwise, it is of
- the default integer kind.
- _See also_:
- *note MASKL::
- File: gfortran.info, Node: MATMUL, Next: MAX, Prev: MASKR, Up: Intrinsic Procedures
- 9.186 'MATMUL' -- matrix multiplication
- =======================================
- _Description_:
- Performs a matrix multiplication on numeric or logical arguments.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = MATMUL(MATRIX_A, MATRIX_B)'
- _Arguments_:
- MATRIX_A An array of 'INTEGER', 'REAL', 'COMPLEX', or
- 'LOGICAL' type, with a rank of one or two.
- MATRIX_B An array of 'INTEGER', 'REAL', or 'COMPLEX' type
- if MATRIX_A is of a numeric type; otherwise, an
- array of 'LOGICAL' type. The rank shall be one
- or two, and the first (or only) dimension of
- MATRIX_B shall be equal to the last (or only)
- dimension of MATRIX_A.
- _Return value_:
- The matrix product of MATRIX_A and MATRIX_B. The type and kind of
- the result follow the usual type and kind promotion rules, as for
- the '*' or '.AND.' operators.
- _See also_:
- File: gfortran.info, Node: MAX, Next: MAXEXPONENT, Prev: MATMUL, Up: Intrinsic Procedures
- 9.187 'MAX' -- Maximum value of an argument list
- ================================================
- _Description_:
- Returns the argument with the largest (most positive) value.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MAX(A1, A2 [, A3 [, ...]])'
- _Arguments_:
- A1 The type shall be 'INTEGER' or 'REAL'.
- A2, A3, An expression of the same type and kind as A1.
- ... (As a GNU extension, arguments of different
- kinds are permitted.)
- _Return value_:
- The return value corresponds to the maximum value among the
- arguments, and has the same type and kind as the first argument.
- _Specific names_:
- Name Argument Return type Standard
- 'MAX0(A1)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- A1' later
- 'AMAX0(A1)' 'INTEGER(4) 'REAL(MAX(X))' Fortran 77 and
- A1' later
- 'MAX1(A1)' 'REAL A1' 'INT(MAX(X))' Fortran 77 and
- later
- 'AMAX1(A1)' 'REAL(4) A1' 'REAL(4)' Fortran 77 and
- later
- 'DMAX1(A1)' 'REAL(8) A1' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- *note MAXLOC:: *note MAXVAL::, *note MIN::
- File: gfortran.info, Node: MAXEXPONENT, Next: MAXLOC, Prev: MAX, Up: Intrinsic Procedures
- 9.188 'MAXEXPONENT' -- Maximum exponent of a real kind
- ======================================================
- _Description_:
- 'MAXEXPONENT(X)' returns the maximum exponent in the model of the
- type of 'X'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = MAXEXPONENT(X)'
- _Arguments_:
- X Shall be of type 'REAL'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _Example_:
- program exponents
- real(kind=4) :: x
- real(kind=8) :: y
- print *, minexponent(x), maxexponent(x)
- print *, minexponent(y), maxexponent(y)
- end program exponents
- File: gfortran.info, Node: MAXLOC, Next: MAXVAL, Prev: MAXEXPONENT, Up: Intrinsic Procedures
- 9.189 'MAXLOC' -- Location of the maximum value within an array
- ===============================================================
- _Description_:
- Determines the location of the element in the array with the
- maximum value, or, if the DIM argument is supplied, determines the
- locations of the maximum element along each row of the array in the
- DIM direction. If MASK is present, only the elements for which
- MASK is '.TRUE.' are considered. If more than one element in the
- array has the maximum value, the location returned is that of the
- first such element in array element order. If the array has zero
- size, or all of the elements of MASK are '.FALSE.', then the result
- is an array of zeroes. Similarly, if DIM is supplied and all of
- the elements of MASK along a given row are zero, the result value
- for that row is zero.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = MAXLOC(ARRAY, DIM [, MASK])'
- 'RESULT = MAXLOC(ARRAY [, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
- _Return value_:
- If DIM is absent, the result is a rank-one array with a length
- equal to the rank of ARRAY. If DIM is present, the result is an
- array with a rank one less than the rank of ARRAY, and a size
- corresponding to the size of ARRAY with the DIM dimension removed.
- If DIM is present and ARRAY has a rank of one, the result is a
- scalar. In all cases, the result is of default 'INTEGER' type.
- _See also_:
- *note MAX::, *note MAXVAL::
- File: gfortran.info, Node: MAXVAL, Next: MCLOCK, Prev: MAXLOC, Up: Intrinsic Procedures
- 9.190 'MAXVAL' -- Maximum value of an array
- ===========================================
- _Description_:
- Determines the maximum value of the elements in an array value, or,
- if the DIM argument is supplied, determines the maximum value along
- each row of the array in the DIM direction. If MASK is present,
- only the elements for which MASK is '.TRUE.' are considered. If
- the array has zero size, or all of the elements of MASK are
- '.FALSE.', then the result is '-HUGE(ARRAY)' if ARRAY is numeric,
- or a string of nulls if ARRAY is of character type.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = MAXVAL(ARRAY, DIM [, MASK])'
- 'RESULT = MAXVAL(ARRAY [, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
- _Return value_:
- If DIM is absent, or if ARRAY has a rank of one, the result is a
- scalar. If DIM is present, the result is an array with a rank one
- less than the rank of ARRAY, and a size corresponding to the size
- of ARRAY with the DIM dimension removed. In all cases, the result
- is of the same type and kind as ARRAY.
- _See also_:
- *note MAX::, *note MAXLOC::
- File: gfortran.info, Node: MCLOCK, Next: MCLOCK8, Prev: MAXVAL, Up: Intrinsic Procedures
- 9.191 'MCLOCK' -- Time function
- ===============================
- _Description_:
- Returns the number of clock ticks since the start of the process,
- based on the function 'clock(3)' in the C standard library.
- This intrinsic is not fully portable, such as to systems with
- 32-bit 'INTEGER' types but supporting times wider than 32 bits.
- Therefore, the values returned by this intrinsic might be, or
- become, negative, or numerically less than previous values, during
- a single run of the compiled program.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = MCLOCK()'
- _Return value_:
- The return value is a scalar of type 'INTEGER(4)', equal to the
- number of clock ticks since the start of the process, or '-1' if
- the system does not support 'clock(3)'.
- _See also_:
- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note
- TIME::
- File: gfortran.info, Node: MCLOCK8, Next: MERGE, Prev: MCLOCK, Up: Intrinsic Procedures
- 9.192 'MCLOCK8' -- Time function (64-bit)
- =========================================
- _Description_:
- Returns the number of clock ticks since the start of the process,
- based on the function 'clock(3)' in the C standard library.
- _Warning:_ this intrinsic does not increase the range of the timing
- values over that returned by 'clock(3)'. On a system with a 32-bit
- 'clock(3)', 'MCLOCK8' will return a 32-bit value, even though it is
- converted to a 64-bit 'INTEGER(8)' value. That means overflows of
- the 32-bit value can still occur. Therefore, the values returned
- by this intrinsic might be or become negative or numerically less
- than previous values during a single run of the compiled program.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = MCLOCK8()'
- _Return value_:
- The return value is a scalar of type 'INTEGER(8)', equal to the
- number of clock ticks since the start of the process, or '-1' if
- the system does not support 'clock(3)'.
- _See also_:
- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note
- TIME8::
- File: gfortran.info, Node: MERGE, Next: MERGE_BITS, Prev: MCLOCK8, Up: Intrinsic Procedures
- 9.193 'MERGE' -- Merge variables
- ================================
- _Description_:
- Select values from two arrays according to a logical mask. The
- result is equal to TSOURCE if MASK is '.TRUE.', or equal to FSOURCE
- if it is '.FALSE.'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MERGE(TSOURCE, FSOURCE, MASK)'
- _Arguments_:
- TSOURCE May be of any type.
- FSOURCE Shall be of the same type and type parameters as
- TSOURCE.
- MASK Shall be of type 'LOGICAL'.
- _Return value_:
- The result is of the same type and type parameters as TSOURCE.
- File: gfortran.info, Node: MERGE_BITS, Next: MIN, Prev: MERGE, Up: Intrinsic Procedures
- 9.194 'MERGE_BITS' -- Merge of bits under mask
- ==============================================
- _Description_:
- 'MERGE_BITS(I, J, MASK)' merges the bits of I and J as determined
- by the mask. The i-th bit of the result is equal to the i-th bit
- of I if the i-th bit of MASK is 1; it is equal to the i-th bit of J
- otherwise.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MERGE_BITS(I, J, MASK)'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- J Shall be of type 'INTEGER' and of the same kind
- as I.
- MASK Shall be of type 'INTEGER' and of the same kind
- as I.
- _Return value_:
- The result is of the same type and kind as I.
- File: gfortran.info, Node: MIN, Next: MINEXPONENT, Prev: MERGE_BITS, Up: Intrinsic Procedures
- 9.195 'MIN' -- Minimum value of an argument list
- ================================================
- _Description_:
- Returns the argument with the smallest (most negative) value.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MIN(A1, A2 [, A3, ...])'
- _Arguments_:
- A1 The type shall be 'INTEGER' or 'REAL'.
- A2, A3, An expression of the same type and kind as A1.
- ... (As a GNU extension, arguments of different
- kinds are permitted.)
- _Return value_:
- The return value corresponds to the maximum value among the
- arguments, and has the same type and kind as the first argument.
- _Specific names_:
- Name Argument Return type Standard
- 'MIN0(A1)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and
- A1' later
- 'AMIN0(A1)' 'INTEGER(4) 'REAL(4)' Fortran 77 and
- A1' later
- 'MIN1(A1)' 'REAL A1' 'INTEGER(4)' Fortran 77 and
- later
- 'AMIN1(A1)' 'REAL(4) A1' 'REAL(4)' Fortran 77 and
- later
- 'DMIN1(A1)' 'REAL(8) A1' 'REAL(8)' Fortran 77 and
- later
- _See also_:
- *note MAX::, *note MINLOC::, *note MINVAL::
- File: gfortran.info, Node: MINEXPONENT, Next: MINLOC, Prev: MIN, Up: Intrinsic Procedures
- 9.196 'MINEXPONENT' -- Minimum exponent of a real kind
- ======================================================
- _Description_:
- 'MINEXPONENT(X)' returns the minimum exponent in the model of the
- type of 'X'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = MINEXPONENT(X)'
- _Arguments_:
- X Shall be of type 'REAL'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _Example_:
- See 'MAXEXPONENT' for an example.
- File: gfortran.info, Node: MINLOC, Next: MINVAL, Prev: MINEXPONENT, Up: Intrinsic Procedures
- 9.197 'MINLOC' -- Location of the minimum value within an array
- ===============================================================
- _Description_:
- Determines the location of the element in the array with the
- minimum value, or, if the DIM argument is supplied, determines the
- locations of the minimum element along each row of the array in the
- DIM direction. If MASK is present, only the elements for which
- MASK is '.TRUE.' are considered. If more than one element in the
- array has the minimum value, the location returned is that of the
- first such element in array element order. If the array has zero
- size, or all of the elements of MASK are '.FALSE.', then the result
- is an array of zeroes. Similarly, if DIM is supplied and all of
- the elements of MASK along a given row are zero, the result value
- for that row is zero.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = MINLOC(ARRAY, DIM [, MASK])'
- 'RESULT = MINLOC(ARRAY [, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
- _Return value_:
- If DIM is absent, the result is a rank-one array with a length
- equal to the rank of ARRAY. If DIM is present, the result is an
- array with a rank one less than the rank of ARRAY, and a size
- corresponding to the size of ARRAY with the DIM dimension removed.
- If DIM is present and ARRAY has a rank of one, the result is a
- scalar. In all cases, the result is of default 'INTEGER' type.
- _See also_:
- *note MIN::, *note MINVAL::
- File: gfortran.info, Node: MINVAL, Next: MOD, Prev: MINLOC, Up: Intrinsic Procedures
- 9.198 'MINVAL' -- Minimum value of an array
- ===========================================
- _Description_:
- Determines the minimum value of the elements in an array value, or,
- if the DIM argument is supplied, determines the minimum value along
- each row of the array in the DIM direction. If MASK is present,
- only the elements for which MASK is '.TRUE.' are considered. If
- the array has zero size, or all of the elements of MASK are
- '.FALSE.', then the result is 'HUGE(ARRAY)' if ARRAY is numeric, or
- a string of 'CHAR(255)' characters if ARRAY is of character type.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = MINVAL(ARRAY, DIM [, MASK])'
- 'RESULT = MINVAL(ARRAY [, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER' or 'REAL'.
- DIM (Optional) Shall be a scalar of type 'INTEGER',
- with a value between one and the rank of ARRAY,
- inclusive. It may not be an optional dummy
- argument.
- MASK Shall be an array of type 'LOGICAL', and
- conformable with ARRAY.
- _Return value_:
- If DIM is absent, or if ARRAY has a rank of one, the result is a
- scalar. If DIM is present, the result is an array with a rank one
- less than the rank of ARRAY, and a size corresponding to the size
- of ARRAY with the DIM dimension removed. In all cases, the result
- is of the same type and kind as ARRAY.
- _See also_:
- *note MIN::, *note MINLOC::
- File: gfortran.info, Node: MOD, Next: MODULO, Prev: MINVAL, Up: Intrinsic Procedures
- 9.199 'MOD' -- Remainder function
- =================================
- _Description_:
- 'MOD(A,P)' computes the remainder of the division of A by P.
- _Standard_:
- Fortran 77 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MOD(A, P)'
- _Arguments_:
- A Shall be a scalar of type 'INTEGER' or 'REAL'.
- P Shall be a scalar of the same type and kind as A
- and not equal to zero.
- _Return value_:
- The return value is the result of 'A - (INT(A/P) * P)'. The type
- and kind of the return value is the same as that of the arguments.
- The returned value has the same sign as A and a magnitude less than
- the magnitude of P.
- _Example_:
- program test_mod
- print *, mod(17,3)
- print *, mod(17.5,5.5)
- print *, mod(17.5d0,5.5)
- print *, mod(17.5,5.5d0)
- print *, mod(-17,3)
- print *, mod(-17.5,5.5)
- print *, mod(-17.5d0,5.5)
- print *, mod(-17.5,5.5d0)
- print *, mod(17,-3)
- print *, mod(17.5,-5.5)
- print *, mod(17.5d0,-5.5)
- print *, mod(17.5,-5.5d0)
- end program test_mod
- _Specific names_:
- Name Arguments Return type Standard
- 'MOD(A,P)' 'INTEGER 'INTEGER' Fortran 95 and
- A,P' later
- 'AMOD(A,P)' 'REAL(4) 'REAL(4)' Fortran 95 and
- A,P' later
- 'DMOD(A,P)' 'REAL(8) 'REAL(8)' Fortran 95 and
- A,P' later
- 'BMOD(A,P)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A,P'
- 'IMOD(A,P)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A,P'
- 'JMOD(A,P)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A,P'
- 'KMOD(A,P)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A,P'
- _See also_:
- *note MODULO::
- File: gfortran.info, Node: MODULO, Next: MOVE_ALLOC, Prev: MOD, Up: Intrinsic Procedures
- 9.200 'MODULO' -- Modulo function
- =================================
- _Description_:
- 'MODULO(A,P)' computes the A modulo P.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = MODULO(A, P)'
- _Arguments_:
- A Shall be a scalar of type 'INTEGER' or 'REAL'.
- P Shall be a scalar of the same type and kind as
- A. It shall not be zero.
- _Return value_:
- The type and kind of the result are those of the arguments.
- If A and P are of type 'INTEGER':
- 'MODULO(A,P)' has the value R such that 'A=Q*P+R', where Q is
- an integer and R is between 0 (inclusive) and P (exclusive).
- If A and P are of type 'REAL':
- 'MODULO(A,P)' has the value of 'A - FLOOR (A / P) * P'.
- The returned value has the same sign as P and a magnitude less than
- the magnitude of P.
- _Example_:
- program test_modulo
- print *, modulo(17,3)
- print *, modulo(17.5,5.5)
- print *, modulo(-17,3)
- print *, modulo(-17.5,5.5)
- print *, modulo(17,-3)
- print *, modulo(17.5,-5.5)
- end program
- _See also_:
- *note MOD::
- File: gfortran.info, Node: MOVE_ALLOC, Next: MVBITS, Prev: MODULO, Up: Intrinsic Procedures
- 9.201 'MOVE_ALLOC' -- Move allocation from one object to another
- ================================================================
- _Description_:
- 'MOVE_ALLOC(FROM, TO)' moves the allocation from FROM to TO. FROM
- will become deallocated in the process.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Pure subroutine
- _Syntax_:
- 'CALL MOVE_ALLOC(FROM, TO)'
- _Arguments_:
- FROM 'ALLOCATABLE', 'INTENT(INOUT)', may be of any
- type and kind.
- TO 'ALLOCATABLE', 'INTENT(OUT)', shall be of the
- same type, kind and rank as FROM.
- _Return value_:
- None
- _Example_:
- program test_move_alloc
- integer, allocatable :: a(:), b(:)
- allocate(a(3))
- a = [ 1, 2, 3 ]
- call move_alloc(a, b)
- print *, allocated(a), allocated(b)
- print *, b
- end program test_move_alloc
- File: gfortran.info, Node: MVBITS, Next: NEAREST, Prev: MOVE_ALLOC, Up: Intrinsic Procedures
- 9.202 'MVBITS' -- Move bits from one integer to another
- =======================================================
- _Description_:
- Moves LEN bits from positions FROMPOS through 'FROMPOS+LEN-1' of
- FROM to positions TOPOS through 'TOPOS+LEN-1' of TO. The portion
- of argument TO not affected by the movement of bits is unchanged.
- The values of 'FROMPOS+LEN-1' and 'TOPOS+LEN-1' must be less than
- 'BIT_SIZE(FROM)'.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental subroutine
- _Syntax_:
- 'CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)'
- _Arguments_:
- FROM The type shall be 'INTEGER'.
- FROMPOS The type shall be 'INTEGER'.
- LEN The type shall be 'INTEGER'.
- TO The type shall be 'INTEGER', of the same kind as
- FROM.
- TOPOS The type shall be 'INTEGER'.
- _Specific names_:
- Name Argument Return type Standard
- 'MVBITS(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BMVBITS(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'IMVBITS(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JMVBITS(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KMVBITS(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IBCLR::, *note IBSET::, *note IBITS::, *note IAND::, *note
- IOR::, *note IEOR::
- File: gfortran.info, Node: NEAREST, Next: NEW_LINE, Prev: MVBITS, Up: Intrinsic Procedures
- 9.203 'NEAREST' -- Nearest representable number
- ===============================================
- _Description_:
- 'NEAREST(X, S)' returns the processor-representable number nearest
- to 'X' in the direction indicated by the sign of 'S'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = NEAREST(X, S)'
- _Arguments_:
- X Shall be of type 'REAL'.
- S Shall be of type 'REAL' and not equal to zero.
- _Return value_:
- The return value is of the same type as 'X'. If 'S' is positive,
- 'NEAREST' returns the processor-representable number greater than
- 'X' and nearest to it. If 'S' is negative, 'NEAREST' returns the
- processor-representable number smaller than 'X' and nearest to it.
- _Example_:
- program test_nearest
- real :: x, y
- x = nearest(42.0, 1.0)
- y = nearest(42.0, -1.0)
- write (*,"(3(G20.15))") x, y, x - y
- end program test_nearest
- File: gfortran.info, Node: NEW_LINE, Next: NINT, Prev: NEAREST, Up: Intrinsic Procedures
- 9.204 'NEW_LINE' -- New line character
- ======================================
- _Description_:
- 'NEW_LINE(C)' returns the new-line character.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = NEW_LINE(C)'
- _Arguments_:
- C The argument shall be a scalar or array of the
- type 'CHARACTER'.
- _Return value_:
- Returns a CHARACTER scalar of length one with the new-line
- character of the same kind as parameter C.
- _Example_:
- program newline
- implicit none
- write(*,'(A)') 'This is record 1.'//NEW_LINE('A')//'This is record 2.'
- end program newline
- File: gfortran.info, Node: NINT, Next: NORM2, Prev: NEW_LINE, Up: Intrinsic Procedures
- 9.205 'NINT' -- Nearest whole number
- ====================================
- _Description_:
- 'NINT(A)' rounds its argument to the nearest whole number.
- _Standard_:
- Fortran 77 and later, with KIND argument Fortran 90 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = NINT(A [, KIND])'
- _Arguments_:
- A The type of the argument shall be 'REAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- Returns A with the fractional portion of its magnitude eliminated
- by rounding to the nearest whole number and with its sign
- preserved, converted to an 'INTEGER' of the default kind.
- _Example_:
- program test_nint
- real(4) x4
- real(8) x8
- x4 = 1.234E0_4
- x8 = 4.321_8
- print *, nint(x4), idnint(x8)
- end program test_nint
- _Specific names_:
- Name Argument Return Type Standard
- 'NINT(A)' 'REAL(4) A' 'INTEGER' Fortran 95 and
- later
- 'IDNINT(A)' 'REAL(8) A' 'INTEGER' Fortran 95 and
- later
- _See also_:
- *note CEILING::, *note FLOOR::
- File: gfortran.info, Node: NORM2, Next: NOT, Prev: NINT, Up: Intrinsic Procedures
- 9.206 'NORM2' -- Euclidean vector norms
- =======================================
- _Description_:
- Calculates the Euclidean vector norm (L_2 norm) of of ARRAY along
- dimension DIM.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = NORM2(ARRAY[, DIM])'
- _Arguments_:
- ARRAY Shall be an array of type 'REAL'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the square root of the sum of all
- elements in ARRAY squared is returned. Otherwise, an array of rank
- n-1, where n equals the rank of ARRAY, and a shape similar to that
- of ARRAY with dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_sum
- REAL :: x(5) = [ real :: 1, 2, 3, 4, 5 ]
- print *, NORM2(x) ! = sqrt(55.) ~ 7.416
- END PROGRAM
- File: gfortran.info, Node: NOT, Next: NULL, Prev: NORM2, Up: Intrinsic Procedures
- 9.207 'NOT' -- Logical negation
- ===============================
- _Description_:
- 'NOT' returns the bitwise Boolean inverse of I.
- _Standard_:
- Fortran 95 and later, has overloads that are GNU extensions
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = NOT(I)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- _Return value_:
- The return type is 'INTEGER', of the same kind as the argument.
- _Specific names_:
- Name Argument Return type Standard
- 'NOT(A)' 'INTEGER A' 'INTEGER' Fortran 95 and
- later
- 'BNOT(A)' 'INTEGER(1) 'INTEGER(1)' GNU extension
- A'
- 'INOT(A)' 'INTEGER(2) 'INTEGER(2)' GNU extension
- A'
- 'JNOT(A)' 'INTEGER(4) 'INTEGER(4)' GNU extension
- A'
- 'KNOT(A)' 'INTEGER(8) 'INTEGER(8)' GNU extension
- A'
- _See also_:
- *note IAND::, *note IEOR::, *note IOR::, *note IBITS::, *note
- IBSET::, *note IBCLR::
- File: gfortran.info, Node: NULL, Next: NUM_IMAGES, Prev: NOT, Up: Intrinsic Procedures
- 9.208 'NULL' -- Function that returns an disassociated pointer
- ==============================================================
- _Description_:
- Returns a disassociated pointer.
- If MOLD is present, a disassociated pointer of the same type is
- returned, otherwise the type is determined by context.
- In Fortran 95, MOLD is optional. Please note that Fortran 2003
- includes cases where it is required.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'PTR => NULL([MOLD])'
- _Arguments_:
- MOLD (Optional) shall be a pointer of any association
- status and of any type.
- _Return value_:
- A disassociated pointer.
- _Example_:
- REAL, POINTER, DIMENSION(:) :: VEC => NULL ()
- _See also_:
- *note ASSOCIATED::
- File: gfortran.info, Node: NUM_IMAGES, Next: OR, Prev: NULL, Up: Intrinsic Procedures
- 9.209 'NUM_IMAGES' -- Function that returns the number of images
- ================================================================
- _Description_:
- Returns the number of images.
- _Standard_:
- Fortran 2008 and later. With DISTANCE or FAILED argument,
- Technical Specification (TS) 18508 or later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = NUM_IMAGES(DISTANCE, FAILED)'
- _Arguments_:
- DISTANCE (optional, intent(in)) Nonnegative scalar
- integer
- FAILED (optional, intent(in)) Scalar logical expression
- _Return value_:
- Scalar default-kind integer. If DISTANCE is not present or has
- value 0, the number of images in the current team is returned. For
- values smaller or equal distance to the initial team, it returns
- the number of images index on the ancestor team which has a
- distance of DISTANCE from the invoking team. If DISTANCE is larger
- than the distance to the initial team, the number of images of the
- initial team is returned. If FAILED is not present the total
- number of images is returned; if it has the value '.TRUE.', the
- number of failed images is returned, otherwise, the number of
- images which do have not the failed status.
- _Example_:
- INTEGER :: value[*]
- INTEGER :: i
- value = THIS_IMAGE()
- SYNC ALL
- IF (THIS_IMAGE() == 1) THEN
- DO i = 1, NUM_IMAGES()
- WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
- END DO
- END IF
- _See also_:
- *note THIS_IMAGE::, *note IMAGE_INDEX::
- File: gfortran.info, Node: OR, Next: PACK, Prev: NUM_IMAGES, Up: Intrinsic Procedures
- 9.210 'OR' -- Bitwise logical OR
- ================================
- _Description_:
- Bitwise logical 'OR'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. For integer arguments, programmers should consider
- the use of the *note IOR:: intrinsic defined by the Fortran
- standard.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = OR(I, J)'
- _Arguments_:
- I The type shall be either a scalar 'INTEGER' type
- or a scalar 'LOGICAL' type.
- J The type shall be the same as the type of J.
- _Return value_:
- The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
- If the kind type parameters differ, then the smaller kind type is
- implicitly converted to larger kind, and the return has the larger
- kind.
- _Example_:
- PROGRAM test_or
- LOGICAL :: T = .TRUE., F = .FALSE.
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
- WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
- WRITE (*,*) OR(a, b)
- END PROGRAM
- _See also_:
- Fortran 95 elemental function: *note IOR::
- File: gfortran.info, Node: PACK, Next: PARITY, Prev: OR, Up: Intrinsic Procedures
- 9.211 'PACK' -- Pack an array into an array of rank one
- =======================================================
- _Description_:
- Stores the elements of ARRAY in an array of rank one.
- The beginning of the resulting array is made up of elements whose
- MASK equals 'TRUE'. Afterwards, positions are filled with elements
- taken from VECTOR.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = PACK(ARRAY, MASK[,VECTOR])'
- _Arguments_:
- ARRAY Shall be an array of any type.
- MASK Shall be an array of type 'LOGICAL' and of the
- same size as ARRAY. Alternatively, it may be a
- 'LOGICAL' scalar.
- VECTOR (Optional) shall be an array of the same type as
- ARRAY and of rank one. If present, the number
- of elements in VECTOR shall be equal to or
- greater than the number of true elements in
- MASK. If MASK is scalar, the number of elements
- in VECTOR shall be equal to or greater than the
- number of elements in ARRAY.
- _Return value_:
- The result is an array of rank one and the same type as that of
- ARRAY. If VECTOR is present, the result size is that of VECTOR,
- the number of 'TRUE' values in MASK otherwise.
- _Example_:
- Gathering nonzero elements from an array:
- PROGRAM test_pack_1
- INTEGER :: m(6)
- m = (/ 1, 0, 0, 0, 5, 0 /)
- WRITE(*, FMT="(6(I0, ' '))") pack(m, m /= 0) ! "1 5"
- END PROGRAM
- Gathering nonzero elements from an array and appending elements
- from VECTOR:
- PROGRAM test_pack_2
- INTEGER :: m(4)
- m = (/ 1, 0, 0, 2 /)
- WRITE(*, FMT="(4(I0, ' '))") pack(m, m /= 0, (/ 0, 0, 3, 4 /)) ! "1 2 3 4"
- END PROGRAM
- _See also_:
- *note UNPACK::
- File: gfortran.info, Node: PARITY, Next: PERROR, Prev: PACK, Up: Intrinsic Procedures
- 9.212 'PARITY' -- Reduction with exclusive OR
- =============================================
- _Description_:
- Calculates the parity, i.e. the reduction using '.XOR.', of MASK
- along dimension DIM.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = PARITY(MASK[, DIM])'
- _Arguments_:
- LOGICAL Shall be an array of type 'LOGICAL'
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of MASK.
- _Return value_:
- The result is of the same type as MASK.
- If DIM is absent, a scalar with the parity of all elements in MASK
- is returned, i.e. true if an odd number of elements is '.true.'
- and false otherwise. If DIM is present, an array of rank n-1,
- where n equals the rank of ARRAY, and a shape similar to that of
- MASK with dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_sum
- LOGICAL :: x(2) = [ .true., .false. ]
- print *, PARITY(x) ! prints "T" (true).
- END PROGRAM
- File: gfortran.info, Node: PERROR, Next: POPCNT, Prev: PARITY, Up: Intrinsic Procedures
- 9.213 'PERROR' -- Print system error message
- ============================================
- _Description_:
- Prints (on the C 'stderr' stream) a newline-terminated error
- message corresponding to the last system error. This is prefixed
- by STRING, a colon and a space. See 'perror(3)'.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL PERROR(STRING)'
- _Arguments_:
- STRING A scalar of type 'CHARACTER' and of the default
- kind.
- _See also_:
- *note IERRNO::
- File: gfortran.info, Node: POPCNT, Next: POPPAR, Prev: PERROR, Up: Intrinsic Procedures
- 9.214 'POPCNT' -- Number of bits set
- ====================================
- _Description_:
- 'POPCNT(I)' returns the number of bits set ('1' bits) in the binary
- representation of 'I'.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = POPCNT(I)'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _See also_:
- *note POPPAR::, *note LEADZ::, *note TRAILZ::
- _Example_:
- program test_population
- print *, popcnt(127), poppar(127)
- print *, popcnt(huge(0_4)), poppar(huge(0_4))
- print *, popcnt(huge(0_8)), poppar(huge(0_8))
- end program test_population
- File: gfortran.info, Node: POPPAR, Next: PRECISION, Prev: POPCNT, Up: Intrinsic Procedures
- 9.215 'POPPAR' -- Parity of the number of bits set
- ==================================================
- _Description_:
- 'POPPAR(I)' returns parity of the integer 'I', i.e. the parity of
- the number of bits set ('1' bits) in the binary representation of
- 'I'. It is equal to 0 if 'I' has an even number of bits set, and 1
- for an odd number of '1' bits.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = POPPAR(I)'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _See also_:
- *note POPCNT::, *note LEADZ::, *note TRAILZ::
- _Example_:
- program test_population
- print *, popcnt(127), poppar(127)
- print *, popcnt(huge(0_4)), poppar(huge(0_4))
- print *, popcnt(huge(0_8)), poppar(huge(0_8))
- end program test_population
- File: gfortran.info, Node: PRECISION, Next: PRESENT, Prev: POPPAR, Up: Intrinsic Procedures
- 9.216 'PRECISION' -- Decimal precision of a real kind
- =====================================================
- _Description_:
- 'PRECISION(X)' returns the decimal precision in the model of the
- type of 'X'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = PRECISION(X)'
- _Arguments_:
- X Shall be of type 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _See also_:
- *note SELECTED_REAL_KIND::, *note RANGE::
- _Example_:
- program prec_and_range
- real(kind=4) :: x(2)
- complex(kind=8) :: y
- print *, precision(x), range(x)
- print *, precision(y), range(y)
- end program prec_and_range
- File: gfortran.info, Node: PRESENT, Next: PRODUCT, Prev: PRECISION, Up: Intrinsic Procedures
- 9.217 'PRESENT' -- Determine whether an optional dummy argument is specified
- ============================================================================
- _Description_:
- Determines whether an optional dummy argument is present.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = PRESENT(A)'
- _Arguments_:
- A May be of any type and may be a pointer, scalar
- or array value, or a dummy procedure. It shall
- be the name of an optional dummy argument
- accessible within the current subroutine or
- function.
- _Return value_:
- Returns either 'TRUE' if the optional argument A is present, or
- 'FALSE' otherwise.
- _Example_:
- PROGRAM test_present
- WRITE(*,*) f(), f(42) ! "F T"
- CONTAINS
- LOGICAL FUNCTION f(x)
- INTEGER, INTENT(IN), OPTIONAL :: x
- f = PRESENT(x)
- END FUNCTION
- END PROGRAM
- File: gfortran.info, Node: PRODUCT, Next: RADIX, Prev: PRESENT, Up: Intrinsic Procedures
- 9.218 'PRODUCT' -- Product of array elements
- ============================================
- _Description_:
- Multiplies the elements of ARRAY along dimension DIM if the
- corresponding element in MASK is 'TRUE'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = PRODUCT(ARRAY[, MASK])'
- 'RESULT = PRODUCT(ARRAY, DIM[, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER', 'REAL' or
- 'COMPLEX'.
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the product of all elements in
- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
- the rank of ARRAY, and a shape similar to that of ARRAY with
- dimension DIM dropped is returned.
- _Example_:
- PROGRAM test_product
- INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
- print *, PRODUCT(x) ! all elements, product = 120
- print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product = 15
- END PROGRAM
- _See also_:
- *note SUM::
- File: gfortran.info, Node: RADIX, Next: RAN, Prev: PRODUCT, Up: Intrinsic Procedures
- 9.219 'RADIX' -- Base of a model number
- =======================================
- _Description_:
- 'RADIX(X)' returns the base of the model representing the entity X.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = RADIX(X)'
- _Arguments_:
- X Shall be of type 'INTEGER' or 'REAL'
- _Return value_:
- The return value is a scalar of type 'INTEGER' and of the default
- integer kind.
- _See also_:
- *note SELECTED_REAL_KIND::
- _Example_:
- program test_radix
- print *, "The radix for the default integer kind is", radix(0)
- print *, "The radix for the default real kind is", radix(0.0)
- end program test_radix
- File: gfortran.info, Node: RAN, Next: RAND, Prev: RADIX, Up: Intrinsic Procedures
- 9.220 'RAN' -- Real pseudo-random number
- ========================================
- _Description_:
- For compatibility with HP FORTRAN 77/iX, the 'RAN' intrinsic is
- provided as an alias for 'RAND'. See *note RAND:: for complete
- documentation.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _See also_:
- *note RAND::, *note RANDOM_NUMBER::
- File: gfortran.info, Node: RAND, Next: RANDOM_NUMBER, Prev: RAN, Up: Intrinsic Procedures
- 9.221 'RAND' -- Real pseudo-random number
- =========================================
- _Description_:
- 'RAND(FLAG)' returns a pseudo-random number from a uniform
- distribution between 0 and 1. If FLAG is 0, the next number in the
- current sequence is returned; if FLAG is 1, the generator is
- restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is
- used as a new seed with 'SRAND'.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. It implements a simple modulo generator as
- provided by 'g77'. For new code, one should consider the use of
- *note RANDOM_NUMBER:: as it implements a superior algorithm.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = RAND(I)'
- _Arguments_:
- I Shall be a scalar 'INTEGER' of kind 4.
- _Return value_:
- The return value is of 'REAL' type and the default kind.
- _Example_:
- program test_rand
- integer,parameter :: seed = 86456
- call srand(seed)
- print *, rand(), rand(), rand(), rand()
- print *, rand(seed), rand(), rand(), rand()
- end program test_rand
- _See also_:
- *note SRAND::, *note RANDOM_NUMBER::
- File: gfortran.info, Node: RANDOM_NUMBER, Next: RANDOM_SEED, Prev: RAND, Up: Intrinsic Procedures
- 9.222 'RANDOM_NUMBER' -- Pseudo-random number
- =============================================
- _Description_:
- Returns a single pseudorandom number or an array of pseudorandom
- numbers from the uniform distribution over the range 0 \leq x < 1.
- The runtime-library implements the xorshift1024* random number
- generator (RNG). This generator has a period of 2^{1024} - 1, and
- when using multiple threads up to 2^{512} threads can each generate
- 2^{512} random numbers before any aliasing occurs.
- Note that in a multi-threaded program (e.g. using OpenMP
- directives), each thread will have its own random number state.
- For details of the seeding procedure, see the documentation for the
- 'RANDOM_SEED' intrinsic.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'RANDOM_NUMBER(HARVEST)'
- _Arguments_:
- HARVEST Shall be a scalar or an array of type 'REAL'.
- _Example_:
- program test_random_number
- REAL :: r(5,5)
- CALL RANDOM_NUMBER(r)
- end program
- _See also_:
- *note RANDOM_SEED::
- File: gfortran.info, Node: RANDOM_SEED, Next: RANGE, Prev: RANDOM_NUMBER, Up: Intrinsic Procedures
- 9.223 'RANDOM_SEED' -- Initialize a pseudo-random number sequence
- =================================================================
- _Description_:
- Restarts or queries the state of the pseudorandom number generator
- used by 'RANDOM_NUMBER'.
- If 'RANDOM_SEED' is called without arguments, it is seeded with
- random data retrieved from the operating system.
- As an extension to the Fortran standard, the GFortran
- 'RANDOM_NUMBER' supports multiple threads. Each thread in a
- multi-threaded program has its own seed. When 'RANDOM_SEED' is
- called either without arguments or with the PUT argument, the given
- seed is copied into a master seed as well as the seed of the
- current thread. When a new thread uses 'RANDOM_NUMBER' for the
- first time, the seed is copied from the master seed, and forwarded
- N * 2^{512} steps to guarantee that the random stream does not
- alias any other stream in the system, where N is the number of
- threads that have used 'RANDOM_NUMBER' so far during the program
- execution.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL RANDOM_SEED([SIZE, PUT, GET])'
- _Arguments_:
- SIZE (Optional) Shall be a scalar and of type default
- 'INTEGER', with 'INTENT(OUT)'. It specifies the
- minimum size of the arrays used with the PUT and
- GET arguments.
- PUT (Optional) Shall be an array of type default
- 'INTEGER' and rank one. It is 'INTENT(IN)' and
- the size of the array must be larger than or
- equal to the number returned by the SIZE
- argument.
- GET (Optional) Shall be an array of type default
- 'INTEGER' and rank one. It is 'INTENT(OUT)' and
- the size of the array must be larger than or
- equal to the number returned by the SIZE
- argument.
- _Example_:
- program test_random_seed
- implicit none
- integer, allocatable :: seed(:)
- integer :: n
- call random_seed(size = n)
- allocate(seed(n))
- call random_seed(get=seed)
- write (*, *) seed
- end program test_random_seed
- _See also_:
- *note RANDOM_NUMBER::
- File: gfortran.info, Node: RANGE, Next: RANK, Prev: RANDOM_SEED, Up: Intrinsic Procedures
- 9.224 'RANGE' -- Decimal exponent range
- =======================================
- _Description_:
- 'RANGE(X)' returns the decimal exponent range in the model of the
- type of 'X'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = RANGE(X)'
- _Arguments_:
- X Shall be of type 'INTEGER', 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind.
- _See also_:
- *note SELECTED_REAL_KIND::, *note PRECISION::
- _Example_:
- See 'PRECISION' for an example.
- File: gfortran.info, Node: RANK, Next: REAL, Prev: RANGE, Up: Intrinsic Procedures
- 9.225 'RANK' -- Rank of a data object
- =====================================
- _Description_:
- 'RANK(A)' returns the rank of a scalar or array data object.
- _Standard_:
- Technical Specification (TS) 29113
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = RANK(A)'
- _Arguments_:
- A can be of any type
- _Return value_:
- The return value is of type 'INTEGER' and of the default integer
- kind. For arrays, their rank is returned; for scalars zero is
- returned.
- _Example_:
- program test_rank
- integer :: a
- real, allocatable :: b(:,:)
- print *, rank(a), rank(b) ! Prints: 0 2
- end program test_rank
- File: gfortran.info, Node: REAL, Next: RENAME, Prev: RANK, Up: Intrinsic Procedures
- 9.226 'REAL' -- Convert to real type
- ====================================
- _Description_:
- 'REAL(A [, KIND])' converts its argument A to a real type. The
- 'REALPART' function is provided for compatibility with 'g77', and
- its use is strongly discouraged.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = REAL(A [, KIND])'
- 'RESULT = REALPART(Z)'
- _Arguments_:
- A Shall be 'INTEGER', 'REAL', or 'COMPLEX'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- These functions return a 'REAL' variable or array under the
- following rules:
- (A)
- 'REAL(A)' is converted to a default real type if A is an
- integer or real variable.
- (B)
- 'REAL(A)' is converted to a real type with the kind type
- parameter of A if A is a complex variable.
- (C)
- 'REAL(A, KIND)' is converted to a real type with kind type
- parameter KIND if A is a complex, integer, or real variable.
- _Example_:
- program test_real
- complex :: x = (1.0, 2.0)
- print *, real(x), real(x,8), realpart(x)
- end program test_real
- _Specific names_:
- Name Argument Return type Standard
- 'FLOAT(A)' 'INTEGER(4)' 'REAL(4)' Fortran 77 and
- later
- 'DFLOAT(A)' 'INTEGER(4)' 'REAL(8)' GNU extension
- 'FLOATI(A)' 'INTEGER(2)' 'REAL(4)' GNU extension
- 'FLOATJ(A)' 'INTEGER(4)' 'REAL(4)' GNU extension
- 'FLOATK(A)' 'INTEGER(8)' 'REAL(4)' GNU extension
- 'SNGL(A)' 'INTEGER(8)' 'REAL(4)' Fortran 77 and
- later
- _See also_:
- *note DBLE::
- File: gfortran.info, Node: RENAME, Next: REPEAT, Prev: REAL, Up: Intrinsic Procedures
- 9.227 'RENAME' -- Rename a file
- ===============================
- _Description_:
- Renames a file from file PATH1 to PATH2. A null character
- ('CHAR(0)') can be used to mark the end of the names in PATH1 and
- PATH2; otherwise, trailing blanks in the file names are ignored.
- If the STATUS argument is supplied, it contains 0 on success or a
- nonzero error code upon return; see 'rename(2)'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL RENAME(PATH1, PATH2 [, STATUS])'
- 'STATUS = RENAME(PATH1, PATH2)'
- _Arguments_:
- PATH1 Shall be of default 'CHARACTER' type.
- PATH2 Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
- _See also_:
- *note LINK::
- File: gfortran.info, Node: REPEAT, Next: RESHAPE, Prev: RENAME, Up: Intrinsic Procedures
- 9.228 'REPEAT' -- Repeated string concatenation
- ===============================================
- _Description_:
- Concatenates NCOPIES copies of a string.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = REPEAT(STRING, NCOPIES)'
- _Arguments_:
- STRING Shall be scalar and of type 'CHARACTER'.
- NCOPIES Shall be scalar and of type 'INTEGER'.
- _Return value_:
- A new scalar of type 'CHARACTER' built up from NCOPIES copies of
- STRING.
- _Example_:
- program test_repeat
- write(*,*) repeat("x", 5) ! "xxxxx"
- end program
- File: gfortran.info, Node: RESHAPE, Next: RRSPACING, Prev: REPEAT, Up: Intrinsic Procedures
- 9.229 'RESHAPE' -- Function to reshape an array
- ===============================================
- _Description_:
- Reshapes SOURCE to correspond to SHAPE. If necessary, the new
- array may be padded with elements from PAD or permuted as defined
- by ORDER.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])'
- _Arguments_:
- SOURCE Shall be an array of any type.
- SHAPE Shall be of type 'INTEGER' and an array of rank
- one. Its values must be positive or zero.
- PAD (Optional) shall be an array of the same type as
- SOURCE.
- ORDER (Optional) shall be of type 'INTEGER' and an
- array of the same shape as SHAPE. Its values
- shall be a permutation of the numbers from 1 to
- n, where n is the size of SHAPE. If ORDER is
- absent, the natural ordering shall be assumed.
- _Return value_:
- The result is an array of shape SHAPE with the same type as SOURCE.
- _Example_:
- PROGRAM test_reshape
- INTEGER, DIMENSION(4) :: x
- WRITE(*,*) SHAPE(x) ! prints "4"
- WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/))) ! prints "2 2"
- END PROGRAM
- _See also_:
- *note SHAPE::
- File: gfortran.info, Node: RRSPACING, Next: RSHIFT, Prev: RESHAPE, Up: Intrinsic Procedures
- 9.230 'RRSPACING' -- Reciprocal of the relative spacing
- =======================================================
- _Description_:
- 'RRSPACING(X)' returns the reciprocal of the relative spacing of
- model numbers near X.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = RRSPACING(X)'
- _Arguments_:
- X Shall be of type 'REAL'.
- _Return value_:
- The return value is of the same type and kind as X. The value
- returned is equal to 'ABS(FRACTION(X)) *
- FLOAT(RADIX(X))**DIGITS(X)'.
- _See also_:
- *note SPACING::
- File: gfortran.info, Node: RSHIFT, Next: SAME_TYPE_AS, Prev: RRSPACING, Up: Intrinsic Procedures
- 9.231 'RSHIFT' -- Right shift bits
- ==================================
- _Description_:
- 'RSHIFT' returns a value corresponding to I with all of the bits
- shifted right by SHIFT places. If the absolute value of SHIFT is
- greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted
- out from the right end are lost. The fill is arithmetic: the bits
- shifted in from the left end are equal to the leftmost bit, which
- in two's complement representation is the sign bit.
- This function has been superseded by the 'SHIFTA' intrinsic, which
- is standard in Fortran 2008 and later.
- _Standard_:
- GNU extension
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = RSHIFT(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _See also_:
- *note ISHFT::, *note ISHFTC::, *note LSHIFT::, *note SHIFTA::,
- *note SHIFTR::, *note SHIFTL::
- File: gfortran.info, Node: SAME_TYPE_AS, Next: SCALE, Prev: RSHIFT, Up: Intrinsic Procedures
- 9.232 'SAME_TYPE_AS' -- Query dynamic types for equality
- ========================================================
- _Description_:
- Query dynamic types for equality.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = SAME_TYPE_AS(A, B)'
- _Arguments_:
- A Shall be an object of extensible declared type
- or unlimited polymorphic.
- B Shall be an object of extensible declared type
- or unlimited polymorphic.
- _Return value_:
- The return value is a scalar of type default logical. It is true
- if and only if the dynamic type of A is the same as the dynamic
- type of B.
- _See also_:
- *note EXTENDS_TYPE_OF::
- File: gfortran.info, Node: SCALE, Next: SCAN, Prev: SAME_TYPE_AS, Up: Intrinsic Procedures
- 9.233 'SCALE' -- Scale a real value
- ===================================
- _Description_:
- 'SCALE(X,I)' returns 'X * RADIX(X)**I'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SCALE(X, I)'
- _Arguments_:
- X The type of the argument shall be a 'REAL'.
- I The type of the argument shall be a 'INTEGER'.
- _Return value_:
- The return value is of the same type and kind as X. Its value is
- 'X * RADIX(X)**I'.
- _Example_:
- program test_scale
- real :: x = 178.1387e-4
- integer :: i = 5
- print *, scale(x,i), x*radix(x)**i
- end program test_scale
- File: gfortran.info, Node: SCAN, Next: SECNDS, Prev: SCALE, Up: Intrinsic Procedures
- 9.234 'SCAN' -- Scan a string for the presence of a set of characters
- =====================================================================
- _Description_:
- Scans a STRING for any of the characters in a SET of characters.
- If BACK is either absent or equals 'FALSE', this function returns
- the position of the leftmost character of STRING that is in SET.
- If BACK equals 'TRUE', the rightmost position is returned. If no
- character of SET is found in STRING, the result is zero.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SCAN(STRING, SET[, BACK [, KIND]])'
- _Arguments_:
- STRING Shall be of type 'CHARACTER'.
- SET Shall be of type 'CHARACTER'.
- BACK (Optional) shall be of type 'LOGICAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Example_:
- PROGRAM test_scan
- WRITE(*,*) SCAN("FORTRAN", "AO") ! 2, found 'O'
- WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.) ! 6, found 'A'
- WRITE(*,*) SCAN("FORTRAN", "C++") ! 0, found none
- END PROGRAM
- _See also_:
- *note INDEX intrinsic::, *note VERIFY::
- File: gfortran.info, Node: SECNDS, Next: SECOND, Prev: SCAN, Up: Intrinsic Procedures
- 9.235 'SECNDS' -- Time function
- ===============================
- _Description_:
- 'SECNDS(X)' gets the time in seconds from the real-time system
- clock. X is a reference time, also in seconds. If this is zero,
- the time in seconds from midnight is returned. This function is
- non-standard and its use is discouraged.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = SECNDS (X)'
- _Arguments_:
- T Shall be of type 'REAL(4)'.
- X Shall be of type 'REAL(4)'.
- _Return value_:
- None
- _Example_:
- program test_secnds
- integer :: i
- real(4) :: t1, t2
- print *, secnds (0.0) ! seconds since midnight
- t1 = secnds (0.0) ! reference time
- do i = 1, 10000000 ! do something
- end do
- t2 = secnds (t1) ! elapsed time
- print *, "Something took ", t2, " seconds."
- end program test_secnds
- File: gfortran.info, Node: SECOND, Next: SELECTED_CHAR_KIND, Prev: SECNDS, Up: Intrinsic Procedures
- 9.236 'SECOND' -- CPU time function
- ===================================
- _Description_:
- Returns a 'REAL(4)' value representing the elapsed CPU time in
- seconds. This provides the same functionality as the standard
- 'CPU_TIME' intrinsic, and is only included for backwards
- compatibility.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL SECOND(TIME)'
- 'TIME = SECOND()'
- _Arguments_:
- TIME Shall be of type 'REAL(4)'.
- _Return value_:
- In either syntax, TIME is set to the process's current runtime in
- seconds.
- _See also_:
- *note CPU_TIME::
- File: gfortran.info, Node: SELECTED_CHAR_KIND, Next: SELECTED_INT_KIND, Prev: SECOND, Up: Intrinsic Procedures
- 9.237 'SELECTED_CHAR_KIND' -- Choose character kind
- ===================================================
- _Description_:
- 'SELECTED_CHAR_KIND(NAME)' returns the kind value for the character
- set named NAME, if a character set with such a name is supported,
- or -1 otherwise. Currently, supported character sets include
- "ASCII" and "DEFAULT", which are equivalent, and "ISO_10646"
- (Universal Character Set, UCS-4) which is commonly known as
- Unicode.
- _Standard_:
- Fortran 2003 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = SELECTED_CHAR_KIND(NAME)'
- _Arguments_:
- NAME Shall be a scalar and of the default character
- type.
- _Example_:
- program character_kind
- use iso_fortran_env
- implicit none
- integer, parameter :: ascii = selected_char_kind ("ascii")
- integer, parameter :: ucs4 = selected_char_kind ('ISO_10646')
- character(kind=ascii, len=26) :: alphabet
- character(kind=ucs4, len=30) :: hello_world
- alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
- hello_world = ucs4_'Hello World and Ni Hao -- ' &
- // char (int (z'4F60'), ucs4) &
- // char (int (z'597D'), ucs4)
- write (*,*) alphabet
- open (output_unit, encoding='UTF-8')
- write (*,*) trim (hello_world)
- end program character_kind
- File: gfortran.info, Node: SELECTED_INT_KIND, Next: SELECTED_REAL_KIND, Prev: SELECTED_CHAR_KIND, Up: Intrinsic Procedures
- 9.238 'SELECTED_INT_KIND' -- Choose integer kind
- ================================================
- _Description_:
- 'SELECTED_INT_KIND(R)' return the kind value of the smallest
- integer type that can represent all values ranging from -10^R
- (exclusive) to 10^R (exclusive). If there is no integer kind that
- accommodates this range, 'SELECTED_INT_KIND' returns -1.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = SELECTED_INT_KIND(R)'
- _Arguments_:
- R Shall be a scalar and of type 'INTEGER'.
- _Example_:
- program large_integers
- integer,parameter :: k5 = selected_int_kind(5)
- integer,parameter :: k15 = selected_int_kind(15)
- integer(kind=k5) :: i5
- integer(kind=k15) :: i15
- print *, huge(i5), huge(i15)
- ! The following inequalities are always true
- print *, huge(i5) >= 10_k5**5-1
- print *, huge(i15) >= 10_k15**15-1
- end program large_integers
- File: gfortran.info, Node: SELECTED_REAL_KIND, Next: SET_EXPONENT, Prev: SELECTED_INT_KIND, Up: Intrinsic Procedures
- 9.239 'SELECTED_REAL_KIND' -- Choose real kind
- ==============================================
- _Description_:
- 'SELECTED_REAL_KIND(P,R)' returns the kind value of a real data
- type with decimal precision of at least 'P' digits, exponent range
- of at least 'R', and with a radix of 'RADIX'.
- _Standard_:
- Fortran 95 and later, with 'RADIX' Fortran 2008 or later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = SELECTED_REAL_KIND([P, R, RADIX])'
- _Arguments_:
- P (Optional) shall be a scalar and of type
- 'INTEGER'.
- R (Optional) shall be a scalar and of type
- 'INTEGER'.
- RADIX (Optional) shall be a scalar and of type
- 'INTEGER'.
- Before Fortran 2008, at least one of the arguments R or P shall be
- present; since Fortran 2008, they are assumed to be zero if absent.
- _Return value_:
- 'SELECTED_REAL_KIND' returns the value of the kind type parameter
- of a real data type with decimal precision of at least 'P' digits,
- a decimal exponent range of at least 'R', and with the requested
- 'RADIX'. If the 'RADIX' parameter is absent, real kinds with any
- radix can be returned. If more than one real data type meet the
- criteria, the kind of the data type with the smallest decimal
- precision is returned. If no real data type matches the criteria,
- the result is
- -1 if the processor does not support a real data type with a
- precision greater than or equal to 'P', but the 'R' and
- 'RADIX' requirements can be fulfilled
- -2 if the processor does not support a real type with an exponent
- range greater than or equal to 'R', but 'P' and 'RADIX' are
- fulfillable
- -3 if 'RADIX' but not 'P' and 'R' requirements
- are fulfillable
- -4 if 'RADIX' and either 'P' or 'R' requirements
- are fulfillable
- -5 if there is no real type with the given 'RADIX'
- _See also_:
- *note PRECISION::, *note RANGE::, *note RADIX::
- _Example_:
- program real_kinds
- integer,parameter :: p6 = selected_real_kind(6)
- integer,parameter :: p10r100 = selected_real_kind(10,100)
- integer,parameter :: r400 = selected_real_kind(r=400)
- real(kind=p6) :: x
- real(kind=p10r100) :: y
- real(kind=r400) :: z
- print *, precision(x), range(x)
- print *, precision(y), range(y)
- print *, precision(z), range(z)
- end program real_kinds
- File: gfortran.info, Node: SET_EXPONENT, Next: SHAPE, Prev: SELECTED_REAL_KIND, Up: Intrinsic Procedures
- 9.240 'SET_EXPONENT' -- Set the exponent of the model
- =====================================================
- _Description_:
- 'SET_EXPONENT(X, I)' returns the real number whose fractional part
- is that that of X and whose exponent part is I.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SET_EXPONENT(X, I)'
- _Arguments_:
- X Shall be of type 'REAL'.
- I Shall be of type 'INTEGER'.
- _Return value_:
- The return value is of the same type and kind as X. The real
- number whose fractional part is that that of X and whose exponent
- part if I is returned; it is 'FRACTION(X) * RADIX(X)**I'.
- _Example_:
- PROGRAM test_setexp
- REAL :: x = 178.1387e-4
- INTEGER :: i = 17
- PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
- END PROGRAM
- File: gfortran.info, Node: SHAPE, Next: SHIFTA, Prev: SET_EXPONENT, Up: Intrinsic Procedures
- 9.241 'SHAPE' -- Determine the shape of an array
- ================================================
- _Description_:
- Determines the shape of an array.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = SHAPE(SOURCE [, KIND])'
- _Arguments_:
- SOURCE Shall be an array or scalar of any type. If
- SOURCE is a pointer it must be associated and
- allocatable arrays must be allocated.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- An 'INTEGER' array of rank one with as many elements as SOURCE has
- dimensions. The elements of the resulting array correspond to the
- extend of SOURCE along the respective dimensions. If SOURCE is a
- scalar, the result is the rank one array of size zero. If KIND is
- absent, the return value has the default integer kind otherwise the
- specified kind.
- _Example_:
- PROGRAM test_shape
- INTEGER, DIMENSION(-1:1, -1:2) :: A
- WRITE(*,*) SHAPE(A) ! (/ 3, 4 /)
- WRITE(*,*) SIZE(SHAPE(42)) ! (/ /)
- END PROGRAM
- _See also_:
- *note RESHAPE::, *note SIZE::
- File: gfortran.info, Node: SHIFTA, Next: SHIFTL, Prev: SHAPE, Up: Intrinsic Procedures
- 9.242 'SHIFTA' -- Right shift with fill
- =======================================
- _Description_:
- 'SHIFTA' returns a value corresponding to I with all of the bits
- shifted right by SHIFT places. If the absolute value of SHIFT is
- greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted
- out from the right end are lost. The fill is arithmetic: the bits
- shifted in from the left end are equal to the leftmost bit, which
- in two's complement representation is the sign bit.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SHIFTA(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _See also_:
- *note SHIFTL::, *note SHIFTR::
- File: gfortran.info, Node: SHIFTL, Next: SHIFTR, Prev: SHIFTA, Up: Intrinsic Procedures
- 9.243 'SHIFTL' -- Left shift
- ============================
- _Description_:
- 'SHIFTL' returns a value corresponding to I with all of the bits
- shifted left by SHIFT places. If the absolute value of SHIFT is
- greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted
- out from the left end are lost, and bits shifted in from the right
- end are set to 0.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SHIFTL(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _See also_:
- *note SHIFTA::, *note SHIFTR::
- File: gfortran.info, Node: SHIFTR, Next: SIGN, Prev: SHIFTL, Up: Intrinsic Procedures
- 9.244 'SHIFTR' -- Right shift
- =============================
- _Description_:
- 'SHIFTR' returns a value corresponding to I with all of the bits
- shifted right by SHIFT places. If the absolute value of SHIFT is
- greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted
- out from the right end are lost, and bits shifted in from the left
- end are set to 0.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SHIFTR(I, SHIFT)'
- _Arguments_:
- I The type shall be 'INTEGER'.
- SHIFT The type shall be 'INTEGER'.
- _Return value_:
- The return value is of type 'INTEGER' and of the same kind as I.
- _See also_:
- *note SHIFTA::, *note SHIFTL::
- File: gfortran.info, Node: SIGN, Next: SIGNAL, Prev: SHIFTR, Up: Intrinsic Procedures
- 9.245 'SIGN' -- Sign copying function
- =====================================
- _Description_:
- 'SIGN(A,B)' returns the value of A with the sign of B.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SIGN(A, B)'
- _Arguments_:
- A Shall be of type 'INTEGER' or 'REAL'
- B Shall be of the same type and kind as A
- _Return value_:
- The kind of the return value is that of A and B. If B\ge 0 then
- the result is 'ABS(A)', else it is '-ABS(A)'.
- _Example_:
- program test_sign
- print *, sign(-12,1)
- print *, sign(-12,0)
- print *, sign(-12,-1)
- print *, sign(-12.,1.)
- print *, sign(-12.,0.)
- print *, sign(-12.,-1.)
- end program test_sign
- _Specific names_:
- Name Arguments Return type Standard
- 'SIGN(A,B)' 'REAL(4) A, 'REAL(4)' f77, gnu
- B'
- 'ISIGN(A,B)' 'INTEGER(4) 'INTEGER(4)' f77, gnu
- A, B'
- 'DSIGN(A,B)' 'REAL(8) A, 'REAL(8)' f77, gnu
- B'
- File: gfortran.info, Node: SIGNAL, Next: SIN, Prev: SIGN, Up: Intrinsic Procedures
- 9.246 'SIGNAL' -- Signal handling subroutine (or function)
- ==========================================================
- _Description_:
- 'SIGNAL(NUMBER, HANDLER [, STATUS])' causes external subroutine
- HANDLER to be executed with a single integer argument when signal
- NUMBER occurs. If HANDLER is an integer, it can be used to turn
- off handling of signal NUMBER or revert to its default action. See
- 'signal(2)'.
- If 'SIGNAL' is called as a subroutine and the STATUS argument is
- supplied, it is set to the value returned by 'signal(2)'.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL SIGNAL(NUMBER, HANDLER [, STATUS])'
- 'STATUS = SIGNAL(NUMBER, HANDLER)'
- _Arguments_:
- NUMBER Shall be a scalar integer, with 'INTENT(IN)'
- HANDLER Signal handler ('INTEGER FUNCTION' or
- 'SUBROUTINE') or dummy/global 'INTEGER' scalar.
- 'INTEGER'. It is 'INTENT(IN)'.
- STATUS (Optional) STATUS shall be a scalar integer. It
- has 'INTENT(OUT)'.
- _Return value_:
- The 'SIGNAL' function returns the value returned by 'signal(2)'.
- _Example_:
- program test_signal
- intrinsic signal
- external handler_print
- call signal (12, handler_print)
- call signal (10, 1)
- call sleep (30)
- end program test_signal
- File: gfortran.info, Node: SIN, Next: SIND, Prev: SIGNAL, Up: Intrinsic Procedures
- 9.247 'SIN' -- Sine function
- ============================
- _Description_:
- 'SIN(X)' computes the sine of X.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SIN(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X.
- _Example_:
- program test_sin
- real :: x = 0.0
- x = sin(x)
- end program test_sin
- _Specific names_:
- Name Argument Return type Standard
- 'SIN(X)' 'REAL(4) X' 'REAL(4)' f77, gnu
- 'DSIN(X)' 'REAL(8) X' 'REAL(8)' f95, gnu
- 'CSIN(X)' 'COMPLEX(4) 'COMPLEX(4)' f95, gnu
- X'
- 'ZSIN(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu
- X'
- 'CDSIN(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu
- X'
- _See also_:
- Inverse function: *note ASIN:: Degrees function: *note SIND::
- File: gfortran.info, Node: SIND, Next: SINH, Prev: SIN, Up: Intrinsic Procedures
- 9.248 'SIND' -- Sine function, degrees
- ======================================
- _Description_:
- 'SIND(X)' computes the sine of X in degrees.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU Extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SIND(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X, and its value is in
- degrees.
- _Example_:
- program test_sind
- real :: x = 0.0
- x = sind(x)
- end program test_sind
- _Specific names_:
- Name Argument Return type Standard
- 'SIND(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DSIND(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
- 'CSIND(X)' 'COMPLEX(4) 'COMPLEX(4)' GNU Extension
- X'
- 'ZSIND(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU Extension
- X'
- 'CDSIND(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU Extension
- X'
- _See also_:
- Inverse function: *note ASIND:: Radians function: *note SIN::
- File: gfortran.info, Node: SINH, Next: SIZE, Prev: SIND, Up: Intrinsic Procedures
- 9.249 'SINH' -- Hyperbolic sine function
- ========================================
- _Description_:
- 'SINH(X)' computes the hyperbolic sine of X.
- _Standard_:
- Fortran 95 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SINH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X.
- _Example_:
- program test_sinh
- real(8) :: x = - 1.0_8
- x = sinh(x)
- end program test_sinh
- _Specific names_:
- Name Argument Return type Standard
- 'SINH(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and
- later
- 'DSINH(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and
- later
- _See also_:
- *note ASINH::
- File: gfortran.info, Node: SIZE, Next: SIZEOF, Prev: SINH, Up: Intrinsic Procedures
- 9.250 'SIZE' -- Determine the size of an array
- ==============================================
- _Description_:
- Determine the extent of ARRAY along a specified dimension DIM, or
- the total number of elements in ARRAY if DIM is absent.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = SIZE(ARRAY[, DIM [, KIND]])'
- _Arguments_:
- ARRAY Shall be an array of any type. If ARRAY is a
- pointer it must be associated and allocatable
- arrays must be allocated.
- DIM (Optional) shall be a scalar of type 'INTEGER'
- and its value shall be in the range from 1 to n,
- where n equals the rank of ARRAY.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Example_:
- PROGRAM test_size
- WRITE(*,*) SIZE((/ 1, 2 /)) ! 2
- END PROGRAM
- _See also_:
- *note SHAPE::, *note RESHAPE::
- File: gfortran.info, Node: SIZEOF, Next: SLEEP, Prev: SIZE, Up: Intrinsic Procedures
- 9.251 'SIZEOF' -- Size in bytes of an expression
- ================================================
- _Description_:
- 'SIZEOF(X)' calculates the number of bytes of storage the
- expression 'X' occupies.
- _Standard_:
- GNU extension
- _Class_:
- Inquiry function
- _Syntax_:
- 'N = SIZEOF(X)'
- _Arguments_:
- X The argument shall be of any type, rank or
- shape.
- _Return value_:
- The return value is of type integer and of the system-dependent
- kind C_SIZE_T (from the ISO_C_BINDING module). Its value is the
- number of bytes occupied by the argument. If the argument has the
- 'POINTER' attribute, the number of bytes of the storage area
- pointed to is returned. If the argument is of a derived type with
- 'POINTER' or 'ALLOCATABLE' components, the return value does not
- account for the sizes of the data pointed to by these components.
- If the argument is polymorphic, the size according to the dynamic
- type is returned. The argument may not be a procedure or procedure
- pointer. Note that the code assumes for arrays that those are
- contiguous; for contiguous arrays, it returns the storage or an
- array element multiplied by the size of the array.
- _Example_:
- integer :: i
- real :: r, s(5)
- print *, (sizeof(s)/sizeof(r) == 5)
- end
- The example will print '.TRUE.' unless you are using a platform
- where default 'REAL' variables are unusually padded.
- _See also_:
- *note C_SIZEOF::, *note STORAGE_SIZE::
- File: gfortran.info, Node: SLEEP, Next: SPACING, Prev: SIZEOF, Up: Intrinsic Procedures
- 9.252 'SLEEP' -- Sleep for the specified number of seconds
- ==========================================================
- _Description_:
- Calling this subroutine causes the process to pause for SECONDS
- seconds.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL SLEEP(SECONDS)'
- _Arguments_:
- SECONDS The type shall be of default 'INTEGER'.
- _Example_:
- program test_sleep
- call sleep(5)
- end
- File: gfortran.info, Node: SPACING, Next: SPREAD, Prev: SLEEP, Up: Intrinsic Procedures
- 9.253 'SPACING' -- Smallest distance between two numbers of a given type
- ========================================================================
- _Description_:
- Determines the distance between the argument X and the nearest
- adjacent number of the same type.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SPACING(X)'
- _Arguments_:
- X Shall be of type 'REAL'.
- _Return value_:
- The result is of the same type as the input argument X.
- _Example_:
- PROGRAM test_spacing
- INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
- INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
- WRITE(*,*) spacing(1.0_SGL) ! "1.1920929E-07" on i686
- WRITE(*,*) spacing(1.0_DBL) ! "2.220446049250313E-016" on i686
- END PROGRAM
- _See also_:
- *note RRSPACING::
- File: gfortran.info, Node: SPREAD, Next: SQRT, Prev: SPACING, Up: Intrinsic Procedures
- 9.254 'SPREAD' -- Add a dimension to an array
- =============================================
- _Description_:
- Replicates a SOURCE array NCOPIES times along a specified dimension
- DIM.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = SPREAD(SOURCE, DIM, NCOPIES)'
- _Arguments_:
- SOURCE Shall be a scalar or an array of any type and a
- rank less than seven.
- DIM Shall be a scalar of type 'INTEGER' with a value
- in the range from 1 to n+1, where n equals the
- rank of SOURCE.
- NCOPIES Shall be a scalar of type 'INTEGER'.
- _Return value_:
- The result is an array of the same type as SOURCE and has rank n+1
- where n equals the rank of SOURCE.
- _Example_:
- PROGRAM test_spread
- INTEGER :: a = 1, b(2) = (/ 1, 2 /)
- WRITE(*,*) SPREAD(A, 1, 2) ! "1 1"
- WRITE(*,*) SPREAD(B, 1, 2) ! "1 1 2 2"
- END PROGRAM
- _See also_:
- *note UNPACK::
- File: gfortran.info, Node: SQRT, Next: SRAND, Prev: SPREAD, Up: Intrinsic Procedures
- 9.255 'SQRT' -- Square-root function
- ====================================
- _Description_:
- 'SQRT(X)' computes the square root of X.
- _Standard_:
- Fortran 77 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = SQRT(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value is of type 'REAL' or 'COMPLEX'. The kind type
- parameter is the same as X.
- _Example_:
- program test_sqrt
- real(8) :: x = 2.0_8
- complex :: z = (1.0, 2.0)
- x = sqrt(x)
- z = sqrt(z)
- end program test_sqrt
- _Specific names_:
- Name Argument Return type Standard
- 'SQRT(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and
- later
- 'DSQRT(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and
- later
- 'CSQRT(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 95 and
- X' later
- 'ZSQRT(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- 'CDSQRT(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension
- X'
- File: gfortran.info, Node: SRAND, Next: STAT, Prev: SQRT, Up: Intrinsic Procedures
- 9.256 'SRAND' -- Reinitialize the random number generator
- =========================================================
- _Description_:
- 'SRAND' reinitializes the pseudo-random number generator called by
- 'RAND' and 'IRAND'. The new seed used by the generator is
- specified by the required argument SEED.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL SRAND(SEED)'
- _Arguments_:
- SEED Shall be a scalar 'INTEGER(kind=4)'.
- _Return value_:
- Does not return anything.
- _Example_:
- See 'RAND' and 'IRAND' for examples.
- _Notes_:
- The Fortran standard specifies the intrinsic subroutines
- 'RANDOM_SEED' to initialize the pseudo-random number generator and
- 'RANDOM_NUMBER' to generate pseudo-random numbers. These
- subroutines should be used in new codes.
- Please note that in GNU Fortran, these two sets of intrinsics
- ('RAND', 'IRAND' and 'SRAND' on the one hand, 'RANDOM_NUMBER' and
- 'RANDOM_SEED' on the other hand) access two independent
- pseudo-random number generators.
- _See also_:
- *note RAND::, *note RANDOM_SEED::, *note RANDOM_NUMBER::
- File: gfortran.info, Node: STAT, Next: STORAGE_SIZE, Prev: SRAND, Up: Intrinsic Procedures
- 9.257 'STAT' -- Get file status
- ===============================
- _Description_:
- This function returns information about a file. No permissions are
- required on the file itself, but execute (search) permission is
- required on all of the directories in path that lead to the file.
- The elements that are obtained and stored in the array 'VALUES':
- 'VALUES(1)' Device ID
- 'VALUES(2)' Inode number
- 'VALUES(3)' File mode
- 'VALUES(4)' Number of links
- 'VALUES(5)' Owner's uid
- 'VALUES(6)' Owner's gid
- 'VALUES(7)' ID of device containing directory entry for file
- (0 if not available)
- 'VALUES(8)' File size (bytes)
- 'VALUES(9)' Last access time
- 'VALUES(10)'Last modification time
- 'VALUES(11)'Last file status change time
- 'VALUES(12)'Preferred I/O block size (-1 if not available)
- 'VALUES(13)'Number of blocks allocated (-1 if not available)
- Not all these elements are relevant on all systems. If an element
- is not relevant, it is returned as 0.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL STAT(NAME, VALUES [, STATUS])'
- 'STATUS = STAT(NAME, VALUES)'
- _Arguments_:
- NAME The type shall be 'CHARACTER', of the default
- kind and a valid path within the file system.
- VALUES The type shall be 'INTEGER(4), DIMENSION(13)'.
- STATUS (Optional) status flag of type 'INTEGER(4)'.
- Returns 0 on success and a system specific error
- code otherwise.
- _Example_:
- PROGRAM test_stat
- INTEGER, DIMENSION(13) :: buff
- INTEGER :: status
- CALL STAT("/etc/passwd", buff, status)
- IF (status == 0) THEN
- WRITE (*, FMT="('Device ID:', T30, I19)") buff(1)
- WRITE (*, FMT="('Inode number:', T30, I19)") buff(2)
- WRITE (*, FMT="('File mode (octal):', T30, O19)") buff(3)
- WRITE (*, FMT="('Number of links:', T30, I19)") buff(4)
- WRITE (*, FMT="('Owner''s uid:', T30, I19)") buff(5)
- WRITE (*, FMT="('Owner''s gid:', T30, I19)") buff(6)
- WRITE (*, FMT="('Device where located:', T30, I19)") buff(7)
- WRITE (*, FMT="('File size:', T30, I19)") buff(8)
- WRITE (*, FMT="('Last access time:', T30, A19)") CTIME(buff(9))
- WRITE (*, FMT="('Last modification time', T30, A19)") CTIME(buff(10))
- WRITE (*, FMT="('Last status change time:', T30, A19)") CTIME(buff(11))
- WRITE (*, FMT="('Preferred block size:', T30, I19)") buff(12)
- WRITE (*, FMT="('No. of blocks allocated:', T30, I19)") buff(13)
- END IF
- END PROGRAM
- _See also_:
- To stat an open file: *note FSTAT::, to stat a link: *note LSTAT::
- File: gfortran.info, Node: STORAGE_SIZE, Next: SUM, Prev: STAT, Up: Intrinsic Procedures
- 9.258 'STORAGE_SIZE' -- Storage size in bits
- ============================================
- _Description_:
- Returns the storage size of argument A in bits.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = STORAGE_SIZE(A [, KIND])'
- _Arguments_:
- A Shall be a scalar or array of any type.
- KIND (Optional) shall be a scalar integer constant
- expression.
- _Return Value_:
- The result is a scalar integer with the kind type parameter
- specified by KIND (or default integer type if KIND is missing).
- The result value is the size expressed in bits for an element of an
- array that has the dynamic type and type parameters of A.
- _See also_:
- *note C_SIZEOF::, *note SIZEOF::
- File: gfortran.info, Node: SUM, Next: SYMLNK, Prev: STORAGE_SIZE, Up: Intrinsic Procedures
- 9.259 'SUM' -- Sum of array elements
- ====================================
- _Description_:
- Adds the elements of ARRAY along dimension DIM if the corresponding
- element in MASK is 'TRUE'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = SUM(ARRAY[, MASK])'
- 'RESULT = SUM(ARRAY, DIM[, MASK])'
- _Arguments_:
- ARRAY Shall be an array of type 'INTEGER', 'REAL' or
- 'COMPLEX'.
- DIM (Optional) shall be a scalar of type 'INTEGER'
- with a value in the range from 1 to n, where n
- equals the rank of ARRAY.
- MASK (Optional) shall be of type 'LOGICAL' and either
- be a scalar or an array of the same shape as
- ARRAY.
- _Return value_:
- The result is of the same type as ARRAY.
- If DIM is absent, a scalar with the sum of all elements in ARRAY is
- returned. Otherwise, an array of rank n-1, where n equals the rank
- of ARRAY, and a shape similar to that of ARRAY with dimension DIM
- dropped is returned.
- _Example_:
- PROGRAM test_sum
- INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
- print *, SUM(x) ! all elements, sum = 15
- print *, SUM(x, MASK=MOD(x, 2)==1) ! odd elements, sum = 9
- END PROGRAM
- _See also_:
- *note PRODUCT::
- File: gfortran.info, Node: SYMLNK, Next: SYSTEM, Prev: SUM, Up: Intrinsic Procedures
- 9.260 'SYMLNK' -- Create a symbolic link
- ========================================
- _Description_:
- Makes a symbolic link from file PATH1 to PATH2. A null character
- ('CHAR(0)') can be used to mark the end of the names in PATH1 and
- PATH2; otherwise, trailing blanks in the file names are ignored.
- If the STATUS argument is supplied, it contains 0 on success or a
- nonzero error code upon return; see 'symlink(2)'. If the system
- does not supply 'symlink(2)', 'ENOSYS' is returned.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL SYMLNK(PATH1, PATH2 [, STATUS])'
- 'STATUS = SYMLNK(PATH1, PATH2)'
- _Arguments_:
- PATH1 Shall be of default 'CHARACTER' type.
- PATH2 Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
- _See also_:
- *note LINK::, *note UNLINK::
- File: gfortran.info, Node: SYSTEM, Next: SYSTEM_CLOCK, Prev: SYMLNK, Up: Intrinsic Procedures
- 9.261 'SYSTEM' -- Execute a shell command
- =========================================
- _Description_:
- Passes the command COMMAND to a shell (see 'system(3)'). If
- argument STATUS is present, it contains the value returned by
- 'system(3)', which is presumably 0 if the shell command succeeded.
- Note that which shell is used to invoke the command is
- system-dependent and environment-dependent.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- Note that the 'system' function need not be thread-safe. It is the
- responsibility of the user to ensure that 'system' is not called
- concurrently.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL SYSTEM(COMMAND [, STATUS])'
- 'STATUS = SYSTEM(COMMAND)'
- _Arguments_:
- COMMAND Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
- _See also_:
- *note EXECUTE_COMMAND_LINE::, which is part of the Fortran 2008
- standard and should considered in new code for future portability.
- File: gfortran.info, Node: SYSTEM_CLOCK, Next: TAN, Prev: SYSTEM, Up: Intrinsic Procedures
- 9.262 'SYSTEM_CLOCK' -- Time function
- =====================================
- _Description_:
- Determines the COUNT of a processor clock since an unspecified time
- in the past modulo COUNT_MAX, COUNT_RATE determines the number of
- clock ticks per second. If the platform supports a monotonic
- clock, that clock is used and can, depending on the platform clock
- implementation, provide up to nanosecond resolution. If a
- monotonic clock is not available, the implementation falls back to
- a realtime clock.
- COUNT_RATE is system dependent and can vary depending on the kind
- of the arguments. For KIND=4 arguments (and smaller integer
- kinds), COUNT represents milliseconds, while for KIND=8 arguments
- (and larger integer kinds), COUNT typically represents micro- or
- nanoseconds depending on resolution of the underlying platform
- clock. COUNT_MAX usually equals 'HUGE(COUNT_MAX)'. Note that the
- millisecond resolution of the KIND=4 version implies that the COUNT
- will wrap around in roughly 25 days. In order to avoid issues with
- the wrap around and for more precise timing, please use the KIND=8
- version.
- If there is no clock, or querying the clock fails, COUNT is set to
- '-HUGE(COUNT)', and COUNT_RATE and COUNT_MAX are set to zero.
- When running on a platform using the GNU C library (glibc) version
- 2.16 or older, or a derivative thereof, the high resolution
- monotonic clock is available only when linking with the RT library.
- This can be done explicitly by adding the '-lrt' flag when linking
- the application, but is also done implicitly when using OpenMP.
- On the Windows platform, the version with KIND=4 arguments uses the
- 'GetTickCount' function, whereas the KIND=8 version uses
- 'QueryPerformanceCounter' and 'QueryPerformanceCounterFrequency'.
- For more information, and potential caveats, please see the
- platform documentation.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Subroutine
- _Syntax_:
- 'CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])'
- _Arguments_:
- COUNT (Optional) shall be a scalar of type 'INTEGER'
- with 'INTENT(OUT)'.
- COUNT_RATE (Optional) shall be a scalar of type 'INTEGER'
- or 'REAL', with 'INTENT(OUT)'.
- COUNT_MAX (Optional) shall be a scalar of type 'INTEGER'
- with 'INTENT(OUT)'.
- _Example_:
- PROGRAM test_system_clock
- INTEGER :: count, count_rate, count_max
- CALL SYSTEM_CLOCK(count, count_rate, count_max)
- WRITE(*,*) count, count_rate, count_max
- END PROGRAM
- _See also_:
- *note DATE_AND_TIME::, *note CPU_TIME::
- File: gfortran.info, Node: TAN, Next: TAND, Prev: SYSTEM_CLOCK, Up: Intrinsic Procedures
- 9.263 'TAN' -- Tangent function
- ===============================
- _Description_:
- 'TAN(X)' computes the tangent of X.
- _Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = TAN(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X, and its value is in
- radians.
- _Example_:
- program test_tan
- real(8) :: x = 0.165_8
- x = tan(x)
- end program test_tan
- _Specific names_:
- Name Argument Return type Standard
- 'TAN(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and
- later
- 'DTAN(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and
- later
- _See also_:
- Inverse function: *note ATAN:: Degrees function: *note TAND::
- File: gfortran.info, Node: TAND, Next: TANH, Prev: TAN, Up: Intrinsic Procedures
- 9.264 'TAND' -- Tangent function, degrees
- =========================================
- _Description_:
- 'TAND(X)' computes the tangent of X in degrees.
- This function is for compatibility only and should be avoided in
- favor of standard constructs wherever possible.
- _Standard_:
- GNU Extension, enabled with '-fdec-math'.
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = TAND(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X, and its value is in
- degrees.
- _Example_:
- program test_tand
- real(8) :: x = 0.165_8
- x = tand(x)
- end program test_tand
- _Specific names_:
- Name Argument Return type Standard
- 'TAND(X)' 'REAL(4) X' 'REAL(4)' GNU Extension
- 'DTAND(X)' 'REAL(8) X' 'REAL(8)' GNU Extension
- _See also_:
- Inverse function: *note ATAND:: Radians function: *note TAN::
- File: gfortran.info, Node: TANH, Next: THIS_IMAGE, Prev: TAND, Up: Intrinsic Procedures
- 9.265 'TANH' -- Hyperbolic tangent function
- ===========================================
- _Description_:
- 'TANH(X)' computes the hyperbolic tangent of X.
- _Standard_:
- Fortran 77 and later, for a complex argument Fortran 2008 or later
- _Class_:
- Elemental function
- _Syntax_:
- 'X = TANH(X)'
- _Arguments_:
- X The type shall be 'REAL' or 'COMPLEX'.
- _Return value_:
- The return value has same type and kind as X. If X is complex, the
- imaginary part of the result is in radians. If X is 'REAL', the
- return value lies in the range - 1 \leq tanh(x) \leq 1 .
- _Example_:
- program test_tanh
- real(8) :: x = 2.1_8
- x = tanh(x)
- end program test_tanh
- _Specific names_:
- Name Argument Return type Standard
- 'TANH(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and
- later
- 'DTANH(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and
- later
- _See also_:
- *note ATANH::
- File: gfortran.info, Node: THIS_IMAGE, Next: TIME, Prev: TANH, Up: Intrinsic Procedures
- 9.266 'THIS_IMAGE' -- Function that returns the cosubscript index of this image
- ===============================================================================
- _Description_:
- Returns the cosubscript for this image.
- _Standard_:
- Fortran 2008 and later. With DISTANCE argument, Technical
- Specification (TS) 18508 or later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = THIS_IMAGE()'
- 'RESULT = THIS_IMAGE(DISTANCE)'
- 'RESULT = THIS_IMAGE(COARRAY [, DIM])'
- _Arguments_:
- DISTANCE (optional, intent(in)) Nonnegative scalar
- integer (not permitted together with COARRAY).
- COARRAY Coarray of any type (optional; if DIM present,
- required).
- DIM default integer scalar (optional). If present,
- DIM shall be between one and the corank of
- COARRAY.
- _Return value_:
- Default integer. If COARRAY is not present, it is scalar; if
- DISTANCE is not present or has value 0, its value is the image
- index on the invoking image for the current team, for values
- smaller or equal distance to the initial team, it returns the image
- index on the ancestor team which has a distance of DISTANCE from
- the invoking team. If DISTANCE is larger than the distance to the
- initial team, the image index of the initial team is returned.
- Otherwise when the COARRAY is present, if DIM is not present, a
- rank-1 array with corank elements is returned, containing the
- cosubscripts for COARRAY specifying the invoking image. If DIM is
- present, a scalar is returned, with the value of the DIM element of
- 'THIS_IMAGE(COARRAY)'.
- _Example_:
- INTEGER :: value[*]
- INTEGER :: i
- value = THIS_IMAGE()
- SYNC ALL
- IF (THIS_IMAGE() == 1) THEN
- DO i = 1, NUM_IMAGES()
- WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
- END DO
- END IF
- ! Check whether the current image is the initial image
- IF (THIS_IMAGE(HUGE(1)) /= THIS_IMAGE())
- error stop "something is rotten here"
- _See also_:
- *note NUM_IMAGES::, *note IMAGE_INDEX::
- File: gfortran.info, Node: TIME, Next: TIME8, Prev: THIS_IMAGE, Up: Intrinsic Procedures
- 9.267 'TIME' -- Time function
- =============================
- _Description_:
- Returns the current time encoded as an integer (in the manner of
- the function 'time(3)' in the C standard library). This value is
- suitable for passing to *note CTIME::, *note GMTIME::, and *note
- LTIME::.
- This intrinsic is not fully portable, such as to systems with
- 32-bit 'INTEGER' types but supporting times wider than 32 bits.
- Therefore, the values returned by this intrinsic might be, or
- become, negative, or numerically less than previous values, during
- a single run of the compiled program.
- See *note TIME8::, for information on a similar intrinsic that
- might be portable to more GNU Fortran implementations, though to
- fewer Fortran compilers.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = TIME()'
- _Return value_:
- The return value is a scalar of type 'INTEGER(4)'.
- _See also_:
- *note DATE_AND_TIME::, *note CTIME::, *note GMTIME::, *note
- LTIME::, *note MCLOCK::, *note TIME8::
- File: gfortran.info, Node: TIME8, Next: TINY, Prev: TIME, Up: Intrinsic Procedures
- 9.268 'TIME8' -- Time function (64-bit)
- =======================================
- _Description_:
- Returns the current time encoded as an integer (in the manner of
- the function 'time(3)' in the C standard library). This value is
- suitable for passing to *note CTIME::, *note GMTIME::, and *note
- LTIME::.
- _Warning:_ this intrinsic does not increase the range of the timing
- values over that returned by 'time(3)'. On a system with a 32-bit
- 'time(3)', 'TIME8' will return a 32-bit value, even though it is
- converted to a 64-bit 'INTEGER(8)' value. That means overflows of
- the 32-bit value can still occur. Therefore, the values returned
- by this intrinsic might be or become negative or numerically less
- than previous values during a single run of the compiled program.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = TIME8()'
- _Return value_:
- The return value is a scalar of type 'INTEGER(8)'.
- _See also_:
- *note DATE_AND_TIME::, *note CTIME::, *note GMTIME::, *note
- LTIME::, *note MCLOCK8::, *note TIME::
- File: gfortran.info, Node: TINY, Next: TRAILZ, Prev: TIME8, Up: Intrinsic Procedures
- 9.269 'TINY' -- Smallest positive number of a real kind
- =======================================================
- _Description_:
- 'TINY(X)' returns the smallest positive (non zero) number in the
- model of the type of 'X'.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = TINY(X)'
- _Arguments_:
- X Shall be of type 'REAL'.
- _Return value_:
- The return value is of the same type and kind as X
- _Example_:
- See 'HUGE' for an example.
- File: gfortran.info, Node: TRAILZ, Next: TRANSFER, Prev: TINY, Up: Intrinsic Procedures
- 9.270 'TRAILZ' -- Number of trailing zero bits of an integer
- ============================================================
- _Description_:
- 'TRAILZ' returns the number of trailing zero bits of an integer.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = TRAILZ(I)'
- _Arguments_:
- I Shall be of type 'INTEGER'.
- _Return value_:
- The type of the return value is the default 'INTEGER'. If all the
- bits of 'I' are zero, the result value is 'BIT_SIZE(I)'.
- _Example_:
- PROGRAM test_trailz
- WRITE (*,*) TRAILZ(8) ! prints 3
- END PROGRAM
- _See also_:
- *note BIT_SIZE::, *note LEADZ::, *note POPPAR::, *note POPCNT::
- File: gfortran.info, Node: TRANSFER, Next: TRANSPOSE, Prev: TRAILZ, Up: Intrinsic Procedures
- 9.271 'TRANSFER' -- Transfer bit patterns
- =========================================
- _Description_:
- Interprets the bitwise representation of SOURCE in memory as if it
- is the representation of a variable or array of the same type and
- type parameters as MOLD.
- This is approximately equivalent to the C concept of _casting_ one
- type to another.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = TRANSFER(SOURCE, MOLD[, SIZE])'
- _Arguments_:
- SOURCE Shall be a scalar or an array of any type.
- MOLD Shall be a scalar or an array of any type.
- SIZE (Optional) shall be a scalar of type 'INTEGER'.
- _Return value_:
- The result has the same type as MOLD, with the bit level
- representation of SOURCE. If SIZE is present, the result is a
- one-dimensional array of length SIZE. If SIZE is absent but MOLD
- is an array (of any size or shape), the result is a one-
- dimensional array of the minimum length needed to contain the
- entirety of the bitwise representation of SOURCE. If SIZE is
- absent and MOLD is a scalar, the result is a scalar.
- If the bitwise representation of the result is longer than that of
- SOURCE, then the leading bits of the result correspond to those of
- SOURCE and any trailing bits are filled arbitrarily.
- When the resulting bit representation does not correspond to a
- valid representation of a variable of the same type as MOLD, the
- results are undefined, and subsequent operations on the result
- cannot be guaranteed to produce sensible behavior. For example, it
- is possible to create 'LOGICAL' variables for which 'VAR' and
- '.NOT.VAR' both appear to be true.
- _Example_:
- PROGRAM test_transfer
- integer :: x = 2143289344
- print *, transfer(x, 1.0) ! prints "NaN" on i686
- END PROGRAM
- File: gfortran.info, Node: TRANSPOSE, Next: TRIM, Prev: TRANSFER, Up: Intrinsic Procedures
- 9.272 'TRANSPOSE' -- Transpose an array of rank two
- ===================================================
- _Description_:
- Transpose an array of rank two. Element (i, j) of the result has
- the value 'MATRIX(j, i)', for all i, j.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = TRANSPOSE(MATRIX)'
- _Arguments_:
- MATRIX Shall be an array of any type and have a rank of
- two.
- _Return value_:
- The result has the same type as MATRIX, and has shape '(/ m, n /)'
- if MATRIX has shape '(/ n, m /)'.
- File: gfortran.info, Node: TRIM, Next: TTYNAM, Prev: TRANSPOSE, Up: Intrinsic Procedures
- 9.273 'TRIM' -- Remove trailing blank characters of a string
- ============================================================
- _Description_:
- Removes trailing blank characters of a string.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = TRIM(STRING)'
- _Arguments_:
- STRING Shall be a scalar of type 'CHARACTER'.
- _Return value_:
- A scalar of type 'CHARACTER' which length is that of STRING less
- the number of trailing blanks.
- _Example_:
- PROGRAM test_trim
- CHARACTER(len=10), PARAMETER :: s = "GFORTRAN "
- WRITE(*,*) LEN(s), LEN(TRIM(s)) ! "10 8", with/without trailing blanks
- END PROGRAM
- _See also_:
- *note ADJUSTL::, *note ADJUSTR::
- File: gfortran.info, Node: TTYNAM, Next: UBOUND, Prev: TRIM, Up: Intrinsic Procedures
- 9.274 'TTYNAM' -- Get the name of a terminal device.
- ====================================================
- _Description_:
- Get the name of a terminal device. For more information, see
- 'ttyname(3)'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL TTYNAM(UNIT, NAME)'
- 'NAME = TTYNAM(UNIT)'
- _Arguments_:
- UNIT Shall be a scalar 'INTEGER'.
- NAME Shall be of type 'CHARACTER'.
- _Example_:
- PROGRAM test_ttynam
- INTEGER :: unit
- DO unit = 1, 10
- IF (isatty(unit=unit)) write(*,*) ttynam(unit)
- END DO
- END PROGRAM
- _See also_:
- *note ISATTY::
- File: gfortran.info, Node: UBOUND, Next: UCOBOUND, Prev: TTYNAM, Up: Intrinsic Procedures
- 9.275 'UBOUND' -- Upper dimension bounds of an array
- ====================================================
- _Description_:
- Returns the upper bounds of an array, or a single upper bound along
- the DIM dimension.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = UBOUND(ARRAY [, DIM [, KIND]])'
- _Arguments_:
- ARRAY Shall be an array, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the upper bounds of ARRAY. If
- DIM is present, the result is a scalar corresponding to the upper
- bound of the array along that dimension. If ARRAY is an expression
- rather than a whole array or array structure component, or if it
- has a zero extent along the relevant dimension, the upper bound is
- taken to be the number of elements along the relevant dimension.
- _See also_:
- *note LBOUND::, *note LCOBOUND::
- File: gfortran.info, Node: UCOBOUND, Next: UMASK, Prev: UBOUND, Up: Intrinsic Procedures
- 9.276 'UCOBOUND' -- Upper codimension bounds of an array
- ========================================================
- _Description_:
- Returns the upper cobounds of a coarray, or a single upper cobound
- along the DIM codimension.
- _Standard_:
- Fortran 2008 and later
- _Class_:
- Inquiry function
- _Syntax_:
- 'RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])'
- _Arguments_:
- ARRAY Shall be an coarray, of any type.
- DIM (Optional) Shall be a scalar 'INTEGER'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind. If DIM is
- absent, the result is an array of the lower cobounds of COARRAY.
- If DIM is present, the result is a scalar corresponding to the
- lower cobound of the array along that codimension.
- _See also_:
- *note LCOBOUND::, *note LBOUND::
- File: gfortran.info, Node: UMASK, Next: UNLINK, Prev: UCOBOUND, Up: Intrinsic Procedures
- 9.277 'UMASK' -- Set the file creation mask
- ===========================================
- _Description_:
- Sets the file creation mask to MASK. If called as a function, it
- returns the old value. If called as a subroutine and argument OLD
- if it is supplied, it is set to the old value. See 'umask(2)'.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL UMASK(MASK [, OLD])'
- 'OLD = UMASK(MASK)'
- _Arguments_:
- MASK Shall be a scalar of type 'INTEGER'.
- OLD (Optional) Shall be a scalar of type 'INTEGER'.
- File: gfortran.info, Node: UNLINK, Next: UNPACK, Prev: UMASK, Up: Intrinsic Procedures
- 9.278 'UNLINK' -- Remove a file from the file system
- ====================================================
- _Description_:
- Unlinks the file PATH. A null character ('CHAR(0)') can be used to
- mark the end of the name in PATH; otherwise, trailing blanks in the
- file name are ignored. If the STATUS argument is supplied, it
- contains 0 on success or a nonzero error code upon return; see
- 'unlink(2)'.
- This intrinsic is provided in both subroutine and function forms;
- however, only one form can be used in any given program unit.
- _Standard_:
- GNU extension
- _Class_:
- Subroutine, function
- _Syntax_:
- 'CALL UNLINK(PATH [, STATUS])'
- 'STATUS = UNLINK(PATH)'
- _Arguments_:
- PATH Shall be of default 'CHARACTER' type.
- STATUS (Optional) Shall be of default 'INTEGER' type.
- _See also_:
- *note LINK::, *note SYMLNK::
- File: gfortran.info, Node: UNPACK, Next: VERIFY, Prev: UNLINK, Up: Intrinsic Procedures
- 9.279 'UNPACK' -- Unpack an array of rank one into an array
- ===========================================================
- _Description_:
- Store the elements of VECTOR in an array of higher rank.
- _Standard_:
- Fortran 95 and later
- _Class_:
- Transformational function
- _Syntax_:
- 'RESULT = UNPACK(VECTOR, MASK, FIELD)'
- _Arguments_:
- VECTOR Shall be an array of any type and rank one. It
- shall have at least as many elements as MASK has
- 'TRUE' values.
- MASK Shall be an array of type 'LOGICAL'.
- FIELD Shall be of the same type as VECTOR and have the
- same shape as MASK.
- _Return value_:
- The resulting array corresponds to FIELD with 'TRUE' elements of
- MASK replaced by values from VECTOR in array element order.
- _Example_:
- PROGRAM test_unpack
- integer :: vector(2) = (/1,1/)
- logical :: mask(4) = (/ .TRUE., .FALSE., .FALSE., .TRUE. /)
- integer :: field(2,2) = 0, unity(2,2)
- ! result: unity matrix
- unity = unpack(vector, reshape(mask, (/2,2/)), field)
- END PROGRAM
- _See also_:
- *note PACK::, *note SPREAD::
- File: gfortran.info, Node: VERIFY, Next: XOR, Prev: UNPACK, Up: Intrinsic Procedures
- 9.280 'VERIFY' -- Scan a string for characters not a given set
- ==============================================================
- _Description_:
- Verifies that all the characters in STRING belong to the set of
- characters in SET.
- If BACK is either absent or equals 'FALSE', this function returns
- the position of the leftmost character of STRING that is not in
- SET. If BACK equals 'TRUE', the rightmost position is returned.
- If all characters of STRING are found in SET, the result is zero.
- _Standard_:
- Fortran 95 and later, with KIND argument Fortran 2003 and later
- _Class_:
- Elemental function
- _Syntax_:
- 'RESULT = VERIFY(STRING, SET[, BACK [, KIND]])'
- _Arguments_:
- STRING Shall be of type 'CHARACTER'.
- SET Shall be of type 'CHARACTER'.
- BACK (Optional) shall be of type 'LOGICAL'.
- KIND (Optional) An 'INTEGER' initialization
- expression indicating the kind parameter of the
- result.
- _Return value_:
- The return value is of type 'INTEGER' and of kind KIND. If KIND is
- absent, the return value is of default integer kind.
- _Example_:
- PROGRAM test_verify
- WRITE(*,*) VERIFY("FORTRAN", "AO") ! 1, found 'F'
- WRITE(*,*) VERIFY("FORTRAN", "FOO") ! 3, found 'R'
- WRITE(*,*) VERIFY("FORTRAN", "C++") ! 1, found 'F'
- WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.) ! 7, found 'N'
- WRITE(*,*) VERIFY("FORTRAN", "FORTRAN") ! 0' found none
- END PROGRAM
- _See also_:
- *note SCAN::, *note INDEX intrinsic::
- File: gfortran.info, Node: XOR, Prev: VERIFY, Up: Intrinsic Procedures
- 9.281 'XOR' -- Bitwise logical exclusive OR
- ===========================================
- _Description_:
- Bitwise logical exclusive or.
- This intrinsic routine is provided for backwards compatibility with
- GNU Fortran 77. For integer arguments, programmers should consider
- the use of the *note IEOR:: intrinsic and for logical arguments the
- '.NEQV.' operator, which are both defined by the Fortran standard.
- _Standard_:
- GNU extension
- _Class_:
- Function
- _Syntax_:
- 'RESULT = XOR(I, J)'
- _Arguments_:
- I The type shall be either a scalar 'INTEGER' type
- or a scalar 'LOGICAL' type.
- J The type shall be the same as the type of I.
- _Return value_:
- The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
- If the kind type parameters differ, then the smaller kind type is
- implicitly converted to larger kind, and the return has the larger
- kind.
- _Example_:
- PROGRAM test_xor
- LOGICAL :: T = .TRUE., F = .FALSE.
- INTEGER :: a, b
- DATA a / Z'F' /, b / Z'3' /
- WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
- WRITE (*,*) XOR(a, b)
- END PROGRAM
- _See also_:
- Fortran 95 elemental function: *note IEOR::
- File: gfortran.info, Node: Intrinsic Modules, Next: Contributing, Prev: Intrinsic Procedures, Up: Top
- 10 Intrinsic Modules
- ********************
- * Menu:
- * ISO_FORTRAN_ENV::
- * ISO_C_BINDING::
- * IEEE modules::
- * OpenMP Modules OMP_LIB and OMP_LIB_KINDS::
- * OpenACC Module OPENACC::
- File: gfortran.info, Node: ISO_FORTRAN_ENV, Next: ISO_C_BINDING, Up: Intrinsic Modules
- 10.1 'ISO_FORTRAN_ENV'
- ======================
- _Standard_:
- Fortran 2003 and later, except when otherwise noted
- The 'ISO_FORTRAN_ENV' module provides the following scalar
- default-integer named constants:
- 'ATOMIC_INT_KIND':
- Default-kind integer constant to be used as kind parameter when
- defining integer variables used in atomic operations. (Fortran
- 2008 or later.)
- 'ATOMIC_LOGICAL_KIND':
- Default-kind integer constant to be used as kind parameter when
- defining logical variables used in atomic operations. (Fortran
- 2008 or later.)
- 'CHARACTER_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'CHARACTER' type. (Fortran 2008
- or later.)
- 'CHARACTER_STORAGE_SIZE':
- Size in bits of the character storage unit.
- 'ERROR_UNIT':
- Identifies the preconnected unit used for error reporting.
- 'FILE_STORAGE_SIZE':
- Size in bits of the file-storage unit.
- 'INPUT_UNIT':
- Identifies the preconnected unit identified by the asterisk ('*')
- in 'READ' statement.
- 'INT8', 'INT16', 'INT32', 'INT64':
- Kind type parameters to specify an INTEGER type with a storage size
- of 16, 32, and 64 bits. It is negative if a target platform does
- not support the particular kind. (Fortran 2008 or later.)
- 'INTEGER_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'INTEGER' type. (Fortran 2008 or
- later.)
- 'IOSTAT_END':
- The value assigned to the variable passed to the 'IOSTAT='
- specifier of an input/output statement if an end-of-file condition
- occurred.
- 'IOSTAT_EOR':
- The value assigned to the variable passed to the 'IOSTAT='
- specifier of an input/output statement if an end-of-record
- condition occurred.
- 'IOSTAT_INQUIRE_INTERNAL_UNIT':
- Scalar default-integer constant, used by 'INQUIRE' for the
- 'IOSTAT=' specifier to denote an that a unit number identifies an
- internal unit. (Fortran 2008 or later.)
- 'NUMERIC_STORAGE_SIZE':
- The size in bits of the numeric storage unit.
- 'LOGICAL_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'LOGICAL' type. (Fortran 2008 or
- later.)
- 'OUTPUT_UNIT':
- Identifies the preconnected unit identified by the asterisk ('*')
- in 'WRITE' statement.
- 'REAL32', 'REAL64', 'REAL128':
- Kind type parameters to specify a REAL type with a storage size of
- 32, 64, and 128 bits. It is negative if a target platform does not
- support the particular kind. (Fortran 2008 or later.)
- 'REAL_KINDS':
- Default-kind integer constant array of rank one containing the
- supported kind parameters of the 'REAL' type. (Fortran 2008 or
- later.)
- 'STAT_LOCKED':
- Scalar default-integer constant used as STAT= return value by
- 'LOCK' to denote that the lock variable is locked by the executing
- image. (Fortran 2008 or later.)
- 'STAT_LOCKED_OTHER_IMAGE':
- Scalar default-integer constant used as STAT= return value by
- 'UNLOCK' to denote that the lock variable is locked by another
- image. (Fortran 2008 or later.)
- 'STAT_STOPPED_IMAGE':
- Positive, scalar default-integer constant used as STAT= return
- value if the argument in the statement requires synchronisation
- with an image, which has initiated the termination of the
- execution. (Fortran 2008 or later.)
- 'STAT_FAILED_IMAGE':
- Positive, scalar default-integer constant used as STAT= return
- value if the argument in the statement requires communication with
- an image, which has is in the failed state. (TS 18508 or later.)
- 'STAT_UNLOCKED':
- Scalar default-integer constant used as STAT= return value by
- 'UNLOCK' to denote that the lock variable is unlocked. (Fortran
- 2008 or later.)
- The module provides the following derived type:
- 'LOCK_TYPE':
- Derived type with private components to be use with the 'LOCK' and
- 'UNLOCK' statement. A variable of its type has to be always
- declared as coarray and may not appear in a variable-definition
- context. (Fortran 2008 or later.)
- The module also provides the following intrinsic procedures: *note
- COMPILER_OPTIONS:: and *note COMPILER_VERSION::.
- File: gfortran.info, Node: ISO_C_BINDING, Next: IEEE modules, Prev: ISO_FORTRAN_ENV, Up: Intrinsic Modules
- 10.2 'ISO_C_BINDING'
- ====================
- _Standard_:
- Fortran 2003 and later, GNU extensions
- The following intrinsic procedures are provided by the module; their
- definition can be found in the section Intrinsic Procedures of this
- manual.
- 'C_ASSOCIATED'
- 'C_F_POINTER'
- 'C_F_PROCPOINTER'
- 'C_FUNLOC'
- 'C_LOC'
- 'C_SIZEOF'
- The 'ISO_C_BINDING' module provides the following named constants of
- type default integer, which can be used as KIND type parameters.
- In addition to the integer named constants required by the Fortran
- 2003 standard and 'C_PTRDIFF_T' of TS 29113, GNU Fortran provides as an
- extension named constants for the 128-bit integer types supported by the
- C compiler: 'C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T'.
- Furthermore, if '__float128' is supported in C, the named constants
- 'C_FLOAT128, C_FLOAT128_COMPLEX' are defined.
- Fortran Named constant C type Extension
- Type
- 'INTEGER' 'C_INT' 'int'
- 'INTEGER' 'C_SHORT' 'short int'
- 'INTEGER' 'C_LONG' 'long int'
- 'INTEGER' 'C_LONG_LONG' 'long long int'
- 'INTEGER' 'C_SIGNED_CHAR' 'signed char'/'unsigned
- char'
- 'INTEGER' 'C_SIZE_T' 'size_t'
- 'INTEGER' 'C_INT8_T' 'int8_t'
- 'INTEGER' 'C_INT16_T' 'int16_t'
- 'INTEGER' 'C_INT32_T' 'int32_t'
- 'INTEGER' 'C_INT64_T' 'int64_t'
- 'INTEGER' 'C_INT128_T' 'int128_t' Ext.
- 'INTEGER' 'C_INT_LEAST8_T' 'int_least8_t'
- 'INTEGER' 'C_INT_LEAST16_T' 'int_least16_t'
- 'INTEGER' 'C_INT_LEAST32_T' 'int_least32_t'
- 'INTEGER' 'C_INT_LEAST64_T' 'int_least64_t'
- 'INTEGER' 'C_INT_LEAST128_T' 'int_least128_t' Ext.
- 'INTEGER' 'C_INT_FAST8_T' 'int_fast8_t'
- 'INTEGER' 'C_INT_FAST16_T' 'int_fast16_t'
- 'INTEGER' 'C_INT_FAST32_T' 'int_fast32_t'
- 'INTEGER' 'C_INT_FAST64_T' 'int_fast64_t'
- 'INTEGER' 'C_INT_FAST128_T' 'int_fast128_t' Ext.
- 'INTEGER' 'C_INTMAX_T' 'intmax_t'
- 'INTEGER' 'C_INTPTR_T' 'intptr_t'
- 'INTEGER' 'C_PTRDIFF_T' 'ptrdiff_t' TS 29113
- 'REAL' 'C_FLOAT' 'float'
- 'REAL' 'C_DOUBLE' 'double'
- 'REAL' 'C_LONG_DOUBLE' 'long double'
- 'REAL' 'C_FLOAT128' '__float128' Ext.
- 'COMPLEX' 'C_FLOAT_COMPLEX' 'float _Complex'
- 'COMPLEX' 'C_DOUBLE_COMPLEX' 'double _Complex'
- 'COMPLEX' 'C_LONG_DOUBLE_COMPLEX' 'long double _Complex'
- 'REAL' 'C_FLOAT128_COMPLEX' '__float128 _Complex' Ext.
- 'LOGICAL' 'C_BOOL' '_Bool'
- 'CHARACTER' 'C_CHAR' 'char'
- Additionally, the following parameters of type
- 'CHARACTER(KIND=C_CHAR)' are defined.
- Name C definition Value
- 'C_NULL_CHAR' null character ''\0''
- 'C_ALERT' alert ''\a''
- 'C_BACKSPACE' backspace ''\b''
- 'C_FORM_FEED' form feed ''\f''
- 'C_NEW_LINE' new line ''\n''
- 'C_CARRIAGE_RETURN'carriage return ''\r''
- 'C_HORIZONTAL_TAB'horizontal tab ''\t''
- 'C_VERTICAL_TAB'vertical tab ''\v''
- Moreover, the following two named constants are defined:
- Name Type
- 'C_NULL_PTR' 'C_PTR'
- 'C_NULL_FUNPTR''C_FUNPTR'
- Both are equivalent to the value 'NULL' in C.
- File: gfortran.info, Node: IEEE modules, Next: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_C_BINDING, Up: Intrinsic Modules
- 10.3 IEEE modules: 'IEEE_EXCEPTIONS', 'IEEE_ARITHMETIC', and 'IEEE_FEATURES'
- ============================================================================
- _Standard_:
- Fortran 2003 and later
- The 'IEEE_EXCEPTIONS', 'IEEE_ARITHMETIC', and 'IEEE_FEATURES'
- intrinsic modules provide support for exceptions and IEEE arithmetic, as
- defined in Fortran 2003 and later standards, and the IEC 60559:1989
- standard (_Binary floating-point arithmetic for microprocessor
- systems_). These modules are only provided on the following supported
- platforms:
- * i386 and x86_64 processors
- * platforms which use the GNU C Library (glibc)
- * platforms with support for SysV/386 routines for floating point
- interface (including Solaris and BSDs)
- * platforms with the AIX OS
- For full compliance with the Fortran standards, code using the
- 'IEEE_EXCEPTIONS' or 'IEEE_ARITHMETIC' modules should be compiled with
- the following options: '-fno-unsafe-math-optimizations -frounding-math
- -fsignaling-nans'.
- File: gfortran.info, Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Next: OpenACC Module OPENACC, Prev: IEEE modules, Up: Intrinsic Modules
- 10.4 OpenMP Modules 'OMP_LIB' and 'OMP_LIB_KINDS'
- =================================================
- _Standard_:
- OpenMP Application Program Interface v4.5
- The OpenMP Fortran runtime library routines are provided both in a
- form of two Fortran 90 modules, named 'OMP_LIB' and 'OMP_LIB_KINDS', and
- in a form of a Fortran 'include' file named 'omp_lib.h'. The procedures
- provided by 'OMP_LIB' can be found in the *note Introduction:
- (libgomp)Top. manual, the named constants defined in the modules are
- listed below.
- For details refer to the actual OpenMP Application Program Interface
- v4.5 (http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf).
- 'OMP_LIB_KINDS' provides the following scalar default-integer named
- constants:
- 'omp_lock_kind'
- 'omp_nest_lock_kind'
- 'omp_proc_bind_kind'
- 'omp_sched_kind'
- 'OMP_LIB' provides the scalar default-integer named constant
- 'openmp_version' with a value of the form YYYYMM, where 'yyyy' is the
- year and MM the month of the OpenMP version; for OpenMP v4.5 the value
- is '201511'.
- The following scalar integer named constants of the kind
- 'omp_sched_kind':
- 'omp_sched_static'
- 'omp_sched_dynamic'
- 'omp_sched_guided'
- 'omp_sched_auto'
- And the following scalar integer named constants of the kind
- 'omp_proc_bind_kind':
- 'omp_proc_bind_false'
- 'omp_proc_bind_true'
- 'omp_proc_bind_master'
- 'omp_proc_bind_close'
- 'omp_proc_bind_spread'
- File: gfortran.info, Node: OpenACC Module OPENACC, Prev: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Up: Intrinsic Modules
- 10.5 OpenACC Module 'OPENACC'
- =============================
- _Standard_:
- OpenACC Application Programming Interface v2.0
- The OpenACC Fortran runtime library routines are provided both in a
- form of a Fortran 90 module, named 'OPENACC', and in form of a Fortran
- 'include' file named 'openacc_lib.h'. The procedures provided by
- 'OPENACC' can be found in the *note Introduction: (libgomp)Top. manual,
- the named constants defined in the modules are listed below.
- For details refer to the actual OpenACC Application Programming
- Interface v2.0 (http://www.openacc.org/).
- 'OPENACC' provides the scalar default-integer named constant
- 'openacc_version' with a value of the form YYYYMM, where 'yyyy' is the
- year and MM the month of the OpenACC version; for OpenACC v2.0 the value
- is '201306'.
- File: gfortran.info, Node: Contributing, Next: Copying, Prev: Intrinsic Modules, Up: Top
- Contributing
- ************
- Free software is only possible if people contribute to efforts to create
- it. We're always in need of more people helping out with ideas and
- comments, writing documentation and contributing code.
- If you want to contribute to GNU Fortran, have a look at the long
- lists of projects you can take on. Some of these projects are small,
- some of them are large; some are completely orthogonal to the rest of
- what is happening on GNU Fortran, but others are "mainstream" projects
- in need of enthusiastic hackers. All of these projects are important!
- We will eventually get around to the things here, but they are also
- things doable by someone who is willing and able.
- * Menu:
- * Contributors::
- * Projects::
- * Proposed Extensions::
- File: gfortran.info, Node: Contributors, Next: Projects, Up: Contributing
- Contributors to GNU Fortran
- ===========================
- Most of the parser was hand-crafted by _Andy Vaught_, who is also the
- initiator of the whole project. Thanks Andy! Most of the interface
- with GCC was written by _Paul Brook_.
- The following individuals have contributed code and/or ideas and
- significant help to the GNU Fortran project (in alphabetical order):
- - Janne Blomqvist
- - Steven Bosscher
- - Paul Brook
- - Tobias Burnus
- - Franc,ois-Xavier Coudert
- - Bud Davis
- - Jerry DeLisle
- - Erik Edelmann
- - Bernhard Fischer
- - Daniel Franke
- - Richard Guenther
- - Richard Henderson
- - Katherine Holcomb
- - Jakub Jelinek
- - Niels Kristian Bech Jensen
- - Steven Johnson
- - Steven G. Kargl
- - Thomas Koenig
- - Asher Langton
- - H. J. Lu
- - Toon Moene
- - Brooks Moses
- - Andrew Pinski
- - Tim Prince
- - Christopher D. Rickett
- - Richard Sandiford
- - Tobias Schlu"ter
- - Roger Sayle
- - Paul Thomas
- - Andy Vaught
- - Feng Wang
- - Janus Weil
- - Daniel Kraft
- The following people have contributed bug reports, smaller or larger
- patches, and much needed feedback and encouragement for the GNU Fortran
- project:
- - Bill Clodius
- - Dominique d'Humie`res
- - Kate Hedstrom
- - Erik Schnetter
- - Joost VandeVondele
- Many other individuals have helped debug, test and improve the GNU
- Fortran compiler over the past few years, and we welcome you to do the
- same! If you already have done so, and you would like to see your name
- listed in the list above, please contact us.
- File: gfortran.info, Node: Projects, Next: Proposed Extensions, Prev: Contributors, Up: Contributing
- Projects
- ========
- _Help build the test suite_
- Solicit more code for donation to the test suite: the more
- extensive the testsuite, the smaller the risk of breaking things in
- the future! We can keep code private on request.
- _Bug hunting/squishing_
- Find bugs and write more test cases! Test cases are especially
- very welcome, because it allows us to concentrate on fixing bugs
- instead of isolating them. Going through the bugzilla database at
- <https://gcc.gnu.org/bugzilla/> to reduce testcases posted there
- and add more information (for example, for which version does the
- testcase work, for which versions does it fail?) is also very
- helpful.
- File: gfortran.info, Node: Proposed Extensions, Prev: Projects, Up: Contributing
- Proposed Extensions
- ===================
- Here's a list of proposed extensions for the GNU Fortran compiler, in no
- particular order. Most of these are necessary to be fully compatible
- with existing Fortran compilers, but they are not part of the official
- J3 Fortran 95 standard.
- Compiler extensions:
- --------------------
- * User-specified alignment rules for structures.
- * Automatically extend single precision constants to double.
- * Compile code that conserves memory by dynamically allocating common
- and module storage either on stack or heap.
- * Compile flag to generate code for array conformance checking
- (suggest -CC).
- * User control of symbol names (underscores, etc).
- * Compile setting for maximum size of stack frame size before
- spilling parts to static or heap.
- * Flag to force local variables into static space.
- * Flag to force local variables onto stack.
- Environment Options
- -------------------
- * Pluggable library modules for random numbers, linear algebra. LA
- should use BLAS calling conventions.
- * Environment variables controlling actions on arithmetic exceptions
- like overflow, underflow, precision loss--Generate NaN, abort,
- default. action.
- * Set precision for fp units that support it (i387).
- * Variable for setting fp rounding mode.
- * Variable to fill uninitialized variables with a user-defined bit
- pattern.
- * Environment variable controlling filename that is opened for that
- unit number.
- * Environment variable to clear/trash memory being freed.
- * Environment variable to control tracing of allocations and frees.
- * Environment variable to display allocated memory at normal program
- end.
- * Environment variable for filename for * IO-unit.
- * Environment variable for temporary file directory.
- * Environment variable forcing standard output to be line buffered
- (Unix).
- File: gfortran.info, Node: Copying, Next: GNU Free Documentation License, Prev: Contributing, Up: Top
- GNU General Public License
- **************************
- Version 3, 29 June 2007
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies of this
- license document, but changing it is not allowed.
- Preamble
- ========
- The GNU General Public License is a free, copyleft license for software
- and other kinds of works.
- The licenses for most software and other practical works are designed
- to take away your freedom to share and change the works. By contrast,
- the GNU General Public License is intended to guarantee your freedom to
- share and change all versions of a program-to make sure it remains free
- software for all its users. We, the Free Software Foundation, use the
- GNU General Public License for most of our software; it applies also to
- any other work released this way by its authors. You can apply it to
- your programs, too.
- When we speak of free software, we are referring to freedom, not
- price. Our General Public Licenses are designed to make sure that you
- have the freedom to distribute copies of free software (and charge for
- them if you wish), that you receive source code or can get it if you
- want it, that you can change the software or use pieces of it in new
- free programs, and that you know you can do these things.
- To protect your rights, we need to prevent others from denying you
- these rights or asking you to surrender the rights. Therefore, you have
- certain responsibilities if you distribute copies of the software, or if
- you modify it: responsibilities to respect the freedom of others.
- For example, if you distribute copies of such a program, whether
- gratis or for a fee, you must pass on to the recipients the same
- freedoms that you received. You must make sure that they, too, receive
- or can get the source code. And you must show them these terms so they
- know their rights.
- Developers that use the GNU GPL protect your rights with two steps:
- (1) assert copyright on the software, and (2) offer you this License
- giving you legal permission to copy, distribute and/or modify it.
- For the developers' and authors' protection, the GPL clearly explains
- that there is no warranty for this free software. For both users' and
- authors' sake, the GPL requires that modified versions be marked as
- changed, so that their problems will not be attributed erroneously to
- authors of previous versions.
- Some devices are designed to deny users access to install or run
- modified versions of the software inside them, although the manufacturer
- can do so. This is fundamentally incompatible with the aim of
- protecting users' freedom to change the software. The systematic
- pattern of such abuse occurs in the area of products for individuals to
- use, which is precisely where it is most unacceptable. Therefore, we
- have designed this version of the GPL to prohibit the practice for those
- products. If such problems arise substantially in other domains, we
- stand ready to extend this provision to those domains in future versions
- of the GPL, as needed to protect the freedom of users.
- Finally, every program is threatened constantly by software patents.
- States should not allow patents to restrict development and use of
- software on general-purpose computers, but in those that do, we wish to
- avoid the special danger that patents applied to a free program could
- make it effectively proprietary. To prevent this, the GPL assures that
- patents cannot be used to render the program non-free.
- The precise terms and conditions for copying, distribution and
- modification follow.
- TERMS AND CONDITIONS
- ====================
- 0. Definitions.
- "This License" refers to version 3 of the GNU General Public
- License.
- "Copyright" also means copyright-like laws that apply to other
- kinds of works, such as semiconductor masks.
- "The Program" refers to any copyrightable work licensed under this
- License. Each licensee is addressed as "you". "Licensees" and
- "recipients" may be individuals or organizations.
- To "modify" a work means to copy from or adapt all or part of the
- work in a fashion requiring copyright permission, other than the
- making of an exact copy. The resulting work is called a "modified
- version" of the earlier work or a work "based on" the earlier work.
- A "covered work" means either the unmodified Program or a work
- based on the Program.
- To "propagate" a work means to do anything with it that, without
- permission, would make you directly or secondarily liable for
- infringement under applicable copyright law, except executing it on
- a computer or modifying a private copy. Propagation includes
- copying, distribution (with or without modification), making
- available to the public, and in some countries other activities as
- well.
- To "convey" a work means any kind of propagation that enables other
- parties to make or receive copies. Mere interaction with a user
- through a computer network, with no transfer of a copy, is not
- conveying.
- An interactive user interface displays "Appropriate Legal Notices"
- to the extent that it includes a convenient and prominently visible
- feature that (1) displays an appropriate copyright notice, and (2)
- tells the user that there is no warranty for the work (except to
- the extent that warranties are provided), that licensees may convey
- the work under this License, and how to view a copy of this
- License. If the interface presents a list of user commands or
- options, such as a menu, a prominent item in the list meets this
- criterion.
- 1. Source Code.
- The "source code" for a work means the preferred form of the work
- for making modifications to it. "Object code" means any non-source
- form of a work.
- A "Standard Interface" means an interface that either is an
- official standard defined by a recognized standards body, or, in
- the case of interfaces specified for a particular programming
- language, one that is widely used among developers working in that
- language.
- The "System Libraries" of an executable work include anything,
- other than the work as a whole, that (a) is included in the normal
- form of packaging a Major Component, but which is not part of that
- Major Component, and (b) serves only to enable use of the work with
- that Major Component, or to implement a Standard Interface for
- which an implementation is available to the public in source code
- form. A "Major Component", in this context, means a major
- essential component (kernel, window system, and so on) of the
- specific operating system (if any) on which the executable work
- runs, or a compiler used to produce the work, or an object code
- interpreter used to run it.
- The "Corresponding Source" for a work in object code form means all
- the source code needed to generate, install, and (for an executable
- work) run the object code and to modify the work, including scripts
- to control those activities. However, it does not include the
- work's System Libraries, or general-purpose tools or generally
- available free programs which are used unmodified in performing
- those activities but which are not part of the work. For example,
- Corresponding Source includes interface definition files associated
- with source files for the work, and the source code for shared
- libraries and dynamically linked subprograms that the work is
- specifically designed to require, such as by intimate data
- communication or control flow between those subprograms and other
- parts of the work.
- The Corresponding Source need not include anything that users can
- regenerate automatically from other parts of the Corresponding
- Source.
- The Corresponding Source for a work in source code form is that
- same work.
- 2. Basic Permissions.
- All rights granted under this License are granted for the term of
- copyright on the Program, and are irrevocable provided the stated
- conditions are met. This License explicitly affirms your unlimited
- permission to run the unmodified Program. The output from running
- a covered work is covered by this License only if the output, given
- its content, constitutes a covered work. This License acknowledges
- your rights of fair use or other equivalent, as provided by
- copyright law.
- You may make, run and propagate covered works that you do not
- convey, without conditions so long as your license otherwise
- remains in force. You may convey covered works to others for the
- sole purpose of having them make modifications exclusively for you,
- or provide you with facilities for running those works, provided
- that you comply with the terms of this License in conveying all
- material for which you do not control copyright. Those thus making
- or running the covered works for you must do so exclusively on your
- behalf, under your direction and control, on terms that prohibit
- them from making any copies of your copyrighted material outside
- their relationship with you.
- Conveying under any other circumstances is permitted solely under
- the conditions stated below. Sublicensing is not allowed; section
- 10 makes it unnecessary.
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
- No covered work shall be deemed part of an effective technological
- measure under any applicable law fulfilling obligations under
- article 11 of the WIPO copyright treaty adopted on 20 December
- 1996, or similar laws prohibiting or restricting circumvention of
- such measures.
- When you convey a covered work, you waive any legal power to forbid
- circumvention of technological measures to the extent such
- circumvention is effected by exercising rights under this License
- with respect to the covered work, and you disclaim any intention to
- limit operation or modification of the work as a means of
- enforcing, against the work's users, your or third parties' legal
- rights to forbid circumvention of technological measures.
- 4. Conveying Verbatim Copies.
- You may convey verbatim copies of the Program's source code as you
- receive it, in any medium, provided that you conspicuously and
- appropriately publish on each copy an appropriate copyright notice;
- keep intact all notices stating that this License and any
- non-permissive terms added in accord with section 7 apply to the
- code; keep intact all notices of the absence of any warranty; and
- give all recipients a copy of this License along with the Program.
- You may charge any price or no price for each copy that you convey,
- and you may offer support or warranty protection for a fee.
- 5. Conveying Modified Source Versions.
- You may convey a work based on the Program, or the modifications to
- produce it from the Program, in the form of source code under the
- terms of section 4, provided that you also meet all of these
- conditions:
- a. The work must carry prominent notices stating that you
- modified it, and giving a relevant date.
- b. The work must carry prominent notices stating that it is
- released under this License and any conditions added under
- section 7. This requirement modifies the requirement in
- section 4 to "keep intact all notices".
- c. You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable
- section 7 additional terms, to the whole of the work, and all
- its parts, regardless of how they are packaged. This License
- gives no permission to license the work in any other way, but
- it does not invalidate such permission if you have separately
- received it.
- d. If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has
- interactive interfaces that do not display Appropriate Legal
- Notices, your work need not make them do so.
- A compilation of a covered work with other separate and independent
- works, which are not by their nature extensions of the covered
- work, and which are not combined with it such as to form a larger
- program, in or on a volume of a storage or distribution medium, is
- called an "aggregate" if the compilation and its resulting
- copyright are not used to limit the access or legal rights of the
- compilation's users beyond what the individual works permit.
- Inclusion of a covered work in an aggregate does not cause this
- License to apply to the other parts of the aggregate.
- 6. Conveying Non-Source Forms.
- You may convey a covered work in object code form under the terms
- of sections 4 and 5, provided that you also convey the
- machine-readable Corresponding Source under the terms of this
- License, in one of these ways:
- a. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
- b. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that
- product model, to give anyone who possesses the object code
- either (1) a copy of the Corresponding Source for all the
- software in the product that is covered by this License, on a
- durable physical medium customarily used for software
- interchange, for a price no more than your reasonable cost of
- physically performing this conveying of source, or (2) access
- to copy the Corresponding Source from a network server at no
- charge.
- c. Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially,
- and only if you received the object code with such an offer,
- in accord with subsection 6b.
- d. Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to
- the Corresponding Source in the same way through the same
- place at no further charge. You need not require recipients
- to copy the Corresponding Source along with the object code.
- If the place to copy the object code is a network server, the
- Corresponding Source may be on a different server (operated by
- you or a third party) that supports equivalent copying
- facilities, provided you maintain clear directions next to the
- object code saying where to find the Corresponding Source.
- Regardless of what server hosts the Corresponding Source, you
- remain obligated to ensure that it is available for as long as
- needed to satisfy these requirements.
- e. Convey the object code using peer-to-peer transmission,
- provided you inform other peers where the object code and
- Corresponding Source of the work are being offered to the
- general public at no charge under subsection 6d.
- A separable portion of the object code, whose source code is
- excluded from the Corresponding Source as a System Library, need
- not be included in conveying the object code work.
- A "User Product" is either (1) a "consumer product", which means
- any tangible personal property which is normally used for personal,
- family, or household purposes, or (2) anything designed or sold for
- incorporation into a dwelling. In determining whether a product is
- a consumer product, doubtful cases shall be resolved in favor of
- coverage. For a particular product received by a particular user,
- "normally used" refers to a typical or common use of that class of
- product, regardless of the status of the particular user or of the
- way in which the particular user actually uses, or expects or is
- expected to use, the product. A product is a consumer product
- regardless of whether the product has substantial commercial,
- industrial or non-consumer uses, unless such uses represent the
- only significant mode of use of the product.
- "Installation Information" for a User Product means any methods,
- procedures, authorization keys, or other information required to
- install and execute modified versions of a covered work in that
- User Product from a modified version of its Corresponding Source.
- The information must suffice to ensure that the continued
- functioning of the modified object code is in no case prevented or
- interfered with solely because modification has been made.
- If you convey an object code work under this section in, or with,
- or specifically for use in, a User Product, and the conveying
- occurs as part of a transaction in which the right of possession
- and use of the User Product is transferred to the recipient in
- perpetuity or for a fixed term (regardless of how the transaction
- is characterized), the Corresponding Source conveyed under this
- section must be accompanied by the Installation Information. But
- this requirement does not apply if neither you nor any third party
- retains the ability to install modified object code on the User
- Product (for example, the work has been installed in ROM).
- The requirement to provide Installation Information does not
- include a requirement to continue to provide support service,
- warranty, or updates for a work that has been modified or installed
- by the recipient, or for the User Product in which it has been
- modified or installed. Access to a network may be denied when the
- modification itself materially and adversely affects the operation
- of the network or violates the rules and protocols for
- communication across the network.
- Corresponding Source conveyed, and Installation Information
- provided, in accord with this section must be in a format that is
- publicly documented (and with an implementation available to the
- public in source code form), and must require no special password
- or key for unpacking, reading or copying.
- 7. Additional Terms.
- "Additional permissions" are terms that supplement the terms of
- this License by making exceptions from one or more of its
- conditions. Additional permissions that are applicable to the
- entire Program shall be treated as though they were included in
- this License, to the extent that they are valid under applicable
- law. If additional permissions apply only to part of the Program,
- that part may be used separately under those permissions, but the
- entire Program remains governed by this License without regard to
- the additional permissions.
- When you convey a copy of a covered work, you may at your option
- remove any additional permissions from that copy, or from any part
- of it. (Additional permissions may be written to require their own
- removal in certain cases when you modify the work.) You may place
- additional permissions on material, added by you to a covered work,
- for which you have or can give appropriate copyright permission.
- Notwithstanding any other provision of this License, for material
- you add to a covered work, you may (if authorized by the copyright
- holders of that material) supplement the terms of this License with
- terms:
- a. Disclaiming warranty or limiting liability differently from
- the terms of sections 15 and 16 of this License; or
- b. Requiring preservation of specified reasonable legal notices
- or author attributions in that material or in the Appropriate
- Legal Notices displayed by works containing it; or
- c. Prohibiting misrepresentation of the origin of that material,
- or requiring that modified versions of such material be marked
- in reasonable ways as different from the original version; or
- d. Limiting the use for publicity purposes of names of licensors
- or authors of the material; or
- e. Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
- f. Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified
- versions of it) with contractual assumptions of liability to
- the recipient, for any liability that these contractual
- assumptions directly impose on those licensors and authors.
- All other non-permissive additional terms are considered "further
- restrictions" within the meaning of section 10. If the Program as
- you received it, or any part of it, contains a notice stating that
- it is governed by this License along with a term that is a further
- restriction, you may remove that term. If a license document
- contains a further restriction but permits relicensing or conveying
- under this License, you may add to a covered work material governed
- by the terms of that license document, provided that the further
- restriction does not survive such relicensing or conveying.
- If you add terms to a covered work in accord with this section, you
- must place, in the relevant source files, a statement of the
- additional terms that apply to those files, or a notice indicating
- where to find the applicable terms.
- Additional terms, permissive or non-permissive, may be stated in
- the form of a separately written license, or stated as exceptions;
- the above requirements apply either way.
- 8. Termination.
- You may not propagate or modify a covered work except as expressly
- provided under this License. Any attempt otherwise to propagate or
- modify it is void, and will automatically terminate your rights
- under this License (including any patent licenses granted under the
- third paragraph of section 11).
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, you do not qualify to receive new licenses
- for the same material under section 10.
- 9. Acceptance Not Required for Having Copies.
- You are not required to accept this License in order to receive or
- run a copy of the Program. Ancillary propagation of a covered work
- occurring solely as a consequence of using peer-to-peer
- transmission to receive a copy likewise does not require
- acceptance. However, nothing other than this License grants you
- permission to propagate or modify any covered work. These actions
- infringe copyright if you do not accept this License. Therefore,
- by modifying or propagating a covered work, you indicate your
- acceptance of this License to do so.
- 10. Automatic Licensing of Downstream Recipients.
- Each time you convey a covered work, the recipient automatically
- receives a license from the original licensors, to run, modify and
- propagate that work, subject to this License. You are not
- responsible for enforcing compliance by third parties with this
- License.
- An "entity transaction" is a transaction transferring control of an
- organization, or substantially all assets of one, or subdividing an
- organization, or merging organizations. If propagation of a
- covered work results from an entity transaction, each party to that
- transaction who receives a copy of the work also receives whatever
- licenses to the work the party's predecessor in interest had or
- could give under the previous paragraph, plus a right to possession
- of the Corresponding Source of the work from the predecessor in
- interest, if the predecessor has it or can get it with reasonable
- efforts.
- You may not impose any further restrictions on the exercise of the
- rights granted or affirmed under this License. For example, you
- may not impose a license fee, royalty, or other charge for exercise
- of rights granted under this License, and you may not initiate
- litigation (including a cross-claim or counterclaim in a lawsuit)
- alleging that any patent claim is infringed by making, using,
- selling, offering for sale, or importing the Program or any portion
- of it.
- 11. Patents.
- A "contributor" is a copyright holder who authorizes use under this
- License of the Program or a work on which the Program is based.
- The work thus licensed is called the contributor's "contributor
- version".
- A contributor's "essential patent claims" are all patent claims
- owned or controlled by the contributor, whether already acquired or
- hereafter acquired, that would be infringed by some manner,
- permitted by this License, of making, using, or selling its
- contributor version, but do not include claims that would be
- infringed only as a consequence of further modification of the
- contributor version. For purposes of this definition, "control"
- includes the right to grant patent sublicenses in a manner
- consistent with the requirements of this License.
- Each contributor grants you a non-exclusive, worldwide,
- royalty-free patent license under the contributor's essential
- patent claims, to make, use, sell, offer for sale, import and
- otherwise run, modify and propagate the contents of its contributor
- version.
- In the following three paragraphs, a "patent license" is any
- express agreement or commitment, however denominated, not to
- enforce a patent (such as an express permission to practice a
- patent or covenant not to sue for patent infringement). To "grant"
- such a patent license to a party means to make such an agreement or
- commitment not to enforce a patent against the party.
- If you convey a covered work, knowingly relying on a patent
- license, and the Corresponding Source of the work is not available
- for anyone to copy, free of charge and under the terms of this
- License, through a publicly available network server or other
- readily accessible means, then you must either (1) cause the
- Corresponding Source to be so available, or (2) arrange to deprive
- yourself of the benefit of the patent license for this particular
- work, or (3) arrange, in a manner consistent with the requirements
- of this License, to extend the patent license to downstream
- recipients. "Knowingly relying" means you have actual knowledge
- that, but for the patent license, your conveying the covered work
- in a country, or your recipient's use of the covered work in a
- country, would infringe one or more identifiable patents in that
- country that you have reason to believe are valid.
- If, pursuant to or in connection with a single transaction or
- arrangement, you convey, or propagate by procuring conveyance of, a
- covered work, and grant a patent license to some of the parties
- receiving the covered work authorizing them to use, propagate,
- modify or convey a specific copy of the covered work, then the
- patent license you grant is automatically extended to all
- recipients of the covered work and works based on it.
- A patent license is "discriminatory" if it does not include within
- the scope of its coverage, prohibits the exercise of, or is
- conditioned on the non-exercise of one or more of the rights that
- are specifically granted under this License. You may not convey a
- covered work if you are a party to an arrangement with a third
- party that is in the business of distributing software, under which
- you make payment to the third party based on the extent of your
- activity of conveying the work, and under which the third party
- grants, to any of the parties who would receive the covered work
- from you, a discriminatory patent license (a) in connection with
- copies of the covered work conveyed by you (or copies made from
- those copies), or (b) primarily for and in connection with specific
- products or compilations that contain the covered work, unless you
- entered into that arrangement, or that patent license was granted,
- prior to 28 March 2007.
- Nothing in this License shall be construed as excluding or limiting
- any implied license or other defenses to infringement that may
- otherwise be available to you under applicable patent law.
- 12. No Surrender of Others' Freedom.
- If conditions are imposed on you (whether by court order, agreement
- or otherwise) that contradict the conditions of this License, they
- do not excuse you from the conditions of this License. If you
- cannot convey a covered work so as to satisfy simultaneously your
- obligations under this License and any other pertinent obligations,
- then as a consequence you may not convey it at all. For example,
- if you agree to terms that obligate you to collect a royalty for
- further conveying from those to whom you convey the Program, the
- only way you could satisfy both those terms and this License would
- be to refrain entirely from conveying the Program.
- 13. Use with the GNU Affero General Public License.
- Notwithstanding any other provision of this License, you have
- permission to link or combine any covered work with a work licensed
- under version 3 of the GNU Affero General Public License into a
- single combined work, and to convey the resulting work. The terms
- of this License will continue to apply to the part which is the
- covered work, but the special requirements of the GNU Affero
- General Public License, section 13, concerning interaction through
- a network will apply to the combination as such.
- 14. Revised Versions of this License.
- The Free Software Foundation may publish revised and/or new
- versions of the GNU General Public License from time to time. Such
- new versions will be similar in spirit to the present version, but
- may differ in detail to address new problems or concerns.
- Each version is given a distinguishing version number. If the
- Program specifies that a certain numbered version of the GNU
- General Public License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that numbered version or of any later version published by the Free
- Software Foundation. If the Program does not specify a version
- number of the GNU General Public License, you may choose any
- version ever published by the Free Software Foundation.
- If the Program specifies that a proxy can decide which future
- versions of the GNU General Public License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Program.
- Later license versions may give you additional or different
- permissions. However, no additional obligations are imposed on any
- author or copyright holder as a result of your choosing to follow a
- later version.
- 15. Disclaimer of Warranty.
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
- COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
- WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
- MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
- RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
- SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
- NECESSARY SERVICING, REPAIR OR CORRECTION.
- 16. Limitation of Liability.
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
- WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
- AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
- DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
- CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
- THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
- BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
- THE POSSIBILITY OF SUCH DAMAGES.
- 17. Interpretation of Sections 15 and 16.
- If the disclaimer of warranty and limitation of liability provided
- above cannot be given local legal effect according to their terms,
- reviewing courts shall apply local law that most closely
- approximates an absolute waiver of all civil liability in
- connection with the Program, unless a warranty or assumption of
- liability accompanies a copy of the Program in return for a fee.
- END OF TERMS AND CONDITIONS
- ===========================
- How to Apply These Terms to Your New Programs
- =============================================
- If you develop a new program, and you want it to be of the greatest
- possible use to the public, the best way to achieve this is to make it
- free software which everyone can redistribute and change under these
- terms.
- To do so, attach the following notices to the program. It is safest
- to attach them to the start of each source file to most effectively
- state the exclusion of warranty; and each file should have at least the
- "copyright" line and a pointer to where the full notice is found.
- ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
- Copyright (C) YEAR NAME OF AUTHOR
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or (at
- your option) any later version.
- This program is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- Also add information on how to contact you by electronic and paper
- mail.
- If the program does terminal interaction, make it output a short
- notice like this when it starts in an interactive mode:
- PROGRAM Copyright (C) YEAR NAME OF AUTHOR
- This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type 'show c' for details.
- The hypothetical commands 'show w' and 'show c' should show the
- appropriate parts of the General Public License. Of course, your
- program's commands might be different; for a GUI interface, you would
- use an "about box".
- You should also get your employer (if you work as a programmer) or
- school, if any, to sign a "copyright disclaimer" for the program, if
- necessary. For more information on this, and how to apply and follow
- the GNU GPL, see <http://www.gnu.org/licenses/>.
- The GNU General Public License does not permit incorporating your
- program into proprietary programs. If your program is a subroutine
- library, you may consider it more useful to permit linking proprietary
- applications with the library. If this is what you want to do, use the
- GNU Lesser General Public License instead of this License. But first,
- please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
- File: gfortran.info, Node: GNU Free Documentation License, Next: Funding, Prev: Copying, Up: Top
- GNU Free Documentation License
- ******************************
- Version 1.3, 3 November 2008
- Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
- <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
- 0. PREAMBLE
- The purpose of this License is to make a manual, textbook, or other
- functional and useful document "free" in the sense of freedom: to
- assure everyone the effective freedom to copy and redistribute it,
- with or without modifying it, either commercially or
- noncommercially. Secondarily, this License preserves for the
- author and publisher a way to get credit for their work, while not
- being considered responsible for modifications made by others.
- This License is a kind of "copyleft", which means that derivative
- works of the document must themselves be free in the same sense.
- It complements the GNU General Public License, which is a copyleft
- license designed for free software.
- We have designed this License in order to use it for manuals for
- free software, because free software needs free documentation: a
- free program should come with manuals providing the same freedoms
- that the software does. But this License is not limited to
- software manuals; it can be used for any textual work, regardless
- of subject matter or whether it is published as a printed book. We
- recommend this License principally for works whose purpose is
- instruction or reference.
- 1. APPLICABILITY AND DEFINITIONS
- This License applies to any manual or other work, in any medium,
- that contains a notice placed by the copyright holder saying it can
- be distributed under the terms of this License. Such a notice
- grants a world-wide, royalty-free license, unlimited in duration,
- to use that work under the conditions stated herein. The
- "Document", below, refers to any such manual or work. Any member
- of the public is a licensee, and is addressed as "you". You accept
- the license if you copy, modify or distribute the work in a way
- requiring permission under copyright law.
- A "Modified Version" of the Document means any work containing the
- Document or a portion of it, either copied verbatim, or with
- modifications and/or translated into another language.
- A "Secondary Section" is a named appendix or a front-matter section
- of the Document that deals exclusively with the relationship of the
- publishers or authors of the Document to the Document's overall
- subject (or to related matters) and contains nothing that could
- fall directly within that overall subject. (Thus, if the Document
- is in part a textbook of mathematics, a Secondary Section may not
- explain any mathematics.) The relationship could be a matter of
- historical connection with the subject or with related matters, or
- of legal, commercial, philosophical, ethical or political position
- regarding them.
- The "Invariant Sections" are certain Secondary Sections whose
- titles are designated, as being those of Invariant Sections, in the
- notice that says that the Document is released under this License.
- If a section does not fit the above definition of Secondary then it
- is not allowed to be designated as Invariant. The Document may
- contain zero Invariant Sections. If the Document does not identify
- any Invariant Sections then there are none.
- The "Cover Texts" are certain short passages of text that are
- listed, as Front-Cover Texts or Back-Cover Texts, in the notice
- that says that the Document is released under this License. A
- Front-Cover Text may be at most 5 words, and a Back-Cover Text may
- be at most 25 words.
- A "Transparent" copy of the Document means a machine-readable copy,
- represented in a format whose specification is available to the
- general public, that is suitable for revising the document
- straightforwardly with generic text editors or (for images composed
- of pixels) generic paint programs or (for drawings) some widely
- available drawing editor, and that is suitable for input to text
- formatters or for automatic translation to a variety of formats
- suitable for input to text formatters. A copy made in an otherwise
- Transparent file format whose markup, or absence of markup, has
- been arranged to thwart or discourage subsequent modification by
- readers is not Transparent. An image format is not Transparent if
- used for any substantial amount of text. A copy that is not
- "Transparent" is called "Opaque".
- Examples of suitable formats for Transparent copies include plain
- ASCII without markup, Texinfo input format, LaTeX input format,
- SGML or XML using a publicly available DTD, and standard-conforming
- simple HTML, PostScript or PDF designed for human modification.
- Examples of transparent image formats include PNG, XCF and JPG.
- Opaque formats include proprietary formats that can be read and
- edited only by proprietary word processors, SGML or XML for which
- the DTD and/or processing tools are not generally available, and
- the machine-generated HTML, PostScript or PDF produced by some word
- processors for output purposes only.
- The "Title Page" means, for a printed book, the title page itself,
- plus such following pages as are needed to hold, legibly, the
- material this License requires to appear in the title page. For
- works in formats which do not have any title page as such, "Title
- Page" means the text near the most prominent appearance of the
- work's title, preceding the beginning of the body of the text.
- The "publisher" means any person or entity that distributes copies
- of the Document to the public.
- A section "Entitled XYZ" means a named subunit of the Document
- whose title either is precisely XYZ or contains XYZ in parentheses
- following text that translates XYZ in another language. (Here XYZ
- stands for a specific section name mentioned below, such as
- "Acknowledgements", "Dedications", "Endorsements", or "History".)
- To "Preserve the Title" of such a section when you modify the
- Document means that it remains a section "Entitled XYZ" according
- to this definition.
- The Document may include Warranty Disclaimers next to the notice
- which states that this License applies to the Document. These
- Warranty Disclaimers are considered to be included by reference in
- this License, but only as regards disclaiming warranties: any other
- implication that these Warranty Disclaimers may have is void and
- has no effect on the meaning of this License.
- 2. VERBATIM COPYING
- You may copy and distribute the Document in any medium, either
- commercially or noncommercially, provided that this License, the
- copyright notices, and the license notice saying this License
- applies to the Document are reproduced in all copies, and that you
- add no other conditions whatsoever to those of this License. You
- may not use technical measures to obstruct or control the reading
- or further copying of the copies you make or distribute. However,
- you may accept compensation in exchange for copies. If you
- distribute a large enough number of copies you must also follow the
- conditions in section 3.
- You may also lend copies, under the same conditions stated above,
- and you may publicly display copies.
- 3. COPYING IN QUANTITY
- If you publish printed copies (or copies in media that commonly
- have printed covers) of the Document, numbering more than 100, and
- the Document's license notice requires Cover Texts, you must
- enclose the copies in covers that carry, clearly and legibly, all
- these Cover Texts: Front-Cover Texts on the front cover, and
- Back-Cover Texts on the back cover. Both covers must also clearly
- and legibly identify you as the publisher of these copies. The
- front cover must present the full title with all words of the title
- equally prominent and visible. You may add other material on the
- covers in addition. Copying with changes limited to the covers, as
- long as they preserve the title of the Document and satisfy these
- conditions, can be treated as verbatim copying in other respects.
- If the required texts for either cover are too voluminous to fit
- legibly, you should put the first ones listed (as many as fit
- reasonably) on the actual cover, and continue the rest onto
- adjacent pages.
- If you publish or distribute Opaque copies of the Document
- numbering more than 100, you must either include a machine-readable
- Transparent copy along with each Opaque copy, or state in or with
- each Opaque copy a computer-network location from which the general
- network-using public has access to download using public-standard
- network protocols a complete Transparent copy of the Document, free
- of added material. If you use the latter option, you must take
- reasonably prudent steps, when you begin distribution of Opaque
- copies in quantity, to ensure that this Transparent copy will
- remain thus accessible at the stated location until at least one
- year after the last time you distribute an Opaque copy (directly or
- through your agents or retailers) of that edition to the public.
- It is requested, but not required, that you contact the authors of
- the Document well before redistributing any large number of copies,
- to give them a chance to provide you with an updated version of the
- Document.
- 4. MODIFICATIONS
- You may copy and distribute a Modified Version of the Document
- under the conditions of sections 2 and 3 above, provided that you
- release the Modified Version under precisely this License, with the
- Modified Version filling the role of the Document, thus licensing
- distribution and modification of the Modified Version to whoever
- possesses a copy of it. In addition, you must do these things in
- the Modified Version:
- A. Use in the Title Page (and on the covers, if any) a title
- distinct from that of the Document, and from those of previous
- versions (which should, if there were any, be listed in the
- History section of the Document). You may use the same title
- as a previous version if the original publisher of that
- version gives permission.
- B. List on the Title Page, as authors, one or more persons or
- entities responsible for authorship of the modifications in
- the Modified Version, together with at least five of the
- principal authors of the Document (all of its principal
- authors, if it has fewer than five), unless they release you
- from this requirement.
- C. State on the Title page the name of the publisher of the
- Modified Version, as the publisher.
- D. Preserve all the copyright notices of the Document.
- E. Add an appropriate copyright notice for your modifications
- adjacent to the other copyright notices.
- F. Include, immediately after the copyright notices, a license
- notice giving the public permission to use the Modified
- Version under the terms of this License, in the form shown in
- the Addendum below.
- G. Preserve in that license notice the full lists of Invariant
- Sections and required Cover Texts given in the Document's
- license notice.
- H. Include an unaltered copy of this License.
- I. Preserve the section Entitled "History", Preserve its Title,
- and add to it an item stating at least the title, year, new
- authors, and publisher of the Modified Version as given on the
- Title Page. If there is no section Entitled "History" in the
- Document, create one stating the title, year, authors, and
- publisher of the Document as given on its Title Page, then add
- an item describing the Modified Version as stated in the
- previous sentence.
- J. Preserve the network location, if any, given in the Document
- for public access to a Transparent copy of the Document, and
- likewise the network locations given in the Document for
- previous versions it was based on. These may be placed in the
- "History" section. You may omit a network location for a work
- that was published at least four years before the Document
- itself, or if the original publisher of the version it refers
- to gives permission.
- K. For any section Entitled "Acknowledgements" or "Dedications",
- Preserve the Title of the section, and preserve in the section
- all the substance and tone of each of the contributor
- acknowledgements and/or dedications given therein.
- L. Preserve all the Invariant Sections of the Document, unaltered
- in their text and in their titles. Section numbers or the
- equivalent are not considered part of the section titles.
- M. Delete any section Entitled "Endorsements". Such a section
- may not be included in the Modified Version.
- N. Do not retitle any existing section to be Entitled
- "Endorsements" or to conflict in title with any Invariant
- Section.
- O. Preserve any Warranty Disclaimers.
- If the Modified Version includes new front-matter sections or
- appendices that qualify as Secondary Sections and contain no
- material copied from the Document, you may at your option designate
- some or all of these sections as invariant. To do this, add their
- titles to the list of Invariant Sections in the Modified Version's
- license notice. These titles must be distinct from any other
- section titles.
- You may add a section Entitled "Endorsements", provided it contains
- nothing but endorsements of your Modified Version by various
- parties--for example, statements of peer review or that the text
- has been approved by an organization as the authoritative
- definition of a standard.
- You may add a passage of up to five words as a Front-Cover Text,
- and a passage of up to 25 words as a Back-Cover Text, to the end of
- the list of Cover Texts in the Modified Version. Only one passage
- of Front-Cover Text and one of Back-Cover Text may be added by (or
- through arrangements made by) any one entity. If the Document
- already includes a cover text for the same cover, previously added
- by you or by arrangement made by the same entity you are acting on
- behalf of, you may not add another; but you may replace the old
- one, on explicit permission from the previous publisher that added
- the old one.
- The author(s) and publisher(s) of the Document do not by this
- License give permission to use their names for publicity for or to
- assert or imply endorsement of any Modified Version.
- 5. COMBINING DOCUMENTS
- You may combine the Document with other documents released under
- this License, under the terms defined in section 4 above for
- modified versions, provided that you include in the combination all
- of the Invariant Sections of all of the original documents,
- unmodified, and list them all as Invariant Sections of your
- combined work in its license notice, and that you preserve all
- their Warranty Disclaimers.
- The combined work need only contain one copy of this License, and
- multiple identical Invariant Sections may be replaced with a single
- copy. If there are multiple Invariant Sections with the same name
- but different contents, make the title of each such section unique
- by adding at the end of it, in parentheses, the name of the
- original author or publisher of that section if known, or else a
- unique number. Make the same adjustment to the section titles in
- the list of Invariant Sections in the license notice of the
- combined work.
- In the combination, you must combine any sections Entitled
- "History" in the various original documents, forming one section
- Entitled "History"; likewise combine any sections Entitled
- "Acknowledgements", and any sections Entitled "Dedications". You
- must delete all sections Entitled "Endorsements."
- 6. COLLECTIONS OF DOCUMENTS
- You may make a collection consisting of the Document and other
- documents released under this License, and replace the individual
- copies of this License in the various documents with a single copy
- that is included in the collection, provided that you follow the
- rules of this License for verbatim copying of each of the documents
- in all other respects.
- You may extract a single document from such a collection, and
- distribute it individually under this License, provided you insert
- a copy of this License into the extracted document, and follow this
- License in all other respects regarding verbatim copying of that
- document.
- 7. AGGREGATION WITH INDEPENDENT WORKS
- A compilation of the Document or its derivatives with other
- separate and independent documents or works, in or on a volume of a
- storage or distribution medium, is called an "aggregate" if the
- copyright resulting from the compilation is not used to limit the
- legal rights of the compilation's users beyond what the individual
- works permit. When the Document is included in an aggregate, this
- License does not apply to the other works in the aggregate which
- are not themselves derivative works of the Document.
- If the Cover Text requirement of section 3 is applicable to these
- copies of the Document, then if the Document is less than one half
- of the entire aggregate, the Document's Cover Texts may be placed
- on covers that bracket the Document within the aggregate, or the
- electronic equivalent of covers if the Document is in electronic
- form. Otherwise they must appear on printed covers that bracket
- the whole aggregate.
- 8. TRANSLATION
- Translation is considered a kind of modification, so you may
- distribute translations of the Document under the terms of section
- 4. Replacing Invariant Sections with translations requires special
- permission from their copyright holders, but you may include
- translations of some or all Invariant Sections in addition to the
- original versions of these Invariant Sections. You may include a
- translation of this License, and all the license notices in the
- Document, and any Warranty Disclaimers, provided that you also
- include the original English version of this License and the
- original versions of those notices and disclaimers. In case of a
- disagreement between the translation and the original version of
- this License or a notice or disclaimer, the original version will
- prevail.
- If a section in the Document is Entitled "Acknowledgements",
- "Dedications", or "History", the requirement (section 4) to
- Preserve its Title (section 1) will typically require changing the
- actual title.
- 9. TERMINATION
- You may not copy, modify, sublicense, or distribute the Document
- except as expressly provided under this License. Any attempt
- otherwise to copy, modify, sublicense, or distribute it is void,
- and will automatically terminate your rights under this License.
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, receipt of a copy of some or all of the
- same material does not give you any rights to use it.
- 10. FUTURE REVISIONS OF THIS LICENSE
- The Free Software Foundation may publish new, revised versions of
- the GNU Free Documentation License from time to time. Such new
- versions will be similar in spirit to the present version, but may
- differ in detail to address new problems or concerns. See
- <http://www.gnu.org/copyleft/>.
- Each version of the License is given a distinguishing version
- number. If the Document specifies that a particular numbered
- version of this License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that specified version or of any later version that has been
- published (not as a draft) by the Free Software Foundation. If the
- Document does not specify a version number of this License, you may
- choose any version ever published (not as a draft) by the Free
- Software Foundation. If the Document specifies that a proxy can
- decide which future versions of this License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Document.
- 11. RELICENSING
- "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
- World Wide Web server that publishes copyrightable works and also
- provides prominent facilities for anybody to edit those works. A
- public wiki that anybody can edit is an example of such a server.
- A "Massive Multiauthor Collaboration" (or "MMC") contained in the
- site means any set of copyrightable works thus published on the MMC
- site.
- "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
- license published by Creative Commons Corporation, a not-for-profit
- corporation with a principal place of business in San Francisco,
- California, as well as future copyleft versions of that license
- published by that same organization.
- "Incorporate" means to publish or republish a Document, in whole or
- in part, as part of another Document.
- An MMC is "eligible for relicensing" if it is licensed under this
- License, and if all works that were first published under this
- License somewhere other than this MMC, and subsequently
- incorporated in whole or in part into the MMC, (1) had no cover
- texts or invariant sections, and (2) were thus incorporated prior
- to November 1, 2008.
- The operator of an MMC Site may republish an MMC contained in the
- site under CC-BY-SA on the same site at any time before August 1,
- 2009, provided the MMC is eligible for relicensing.
- ADDENDUM: How to use this License for your documents
- ====================================================
- To use this License in a document you have written, include a copy of
- the License in the document and put the following copyright and license
- notices just after the title page:
- Copyright (C) YEAR YOUR NAME.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3
- or any later version published by the Free Software Foundation;
- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
- Texts. A copy of the license is included in the section entitled ``GNU
- Free Documentation License''.
- If you have Invariant Sections, Front-Cover Texts and Back-Cover
- Texts, replace the "with...Texts." line with this:
- with the Invariant Sections being LIST THEIR TITLES, with
- the Front-Cover Texts being LIST, and with the Back-Cover Texts
- being LIST.
- If you have Invariant Sections without Cover Texts, or some other
- combination of the three, merge those two alternatives to suit the
- situation.
- If your document contains nontrivial examples of program code, we
- recommend releasing these examples in parallel under your choice of free
- software license, such as the GNU General Public License, to permit
- their use in free software.
- File: gfortran.info, Node: Funding, Next: Option Index, Prev: GNU Free Documentation License, Up: Top
- Funding Free Software
- *********************
- If you want to have more free software a few years from now, it makes
- sense for you to help encourage people to contribute funds for its
- development. The most effective approach known is to encourage
- commercial redistributors to donate.
- Users of free software systems can boost the pace of development by
- encouraging for-a-fee distributors to donate part of their selling price
- to free software developers--the Free Software Foundation, and others.
- The way to convince distributors to do this is to demand it and
- expect it from them. So when you compare distributors, judge them
- partly by how much they give to free software development. Show
- distributors they must compete to be the one who gives the most.
- To make this approach work, you must insist on numbers that you can
- compare, such as, "We will donate ten dollars to the Frobnitz project
- for each disk sold." Don't be satisfied with a vague promise, such as
- "A portion of the profits are donated," since it doesn't give a basis
- for comparison.
- Even a precise fraction "of the profits from this disk" is not very
- meaningful, since creative accounting and unrelated business decisions
- can greatly alter what fraction of the sales price counts as profit. If
- the price you pay is $50, ten percent of the profit is probably less
- than a dollar; it might be a few cents, or nothing at all.
- Some redistributors do development work themselves. This is useful
- too; but to keep everyone honest, you need to inquire how much they do,
- and what kind. Some kinds of development make much more long-term
- difference than others. For example, maintaining a separate version of
- a program contributes very little; maintaining the standard version of a
- program for the whole community contributes much. Easy new ports
- contribute little, since someone else would surely do them; difficult
- ports such as adding a new CPU to the GNU Compiler Collection contribute
- more; major new features or packages contribute the most.
- By establishing the idea that supporting further development is "the
- proper thing to do" when distributing free software for a fee, we can
- assure a steady flow of resources into making more free software.
- Copyright (C) 1994 Free Software Foundation, Inc.
- Verbatim copying and redistribution of this section is permitted
- without royalty; alteration is not permitted.
- File: gfortran.info, Node: Option Index, Next: Keyword Index, Prev: Funding, Up: Top
- Option Index
- ************
- 'gfortran''s command line options are indexed here without any initial
- '-' or '--'. Where an option has both positive and negative forms (such
- as -foption and -fno-option), relevant entries in the manual are indexed
- under the most appropriate form; it may sometimes be useful to look up
- both forms.
- �[index�]
- * Menu:
- * 'A-PREDICATE=ANSWER': Preprocessing Options.
- (line 119)
- * 'APREDICATE=ANSWER': Preprocessing Options.
- (line 113)
- * 'backslash': Fortran Dialect Options.
- (line 74)
- * 'C': Preprocessing Options.
- (line 122)
- * 'CC': Preprocessing Options.
- (line 137)
- * 'cpp': Preprocessing Options.
- (line 12)
- * 'dD': Preprocessing Options.
- (line 35)
- * 'dI': Preprocessing Options.
- (line 51)
- * 'dM': Preprocessing Options.
- (line 26)
- * 'dN': Preprocessing Options.
- (line 41)
- * 'DNAME': Preprocessing Options.
- (line 151)
- * 'DNAME=DEFINITION': Preprocessing Options.
- (line 154)
- * 'dU': Preprocessing Options.
- (line 44)
- * 'faggressive-function-elimination': Code Gen Options. (line 392)
- * 'falign-commons': Code Gen Options. (line 365)
- * 'fall-intrinsics': Fortran Dialect Options.
- (line 17)
- * 'fblas-matmul-limit': Code Gen Options. (line 305)
- * 'fbounds-check': Code Gen Options. (line 198)
- * 'fcheck': Code Gen Options. (line 141)
- * 'fcheck-array-temporaries': Code Gen Options. (line 232)
- * 'fcoarray': Code Gen Options. (line 127)
- * 'fconvert='CONVERSION: Runtime Options. (line 10)
- * 'fcray-pointer': Fortran Dialect Options.
- (line 120)
- * 'fd-lines-as-code': Fortran Dialect Options.
- (line 27)
- * 'fd-lines-as-comments': Fortran Dialect Options.
- (line 27)
- * 'fdec': Fortran Dialect Options.
- (line 34)
- * 'fdec-intrinsic-ints': Fortran Dialect Options.
- (line 54)
- * 'fdec-math': Fortran Dialect Options.
- (line 59)
- * 'fdec-static': Fortran Dialect Options.
- (line 64)
- * 'fdec-structure': Fortran Dialect Options.
- (line 48)
- * 'fdefault-double-8': Fortran Dialect Options.
- (line 169)
- * 'fdefault-integer-8': Fortran Dialect Options.
- (line 155)
- * 'fdefault-real-8': Fortran Dialect Options.
- (line 161)
- * 'fdollar-ok': Fortran Dialect Options.
- (line 68)
- * 'fdump-fortran-optimized': Debugging Options. (line 15)
- * 'fdump-fortran-original': Debugging Options. (line 10)
- * 'fdump-parse-tree': Debugging Options. (line 19)
- * 'fexternal-blas': Code Gen Options. (line 297)
- * ff2c: Code Gen Options. (line 25)
- * 'ffixed-form': Fortran Dialect Options.
- (line 11)
- * 'ffixed-line-length-'N: Fortran Dialect Options.
- (line 91)
- * 'ffpe-summary='LIST: Debugging Options. (line 51)
- * 'ffpe-trap='LIST: Debugging Options. (line 25)
- * 'ffree-form': Fortran Dialect Options.
- (line 11)
- * 'ffree-line-length-'N: Fortran Dialect Options.
- (line 104)
- * 'fimplicit-none': Fortran Dialect Options.
- (line 115)
- * 'finit-character': Code Gen Options. (line 340)
- * 'finit-derived': Code Gen Options. (line 340)
- * 'finit-integer': Code Gen Options. (line 340)
- * 'finit-local-zero': Code Gen Options. (line 340)
- * 'finit-logical': Code Gen Options. (line 340)
- * 'finit-real': Code Gen Options. (line 340)
- * 'finline-matmul-limit': Code Gen Options. (line 316)
- * 'finteger-4-integer-8': Fortran Dialect Options.
- (line 178)
- * 'fintrinsic-modules-path' DIR: Directory Options. (line 36)
- * 'fmax-array-constructor': Code Gen Options. (line 235)
- * 'fmax-errors='N: Error and Warning Options.
- (line 27)
- * 'fmax-identifier-length='N: Fortran Dialect Options.
- (line 111)
- * 'fmax-stack-var-size': Code Gen Options. (line 253)
- * 'fmax-subrecord-length='LENGTH: Runtime Options. (line 29)
- * 'fmodule-private': Fortran Dialect Options.
- (line 86)
- * 'fno-automatic': Code Gen Options. (line 15)
- * 'fno-backtrace': Debugging Options. (line 61)
- * 'fno-protect-parens': Code Gen Options. (line 377)
- * 'fno-underscoring': Code Gen Options. (line 54)
- * 'fopenacc': Fortran Dialect Options.
- (line 124)
- * 'fopenmp': Fortran Dialect Options.
- (line 135)
- * 'fpack-derived': Code Gen Options. (line 275)
- * 'fpp': Preprocessing Options.
- (line 12)
- * 'frange-check': Fortran Dialect Options.
- (line 143)
- * 'freal-4-real-10': Fortran Dialect Options.
- (line 193)
- * 'freal-4-real-16': Fortran Dialect Options.
- (line 193)
- * 'freal-4-real-8': Fortran Dialect Options.
- (line 193)
- * 'freal-8-real-10': Fortran Dialect Options.
- (line 193)
- * 'freal-8-real-16': Fortran Dialect Options.
- (line 193)
- * 'freal-8-real-4': Fortran Dialect Options.
- (line 193)
- * 'frealloc-lhs': Code Gen Options. (line 386)
- * 'frecord-marker='LENGTH: Runtime Options. (line 21)
- * 'frecursive': Code Gen Options. (line 330)
- * 'frepack-arrays': Code Gen Options. (line 281)
- * 'frontend-optimize': Code Gen Options. (line 400)
- * 'fsecond-underscore': Code Gen Options. (line 110)
- * 'fshort-enums': Code Gen Options. (line 291)
- * 'fshort-enums' <1>: Fortran 2003 status. (line 93)
- * 'fsign-zero': Runtime Options. (line 34)
- * 'fstack-arrays': Code Gen Options. (line 267)
- * 'fsyntax-only': Error and Warning Options.
- (line 33)
- * 'ftest-forall-temp': Fortran Dialect Options.
- (line 223)
- * 'fworking-directory': Preprocessing Options.
- (line 55)
- * 'H': Preprocessing Options.
- (line 174)
- * 'I'DIR: Directory Options. (line 14)
- * 'idirafter DIR': Preprocessing Options.
- (line 69)
- * 'imultilib DIR': Preprocessing Options.
- (line 76)
- * 'iprefix PREFIX': Preprocessing Options.
- (line 80)
- * 'iquote DIR': Preprocessing Options.
- (line 89)
- * 'isysroot DIR': Preprocessing Options.
- (line 85)
- * 'isystem DIR': Preprocessing Options.
- (line 96)
- * 'J'DIR: Directory Options. (line 29)
- * 'M'DIR: Directory Options. (line 29)
- * 'nostdinc': Preprocessing Options.
- (line 104)
- * 'P': Preprocessing Options.
- (line 179)
- * 'pedantic': Error and Warning Options.
- (line 39)
- * 'pedantic-errors': Error and Warning Options.
- (line 58)
- * 'static-libgfortran': Link Options. (line 11)
- * 'std='STD option: Fortran Dialect Options.
- (line 204)
- * 'tail-call-workaround': Code Gen Options. (line 202)
- * 'UNAME': Preprocessing Options.
- (line 185)
- * 'undef': Preprocessing Options.
- (line 109)
- * 'Waliasing': Error and Warning Options.
- (line 71)
- * 'Walign-commons': Error and Warning Options.
- (line 222)
- * 'Wall': Error and Warning Options.
- (line 62)
- * 'Wampersand': Error and Warning Options.
- (line 88)
- * 'Wargument-mismatch': Error and Warning Options.
- (line 96)
- * 'Warray-temporaries': Error and Warning Options.
- (line 101)
- * 'Wc-binding-type': Error and Warning Options.
- (line 106)
- * 'Wcharacter-truncation': Error and Warning Options.
- (line 113)
- * 'Wcompare-reals': Error and Warning Options.
- (line 249)
- * 'Wconversion': Error and Warning Options.
- (line 122)
- * 'Wconversion-extra': Error and Warning Options.
- (line 126)
- * 'Werror': Error and Warning Options.
- (line 261)
- * 'Wextra': Error and Warning Options.
- (line 130)
- * 'Wfunction-elimination': Error and Warning Options.
- (line 228)
- * 'Wimplicit-interface': Error and Warning Options.
- (line 135)
- * 'Wimplicit-procedure': Error and Warning Options.
- (line 141)
- * 'Winteger-division': Error and Warning Options.
- (line 145)
- * 'Wintrinsic-shadow': Error and Warning Options.
- (line 200)
- * 'Wintrinsics-std': Error and Warning Options.
- (line 149)
- * 'Wline-truncation': Error and Warning Options.
- (line 116)
- * 'Wpedantic': Error and Warning Options.
- (line 39)
- * 'Wreal-q-constant': Error and Warning Options.
- (line 156)
- * 'Wrealloc-lhs': Error and Warning Options.
- (line 232)
- * 'Wrealloc-lhs-all': Error and Warning Options.
- (line 244)
- * 'Wsurprising': Error and Warning Options.
- (line 160)
- * 'Wtabs': Error and Warning Options.
- (line 182)
- * 'Wtargt-lifetime': Error and Warning Options.
- (line 253)
- * 'Wundefined-do-loop': Error and Warning Options.
- (line 190)
- * 'Wunderflow': Error and Warning Options.
- (line 195)
- * 'Wunused-dummy-argument': Error and Warning Options.
- (line 211)
- * 'Wunused-parameter': Error and Warning Options.
- (line 215)
- * 'Wuse-without-only': Error and Warning Options.
- (line 207)
- * 'Wzerotrip': Error and Warning Options.
- (line 257)
- File: gfortran.info, Node: Keyword Index, Prev: Option Index, Up: Top
- Keyword Index
- *************
- �[index�]
- * Menu:
- * '$': Fortran Dialect Options.
- (line 68)
- * '%LOC': Argument list functions.
- (line 6)
- * '%REF': Argument list functions.
- (line 6)
- * '%VAL': Argument list functions.
- (line 6)
- * '&': Error and Warning Options.
- (line 88)
- * '[...]': Fortran 2003 status. (line 78)
- * _gfortran_set_args: _gfortran_set_args. (line 6)
- * _gfortran_set_convert: _gfortran_set_convert.
- (line 6)
- * _gfortran_set_fpe: _gfortran_set_fpe. (line 6)
- * _gfortran_set_max_subrecord_length: _gfortran_set_max_subrecord_length.
- (line 6)
- * _gfortran_set_options: _gfortran_set_options.
- (line 6)
- * _gfortran_set_record_marker: _gfortran_set_record_marker.
- (line 6)
- * ABORT: ABORT. (line 6)
- * ABS: ABS. (line 6)
- * absolute value: ABS. (line 6)
- * ACCESS: ACCESS. (line 6)
- * 'ACCESS='STREAM'' I/O: Fortran 2003 status. (line 103)
- * ACHAR: ACHAR. (line 6)
- * ACOS: ACOS. (line 6)
- * ACOSD: ACOSD. (line 6)
- * ACOSH: ACOSH. (line 6)
- * adjust string: ADJUSTL. (line 6)
- * adjust string <1>: ADJUSTR. (line 6)
- * ADJUSTL: ADJUSTL. (line 6)
- * ADJUSTR: ADJUSTR. (line 6)
- * AIMAG: AIMAG. (line 6)
- * AINT: AINT. (line 6)
- * ALARM: ALARM. (line 6)
- * ALGAMA: LOG_GAMMA. (line 6)
- * aliasing: Error and Warning Options.
- (line 71)
- * alignment of 'COMMON' blocks: Error and Warning Options.
- (line 222)
- * alignment of 'COMMON' blocks <1>: Code Gen Options. (line 365)
- * ALL: ALL. (line 6)
- * all warnings: Error and Warning Options.
- (line 62)
- * 'ALLOCATABLE' components of derived types: Fortran 2003 status.
- (line 101)
- * 'ALLOCATABLE' dummy arguments: Fortran 2003 status. (line 99)
- * 'ALLOCATABLE' function results: Fortran 2003 status. (line 100)
- * ALLOCATED: ALLOCATED. (line 6)
- * allocation, moving: MOVE_ALLOC. (line 6)
- * allocation, status: ALLOCATED. (line 6)
- * ALOG: LOG. (line 6)
- * ALOG10: LOG10. (line 6)
- * AMAX0: MAX. (line 6)
- * AMAX1: MAX. (line 6)
- * AMIN0: MIN. (line 6)
- * AMIN1: MIN. (line 6)
- * AMOD: MOD. (line 6)
- * AND: AND. (line 6)
- * ANINT: ANINT. (line 6)
- * ANY: ANY. (line 6)
- * area hyperbolic cosine: ACOSH. (line 6)
- * area hyperbolic sine: ASINH. (line 6)
- * area hyperbolic tangent: ATANH. (line 6)
- * argument list functions: Argument list functions.
- (line 6)
- * arguments, to program: COMMAND_ARGUMENT_COUNT.
- (line 6)
- * arguments, to program <1>: GETARG. (line 6)
- * arguments, to program <2>: GET_COMMAND. (line 6)
- * arguments, to program <3>: GET_COMMAND_ARGUMENT.
- (line 6)
- * arguments, to program <4>: IARGC. (line 6)
- * array, add elements: SUM. (line 6)
- * array, AND: IALL. (line 6)
- * array, apply condition: ALL. (line 6)
- * array, apply condition <1>: ANY. (line 6)
- * array, bounds checking: Code Gen Options. (line 141)
- * array, change dimensions: RESHAPE. (line 6)
- * array, combine arrays: MERGE. (line 6)
- * array, condition testing: ALL. (line 6)
- * array, condition testing <1>: ANY. (line 6)
- * array, conditionally add elements: SUM. (line 6)
- * array, conditionally count elements: COUNT. (line 6)
- * array, conditionally multiply elements: PRODUCT. (line 6)
- * array, constructors: Fortran 2003 status. (line 78)
- * array, count elements: SIZE. (line 6)
- * array, duplicate dimensions: SPREAD. (line 6)
- * array, duplicate elements: SPREAD. (line 6)
- * array, element counting: COUNT. (line 6)
- * array, gather elements: PACK. (line 6)
- * array, increase dimension: SPREAD. (line 6)
- * array, increase dimension <1>: UNPACK. (line 6)
- * array, indices of type real: Real array indices. (line 6)
- * array, location of maximum element: MAXLOC. (line 6)
- * array, location of minimum element: MINLOC. (line 6)
- * array, lower bound: LBOUND. (line 6)
- * array, maximum value: MAXVAL. (line 6)
- * array, merge arrays: MERGE. (line 6)
- * array, minimum value: MINVAL. (line 6)
- * array, multiply elements: PRODUCT. (line 6)
- * array, number of elements: COUNT. (line 6)
- * array, number of elements <1>: SIZE. (line 6)
- * array, OR: IANY. (line 6)
- * array, packing: PACK. (line 6)
- * array, parity: IPARITY. (line 6)
- * array, permutation: CSHIFT. (line 6)
- * array, product: PRODUCT. (line 6)
- * array, reduce dimension: PACK. (line 6)
- * array, rotate: CSHIFT. (line 6)
- * array, scatter elements: UNPACK. (line 6)
- * array, shape: SHAPE. (line 6)
- * array, shift: EOSHIFT. (line 6)
- * array, shift circularly: CSHIFT. (line 6)
- * array, size: SIZE. (line 6)
- * array, sum: SUM. (line 6)
- * array, transmogrify: RESHAPE. (line 6)
- * array, transpose: TRANSPOSE. (line 6)
- * array, unpacking: UNPACK. (line 6)
- * array, upper bound: UBOUND. (line 6)
- * array, XOR: IPARITY. (line 6)
- * ASCII collating sequence: ACHAR. (line 6)
- * ASCII collating sequence <1>: IACHAR. (line 6)
- * ASIN: ASIN. (line 6)
- * ASIND: ASIND. (line 6)
- * ASINH: ASINH. (line 6)
- * ASSOCIATED: ASSOCIATED. (line 6)
- * association status: ASSOCIATED. (line 6)
- * association status, C pointer: C_ASSOCIATED. (line 6)
- * ATAN: ATAN. (line 6)
- * ATAN2: ATAN2. (line 6)
- * ATAN2D: ATAN2D. (line 6)
- * ATAND: ATAND. (line 6)
- * ATANH: ATANH. (line 6)
- * Atomic subroutine, add: ATOMIC_ADD. (line 6)
- * Atomic subroutine, ADD with fetch: ATOMIC_FETCH_ADD. (line 6)
- * Atomic subroutine, AND: ATOMIC_AND. (line 6)
- * Atomic subroutine, AND with fetch: ATOMIC_FETCH_AND. (line 6)
- * Atomic subroutine, compare and swap: ATOMIC_CAS. (line 6)
- * Atomic subroutine, define: ATOMIC_DEFINE. (line 6)
- * Atomic subroutine, OR: ATOMIC_OR. (line 6)
- * Atomic subroutine, OR with fetch: ATOMIC_FETCH_OR. (line 6)
- * Atomic subroutine, reference: ATOMIC_REF. (line 6)
- * Atomic subroutine, XOR: ATOMIC_XOR. (line 6)
- * Atomic subroutine, XOR with fetch: ATOMIC_FETCH_XOR. (line 6)
- * ATOMIC_ADD: ATOMIC_ADD. (line 6)
- * ATOMIC_AND: ATOMIC_AND. (line 6)
- * ATOMIC_DEFINE: ATOMIC_CAS. (line 6)
- * ATOMIC_DEFINE <1>: ATOMIC_DEFINE. (line 6)
- * ATOMIC_FETCH_ADD: ATOMIC_FETCH_ADD. (line 6)
- * ATOMIC_FETCH_AND: ATOMIC_FETCH_AND. (line 6)
- * ATOMIC_FETCH_OR: ATOMIC_FETCH_OR. (line 6)
- * ATOMIC_FETCH_XOR: ATOMIC_FETCH_XOR. (line 6)
- * ATOMIC_OR: ATOMIC_OR. (line 6)
- * ATOMIC_REF: ATOMIC_REF. (line 6)
- * ATOMIC_XOR: ATOMIC_XOR. (line 6)
- * Authors: Contributors. (line 6)
- * 'AUTOMATIC': AUTOMATIC and STATIC attributes.
- (line 6)
- * BABS: ABS. (line 6)
- * backslash: Fortran Dialect Options.
- (line 74)
- * 'BACKSPACE': Read/Write after EOF marker.
- (line 6)
- * BACKTRACE: BACKTRACE. (line 6)
- * backtrace: Debugging Options. (line 61)
- * backtrace <1>: BACKTRACE. (line 6)
- * base 10 logarithm function: LOG10. (line 6)
- * BBCLR: IBCLR. (line 6)
- * BBITS: IBITS. (line 6)
- * BBSET: IBSET. (line 6)
- * BBTEST: BTEST. (line 6)
- * BESJ0: BESSEL_J0. (line 6)
- * BESJ1: BESSEL_J1. (line 6)
- * BESJN: BESSEL_JN. (line 6)
- * Bessel function, first kind: BESSEL_J0. (line 6)
- * Bessel function, first kind <1>: BESSEL_J1. (line 6)
- * Bessel function, first kind <2>: BESSEL_JN. (line 6)
- * Bessel function, second kind: BESSEL_Y0. (line 6)
- * Bessel function, second kind <1>: BESSEL_Y1. (line 6)
- * Bessel function, second kind <2>: BESSEL_YN. (line 6)
- * BESSEL_J0: BESSEL_J0. (line 6)
- * BESSEL_J1: BESSEL_J1. (line 6)
- * BESSEL_JN: BESSEL_JN. (line 6)
- * BESSEL_Y0: BESSEL_Y0. (line 6)
- * BESSEL_Y1: BESSEL_Y1. (line 6)
- * BESSEL_YN: BESSEL_YN. (line 6)
- * BESY0: BESSEL_Y0. (line 6)
- * BESY1: BESSEL_Y1. (line 6)
- * BESYN: BESSEL_YN. (line 6)
- * BGE: BGE. (line 6)
- * BGT: BGT. (line 6)
- * BIAND: IAND. (line 6)
- * BIEOR: IEOR. (line 6)
- * binary representation: POPCNT. (line 6)
- * binary representation <1>: POPPAR. (line 6)
- * BIOR: IOR. (line 6)
- * BITEST: BTEST. (line 6)
- * bits set: POPCNT. (line 6)
- * bits, AND of array elements: IALL. (line 6)
- * bits, clear: IBCLR. (line 6)
- * bits, extract: IBITS. (line 6)
- * bits, get: IBITS. (line 6)
- * bits, merge: MERGE_BITS. (line 6)
- * bits, move: MVBITS. (line 6)
- * bits, move <1>: TRANSFER. (line 6)
- * bits, negate: NOT. (line 6)
- * bits, number of: BIT_SIZE. (line 6)
- * bits, OR of array elements: IANY. (line 6)
- * bits, set: IBSET. (line 6)
- * bits, shift: ISHFT. (line 6)
- * bits, shift circular: ISHFTC. (line 6)
- * bits, shift left: LSHIFT. (line 6)
- * bits, shift left <1>: SHIFTL. (line 6)
- * bits, shift right: RSHIFT. (line 6)
- * bits, shift right <1>: SHIFTA. (line 6)
- * bits, shift right <2>: SHIFTR. (line 6)
- * bits, testing: BTEST. (line 6)
- * bits, unset: IBCLR. (line 6)
- * bits, XOR of array elements: IPARITY. (line 6)
- * bitwise comparison: BGE. (line 6)
- * bitwise comparison <1>: BGT. (line 6)
- * bitwise comparison <2>: BLE. (line 6)
- * bitwise comparison <3>: BLT. (line 6)
- * bitwise logical and: AND. (line 6)
- * bitwise logical and <1>: IAND. (line 6)
- * bitwise logical exclusive or: IEOR. (line 6)
- * bitwise logical exclusive or <1>: XOR. (line 6)
- * bitwise logical not: NOT. (line 6)
- * bitwise logical or: IOR. (line 6)
- * bitwise logical or <1>: OR. (line 6)
- * BIT_SIZE: BIT_SIZE. (line 6)
- * BJTEST: BTEST. (line 6)
- * BKTEST: BTEST. (line 6)
- * BLE: BLE. (line 6)
- * BLT: BLT. (line 6)
- * BMOD: MOD. (line 6)
- * BMVBITS: MVBITS. (line 6)
- * BNOT: NOT. (line 6)
- * bounds checking: Code Gen Options. (line 141)
- * BOZ literal constants: BOZ literal constants.
- (line 6)
- * BSHFT: ISHFT. (line 6)
- * BSHFTC: ISHFTC. (line 6)
- * BTEST: BTEST. (line 6)
- * CABS: ABS. (line 6)
- * calling convention: Code Gen Options. (line 25)
- * 'CARRIAGECONTROL': Extended I/O specifiers.
- (line 6)
- * CCOS: COS. (line 6)
- * CCOSD: COSD. (line 6)
- * CDABS: ABS. (line 6)
- * CDCOS: COS. (line 6)
- * CDCOSD: COSD. (line 6)
- * CDEXP: EXP. (line 6)
- * CDLOG: LOG. (line 6)
- * CDSIN: SIN. (line 6)
- * CDSIND: SIND. (line 6)
- * CDSQRT: SQRT. (line 6)
- * CEILING: CEILING. (line 6)
- * ceiling: ANINT. (line 6)
- * ceiling <1>: CEILING. (line 6)
- * CEXP: EXP. (line 6)
- * CHAR: CHAR. (line 6)
- * character kind: SELECTED_CHAR_KIND. (line 6)
- * character set: Fortran Dialect Options.
- (line 68)
- * CHDIR: CHDIR. (line 6)
- * checking array temporaries: Code Gen Options. (line 141)
- * checking subscripts: Code Gen Options. (line 141)
- * CHMOD: CHMOD. (line 6)
- * clock ticks: MCLOCK. (line 6)
- * clock ticks <1>: MCLOCK8. (line 6)
- * clock ticks <2>: SYSTEM_CLOCK. (line 6)
- * CLOG: LOG. (line 6)
- * CMPLX: CMPLX. (line 6)
- * coarray, 'IMAGE_INDEX': IMAGE_INDEX. (line 6)
- * coarray, lower bound: LCOBOUND. (line 6)
- * coarray, 'NUM_IMAGES': NUM_IMAGES. (line 6)
- * coarray, 'THIS_IMAGE': THIS_IMAGE. (line 6)
- * coarray, upper bound: UCOBOUND. (line 6)
- * Coarray, _gfortran_caf_atomic_cas: _gfortran_caf_atomic_cas.
- (line 6)
- * Coarray, _gfortran_caf_atomic_define: _gfortran_caf_atomic_define.
- (line 6)
- * Coarray, _gfortran_caf_atomic_op: _gfortran_caf_atomic_op.
- (line 6)
- * Coarray, _gfortran_caf_atomic_ref: _gfortran_caf_atomic_ref.
- (line 6)
- * Coarray, _gfortran_caf_co_broadcast: _gfortran_caf_co_broadcast.
- (line 6)
- * Coarray, _gfortran_caf_co_max: _gfortran_caf_co_max.
- (line 6)
- * Coarray, _gfortran_caf_co_min: _gfortran_caf_co_min.
- (line 6)
- * Coarray, _gfortran_caf_co_reduce: _gfortran_caf_co_reduce.
- (line 6)
- * Coarray, _gfortran_caf_co_sum: _gfortran_caf_co_sum.
- (line 6)
- * Coarray, _gfortran_caf_deregister: _gfortran_caf_deregister.
- (line 6)
- * Coarray, _gfortran_caf_error_stop: _gfortran_caf_error_stop.
- (line 6)
- * Coarray, _gfortran_caf_error_stop_str: _gfortran_caf_error_stop_str.
- (line 6)
- * Coarray, _gfortran_caf_event_post: _gfortran_caf_event_post.
- (line 6)
- * Coarray, _gfortran_caf_event_query: _gfortran_caf_event_query.
- (line 6)
- * Coarray, _gfortran_caf_event_wait: _gfortran_caf_event_wait.
- (line 6)
- * Coarray, _gfortran_caf_failed_images: _gfortran_caf_failed_images.
- (line 6)
- * Coarray, _gfortran_caf_fail_image: _gfortran_caf_fail_image.
- (line 6)
- * Coarray, _gfortran_caf_finish: _gfortran_caf_finish.
- (line 6)
- * Coarray, _gfortran_caf_get: _gfortran_caf_get. (line 6)
- * Coarray, _gfortran_caf_get_by_ref: _gfortran_caf_get_by_ref.
- (line 6)
- * Coarray, _gfortran_caf_image_status: _gfortran_caf_image_status.
- (line 6)
- * Coarray, _gfortran_caf_init: _gfortran_caf_init. (line 6)
- * Coarray, _gfortran_caf_is_present: _gfortran_caf_is_present.
- (line 6)
- * Coarray, _gfortran_caf_lock: _gfortran_caf_lock. (line 6)
- * Coarray, _gfortran_caf_num_images: _gfortran_caf_num_images.
- (line 6)
- * Coarray, _gfortran_caf_register: _gfortran_caf_register.
- (line 6)
- * Coarray, _gfortran_caf_send: _gfortran_caf_send. (line 6)
- * Coarray, _gfortran_caf_sendget: _gfortran_caf_sendget.
- (line 6)
- * Coarray, _gfortran_caf_sendget_by_ref: _gfortran_caf_sendget_by_ref.
- (line 6)
- * Coarray, _gfortran_caf_send_by_ref: _gfortran_caf_send_by_ref.
- (line 6)
- * Coarray, _gfortran_caf_stopped_images: _gfortran_caf_stopped_images.
- (line 6)
- * Coarray, _gfortran_caf_sync_all: _gfortran_caf_sync_all.
- (line 6)
- * Coarray, _gfortran_caf_sync_images: _gfortran_caf_sync_images.
- (line 6)
- * Coarray, _gfortran_caf_sync_memory: _gfortran_caf_sync_memory.
- (line 6)
- * Coarray, _gfortran_caf_this_image: _gfortran_caf_this_image.
- (line 6)
- * Coarray, _gfortran_caf_unlock: _gfortran_caf_unlock.
- (line 6)
- * coarrays: Code Gen Options. (line 127)
- * Coarrays: Coarray Programming. (line 6)
- * code generation, conventions: Code Gen Options. (line 6)
- * collating sequence, ASCII: ACHAR. (line 6)
- * collating sequence, ASCII <1>: IACHAR. (line 6)
- * Collectives, generic reduction: CO_REDUCE. (line 6)
- * Collectives, maximal value: CO_MAX. (line 6)
- * Collectives, minimal value: CO_MIN. (line 6)
- * Collectives, sum of values: CO_SUM. (line 6)
- * Collectives, value broadcasting: CO_BROADCAST. (line 6)
- * command line: EXECUTE_COMMAND_LINE.
- (line 6)
- * command options: Invoking GNU Fortran.
- (line 6)
- * command-line arguments: COMMAND_ARGUMENT_COUNT.
- (line 6)
- * command-line arguments <1>: GETARG. (line 6)
- * command-line arguments <2>: GET_COMMAND. (line 6)
- * command-line arguments <3>: GET_COMMAND_ARGUMENT.
- (line 6)
- * command-line arguments <4>: IARGC. (line 6)
- * command-line arguments, number of: COMMAND_ARGUMENT_COUNT.
- (line 6)
- * command-line arguments, number of <1>: IARGC. (line 6)
- * COMMAND_ARGUMENT_COUNT: COMMAND_ARGUMENT_COUNT.
- (line 6)
- * 'COMMON': Volatile COMMON blocks.
- (line 6)
- * compiler flags inquiry function: COMPILER_OPTIONS. (line 6)
- * compiler, name and version: COMPILER_VERSION. (line 6)
- * COMPILER_OPTIONS: COMPILER_OPTIONS. (line 6)
- * COMPILER_VERSION: COMPILER_VERSION. (line 6)
- * COMPLEX: COMPLEX. (line 6)
- * complex conjugate: CONJG. (line 6)
- * Complex function: Alternate complex function syntax.
- (line 6)
- * complex numbers, conversion to: CMPLX. (line 6)
- * complex numbers, conversion to <1>: COMPLEX. (line 6)
- * complex numbers, conversion to <2>: DCMPLX. (line 6)
- * complex numbers, imaginary part: AIMAG. (line 6)
- * complex numbers, real part: DREAL. (line 6)
- * complex numbers, real part <1>: REAL. (line 6)
- * Conditional compilation: Preprocessing and conditional compilation.
- (line 6)
- * CONJG: CONJG. (line 6)
- * consistency, durability: Data consistency and durability.
- (line 6)
- * Contributing: Contributing. (line 6)
- * Contributors: Contributors. (line 6)
- * conversion: Error and Warning Options.
- (line 122)
- * conversion <1>: Error and Warning Options.
- (line 126)
- * conversion, to character: CHAR. (line 6)
- * conversion, to complex: CMPLX. (line 6)
- * conversion, to complex <1>: COMPLEX. (line 6)
- * conversion, to complex <2>: DCMPLX. (line 6)
- * conversion, to integer: Implicitly convert LOGICAL and INTEGER values.
- (line 6)
- * conversion, to integer <1>: IACHAR. (line 6)
- * conversion, to integer <2>: ICHAR. (line 6)
- * conversion, to integer <3>: INT. (line 6)
- * conversion, to integer <4>: INT2. (line 6)
- * conversion, to integer <5>: INT8. (line 6)
- * conversion, to integer <6>: LONG. (line 6)
- * conversion, to logical: Implicitly convert LOGICAL and INTEGER values.
- (line 6)
- * conversion, to logical <1>: LOGICAL. (line 6)
- * conversion, to real: DBLE. (line 6)
- * conversion, to real <1>: REAL. (line 6)
- * conversion, to string: CTIME. (line 6)
- * 'CONVERT' specifier: CONVERT specifier. (line 6)
- * core, dump: ABORT. (line 6)
- * COS: COS. (line 6)
- * COSD: COSD. (line 6)
- * COSH: COSH. (line 6)
- * cosine: COS. (line 6)
- * cosine, degrees: COSD. (line 6)
- * cosine, hyperbolic: COSH. (line 6)
- * cosine, hyperbolic, inverse: ACOSH. (line 6)
- * cosine, inverse: ACOS. (line 6)
- * cosine, inverse, degrees: ACOSD. (line 6)
- * COTAN: COTAN. (line 6)
- * COTAND: COTAND. (line 6)
- * cotangent: COTAN. (line 6)
- * cotangent, degrees: COTAND. (line 6)
- * COUNT: COUNT. (line 6)
- * CO_BROADCAST: CO_BROADCAST. (line 6)
- * CO_MAX: CO_MAX. (line 6)
- * CO_MIN: CO_MIN. (line 6)
- * CO_REDUCE: CO_REDUCE. (line 6)
- * CO_SUM: CO_SUM. (line 6)
- * CPP: Preprocessing and conditional compilation.
- (line 6)
- * CPP <1>: Preprocessing Options.
- (line 6)
- * CPU_TIME: CPU_TIME. (line 6)
- * Credits: Contributors. (line 6)
- * CSHIFT: CSHIFT. (line 6)
- * CSIN: SIN. (line 6)
- * CSIND: SIND. (line 6)
- * CSQRT: SQRT. (line 6)
- * CTIME: CTIME. (line 6)
- * current date: DATE_AND_TIME. (line 6)
- * current date <1>: FDATE. (line 6)
- * current date <2>: IDATE. (line 6)
- * current time: DATE_AND_TIME. (line 6)
- * current time <1>: FDATE. (line 6)
- * current time <2>: ITIME. (line 6)
- * current time <3>: TIME. (line 6)
- * current time <4>: TIME8. (line 6)
- * C_ASSOCIATED: C_ASSOCIATED. (line 6)
- * C_FUNLOC: C_FUNLOC. (line 6)
- * C_F_POINTER: C_F_POINTER. (line 6)
- * C_F_PROCPOINTER: C_F_PROCPOINTER. (line 6)
- * C_LOC: C_LOC. (line 6)
- * C_SIZEOF: C_SIZEOF. (line 6)
- * DABS: ABS. (line 6)
- * DACOS: ACOS. (line 6)
- * DACOSD: ACOSD. (line 6)
- * DACOSH: ACOSH. (line 6)
- * DASIN: ASIN. (line 6)
- * DASIND: ASIND. (line 6)
- * DASINH: ASINH. (line 6)
- * DATAN: ATAN. (line 6)
- * DATAN2: ATAN2. (line 6)
- * DATAN2D: ATAN2D. (line 6)
- * DATAND: ATAND. (line 6)
- * DATANH: ATANH. (line 6)
- * date, current: DATE_AND_TIME. (line 6)
- * date, current <1>: FDATE. (line 6)
- * date, current <2>: IDATE. (line 6)
- * DATE_AND_TIME: DATE_AND_TIME. (line 6)
- * DBESJ0: BESSEL_J0. (line 6)
- * DBESJ1: BESSEL_J1. (line 6)
- * DBESJN: BESSEL_JN. (line 6)
- * DBESY0: BESSEL_Y0. (line 6)
- * DBESY1: BESSEL_Y1. (line 6)
- * DBESYN: BESSEL_YN. (line 6)
- * DBLE: DBLE. (line 6)
- * DCMPLX: DCMPLX. (line 6)
- * DCONJG: CONJG. (line 6)
- * DCOS: COS. (line 6)
- * DCOSD: COSD. (line 6)
- * DCOSH: COSH. (line 6)
- * DCOTAN: COTAN. (line 6)
- * DCOTAND: COTAND. (line 6)
- * DDIM: DIM. (line 6)
- * debugging information options: Debugging Options. (line 6)
- * debugging, preprocessor: Preprocessing Options.
- (line 26)
- * debugging, preprocessor <1>: Preprocessing Options.
- (line 35)
- * debugging, preprocessor <2>: Preprocessing Options.
- (line 41)
- * debugging, preprocessor <3>: Preprocessing Options.
- (line 44)
- * debugging, preprocessor <4>: Preprocessing Options.
- (line 51)
- * 'DECODE': ENCODE and DECODE statements.
- (line 6)
- * delayed execution: ALARM. (line 6)
- * delayed execution <1>: SLEEP. (line 6)
- * DEXP: EXP. (line 6)
- * DFLOAT: REAL. (line 6)
- * DGAMMA: GAMMA. (line 6)
- * dialect options: Fortran Dialect Options.
- (line 6)
- * DIGITS: DIGITS. (line 6)
- * DIM: DIM. (line 6)
- * DIMAG: AIMAG. (line 6)
- * DINT: AINT. (line 6)
- * directive, 'INCLUDE': Directory Options. (line 6)
- * directory, options: Directory Options. (line 6)
- * directory, search paths for inclusion: Directory Options. (line 14)
- * division, modulo: MODULO. (line 6)
- * division, remainder: MOD. (line 6)
- * DLGAMA: LOG_GAMMA. (line 6)
- * DLOG: LOG. (line 6)
- * DLOG10: LOG10. (line 6)
- * DMAX1: MAX. (line 6)
- * DMIN1: MIN. (line 6)
- * DMOD: MOD. (line 6)
- * DNINT: ANINT. (line 6)
- * dot product: DOT_PRODUCT. (line 6)
- * DOT_PRODUCT: DOT_PRODUCT. (line 6)
- * DPROD: DPROD. (line 6)
- * DREAL: DREAL. (line 6)
- * DSHIFTL: DSHIFTL. (line 6)
- * DSHIFTR: DSHIFTR. (line 6)
- * DSIGN: SIGN. (line 6)
- * DSIN: SIN. (line 6)
- * DSIND: SIND. (line 6)
- * DSINH: SINH. (line 6)
- * DSQRT: SQRT. (line 6)
- * DTAN: TAN. (line 6)
- * DTAND: TAND. (line 6)
- * DTANH: TANH. (line 6)
- * DTIME: DTIME. (line 6)
- * dummy argument, unused: Error and Warning Options.
- (line 211)
- * elapsed time: DTIME. (line 6)
- * elapsed time <1>: SECNDS. (line 6)
- * elapsed time <2>: SECOND. (line 6)
- * Elimination of functions with identical argument lists: Code Gen Options.
- (line 392)
- * 'ENCODE': ENCODE and DECODE statements.
- (line 6)
- * 'ENUM' statement: Fortran 2003 status. (line 93)
- * 'ENUMERATOR' statement: Fortran 2003 status. (line 93)
- * environment variable: Environment Variables.
- (line 6)
- * environment variable <1>: Runtime. (line 6)
- * environment variable <2>: GETENV. (line 6)
- * environment variable <3>: GET_ENVIRONMENT_VARIABLE.
- (line 6)
- * 'EOF': Read/Write after EOF marker.
- (line 6)
- * EOSHIFT: EOSHIFT. (line 6)
- * EPSILON: EPSILON. (line 6)
- * ERF: ERF. (line 6)
- * ERFC: ERFC. (line 6)
- * ERFC_SCALED: ERFC_SCALED. (line 6)
- * error function: ERF. (line 6)
- * error function, complementary: ERFC. (line 6)
- * error function, complementary, exponentially-scaled: ERFC_SCALED.
- (line 6)
- * errors, limiting: Error and Warning Options.
- (line 27)
- * escape characters: Fortran Dialect Options.
- (line 74)
- * ETIME: ETIME. (line 6)
- * Euclidean distance: HYPOT. (line 6)
- * Euclidean vector norm: NORM2. (line 6)
- * Events, EVENT_QUERY: EVENT_QUERY. (line 6)
- * EVENT_QUERY: EVENT_QUERY. (line 6)
- * EXECUTE_COMMAND_LINE: EXECUTE_COMMAND_LINE.
- (line 6)
- * EXIT: EXIT. (line 6)
- * EXP: EXP. (line 6)
- * EXPONENT: EXPONENT. (line 6)
- * exponent: Default exponents. (line 6)
- * exponential function: EXP. (line 6)
- * exponential function, inverse: LOG. (line 6)
- * exponential function, inverse <1>: LOG10. (line 6)
- * expression size: C_SIZEOF. (line 6)
- * expression size <1>: SIZEOF. (line 6)
- * EXTENDS_TYPE_OF: EXTENDS_TYPE_OF. (line 6)
- * extensions: Extensions. (line 6)
- * extensions, implemented: Extensions implemented in GNU Fortran.
- (line 6)
- * extensions, not implemented: Extensions not implemented in GNU Fortran.
- (line 6)
- * extra warnings: Error and Warning Options.
- (line 130)
- * 'f2c' calling convention: Code Gen Options. (line 25)
- * 'f2c' calling convention <1>: Code Gen Options. (line 110)
- * Factorial function: GAMMA. (line 6)
- * FDATE: FDATE. (line 6)
- * FDL, GNU Free Documentation License: GNU Free Documentation License.
- (line 6)
- * FGET: FGET. (line 6)
- * FGETC: FGETC. (line 6)
- * file format, fixed: Fortran Dialect Options.
- (line 11)
- * file format, fixed <1>: Fortran Dialect Options.
- (line 91)
- * file format, free: Fortran Dialect Options.
- (line 11)
- * file format, free <1>: Fortran Dialect Options.
- (line 104)
- * file operation, file number: FNUM. (line 6)
- * file operation, flush: FLUSH. (line 6)
- * file operation, position: FSEEK. (line 6)
- * file operation, position <1>: FTELL. (line 6)
- * file operation, read character: FGET. (line 6)
- * file operation, read character <1>: FGETC. (line 6)
- * file operation, seek: FSEEK. (line 6)
- * file operation, write character: FPUT. (line 6)
- * file operation, write character <1>: FPUTC. (line 6)
- * file system, access mode: ACCESS. (line 6)
- * file system, change access mode: CHMOD. (line 6)
- * file system, create link: LINK. (line 6)
- * file system, create link <1>: SYMLNK. (line 6)
- * file system, file creation mask: UMASK. (line 6)
- * file system, file status: FSTAT. (line 6)
- * file system, file status <1>: LSTAT. (line 6)
- * file system, file status <2>: STAT. (line 6)
- * file system, hard link: LINK. (line 6)
- * file system, remove file: UNLINK. (line 6)
- * file system, rename file: RENAME. (line 6)
- * file system, soft link: SYMLNK. (line 6)
- * file, symbolic link: File operations on symbolic links.
- (line 6)
- * flags inquiry function: COMPILER_OPTIONS. (line 6)
- * FLOAT: REAL. (line 6)
- * FLOATI: REAL. (line 6)
- * floating point, exponent: EXPONENT. (line 6)
- * floating point, fraction: FRACTION. (line 6)
- * floating point, nearest different: NEAREST. (line 6)
- * floating point, relative spacing: RRSPACING. (line 6)
- * floating point, relative spacing <1>: SPACING. (line 6)
- * floating point, scale: SCALE. (line 6)
- * floating point, set exponent: SET_EXPONENT. (line 6)
- * FLOATJ: REAL. (line 6)
- * FLOATK: REAL. (line 6)
- * FLOOR: FLOOR. (line 6)
- * floor: AINT. (line 6)
- * floor <1>: FLOOR. (line 6)
- * FLUSH: FLUSH. (line 6)
- * 'FLUSH' statement: Fortran 2003 status. (line 89)
- * FNUM: FNUM. (line 6)
- * form feed whitespace: Form feed as whitespace.
- (line 6)
- * 'FORMAT': Variable FORMAT expressions.
- (line 6)
- * Fortran 77: GNU Fortran and G77. (line 6)
- * FPP: Preprocessing and conditional compilation.
- (line 6)
- * FPUT: FPUT. (line 6)
- * FPUTC: FPUTC. (line 6)
- * FRACTION: FRACTION. (line 6)
- * FREE: FREE. (line 6)
- * Front-end optimization: Code Gen Options. (line 400)
- * FSEEK: FSEEK. (line 6)
- * FSTAT: FSTAT. (line 6)
- * FTELL: FTELL. (line 6)
- * function elimination: Error and Warning Options.
- (line 228)
- * 'g77': GNU Fortran and G77. (line 6)
- * 'g77' calling convention: Code Gen Options. (line 25)
- * 'g77' calling convention <1>: Code Gen Options. (line 110)
- * GAMMA: GAMMA. (line 6)
- * Gamma function: GAMMA. (line 6)
- * Gamma function, logarithm of: LOG_GAMMA. (line 6)
- * GCC: GNU Fortran and GCC. (line 6)
- * GERROR: GERROR. (line 6)
- * GETARG: GETARG. (line 6)
- * GETCWD: GETCWD. (line 6)
- * GETENV: GETENV. (line 6)
- * GETGID: GETGID. (line 6)
- * GETLOG: GETLOG. (line 6)
- * GETPID: GETPID. (line 6)
- * GETUID: GETUID. (line 6)
- * GET_COMMAND: GET_COMMAND. (line 6)
- * GET_COMMAND_ARGUMENT: GET_COMMAND_ARGUMENT.
- (line 6)
- * GET_ENVIRONMENT_VARIABLE: GET_ENVIRONMENT_VARIABLE.
- (line 6)
- * GMTIME: GMTIME. (line 6)
- * GNU Compiler Collection: GNU Fortran and GCC. (line 6)
- * GNU Fortran command options: Invoking GNU Fortran.
- (line 6)
- * Hollerith constants: Hollerith constants support.
- (line 6)
- * HOSTNM: HOSTNM. (line 6)
- * HUGE: HUGE. (line 6)
- * hyperbolic cosine: COSH. (line 6)
- * hyperbolic function, cosine: COSH. (line 6)
- * hyperbolic function, cosine, inverse: ACOSH. (line 6)
- * hyperbolic function, sine: SINH. (line 6)
- * hyperbolic function, sine, inverse: ASINH. (line 6)
- * hyperbolic function, tangent: TANH. (line 6)
- * hyperbolic function, tangent, inverse: ATANH. (line 6)
- * hyperbolic sine: SINH. (line 6)
- * hyperbolic tangent: TANH. (line 6)
- * HYPOT: HYPOT. (line 6)
- * I/O item lists: I/O item lists. (line 6)
- * I/O specifiers: Extended I/O specifiers.
- (line 6)
- * IABS: ABS. (line 6)
- * IACHAR: IACHAR. (line 6)
- * IALL: IALL. (line 6)
- * IAND: IAND. (line 6)
- * IANY: IANY. (line 6)
- * IARGC: IARGC. (line 6)
- * IBCLR: IBCLR. (line 6)
- * IBITS: IBITS. (line 6)
- * IBSET: IBSET. (line 6)
- * ICHAR: ICHAR. (line 6)
- * IDATE: IDATE. (line 6)
- * IDIM: DIM. (line 6)
- * IDINT: INT. (line 6)
- * IDNINT: NINT. (line 6)
- * IEEE, ISNAN: ISNAN. (line 6)
- * IEOR: IEOR. (line 6)
- * IERRNO: IERRNO. (line 6)
- * IFIX: INT. (line 6)
- * IIABS: ABS. (line 6)
- * IIAND: IAND. (line 6)
- * IIBCLR: IBCLR. (line 6)
- * IIBITS: IBITS. (line 6)
- * IIBSET: IBSET. (line 6)
- * IIEOR: IEOR. (line 6)
- * IIOR: IOR. (line 6)
- * IISHFT: ISHFT. (line 6)
- * IISHFTC: ISHFTC. (line 6)
- * IMAG: AIMAG. (line 6)
- * images, cosubscript to image index conversion: IMAGE_INDEX. (line 6)
- * images, index of this image: THIS_IMAGE. (line 6)
- * images, number of: NUM_IMAGES. (line 6)
- * IMAGE_INDEX: IMAGE_INDEX. (line 6)
- * IMAGPART: AIMAG. (line 6)
- * IMOD: MOD. (line 6)
- * 'IMPORT' statement: Fortran 2003 status. (line 120)
- * IMVBITS: MVBITS. (line 6)
- * 'INCLUDE' directive: Directory Options. (line 6)
- * inclusion, directory search paths for: Directory Options. (line 14)
- * INDEX: INDEX intrinsic. (line 6)
- * INOT: NOT. (line 6)
- * INT: INT. (line 6)
- * INT2: INT2. (line 6)
- * INT8: INT8. (line 6)
- * integer kind: SELECTED_INT_KIND. (line 6)
- * Interoperability: Mixed-Language Programming.
- (line 6)
- * intrinsic: Error and Warning Options.
- (line 200)
- * intrinsic <1>: Error and Warning Options.
- (line 207)
- * intrinsic Modules: Intrinsic Modules. (line 6)
- * intrinsic procedures: Intrinsic Procedures.
- (line 6)
- * intrinsics, integer: Type variants for integer intrinsics.
- (line 6)
- * intrinsics, math: Extended math intrinsics.
- (line 6)
- * intrinsics, trigonometric functions: Extended math intrinsics.
- (line 6)
- * Introduction: Top. (line 6)
- * inverse hyperbolic cosine: ACOSH. (line 6)
- * inverse hyperbolic sine: ASINH. (line 6)
- * inverse hyperbolic tangent: ATANH. (line 6)
- * 'IOMSG=' specifier: Fortran 2003 status. (line 91)
- * IOR: IOR. (line 6)
- * 'IOSTAT', end of file: IS_IOSTAT_END. (line 6)
- * 'IOSTAT', end of record: IS_IOSTAT_EOR. (line 6)
- * IPARITY: IPARITY. (line 6)
- * IRAND: IRAND. (line 6)
- * ISATTY: ISATTY. (line 6)
- * ISHFT: ISHFT. (line 6)
- * ISHFTC: ISHFTC. (line 6)
- * ISIGN: SIGN. (line 6)
- * ISNAN: ISNAN. (line 6)
- * 'ISO_FORTRAN_ENV' statement: Fortran 2003 status. (line 128)
- * IS_IOSTAT_END: IS_IOSTAT_END. (line 6)
- * IS_IOSTAT_EOR: IS_IOSTAT_EOR. (line 6)
- * ITIME: ITIME. (line 6)
- * JIABS: ABS. (line 6)
- * JIAND: IAND. (line 6)
- * JIBCLR: IBCLR. (line 6)
- * JIBITS: IBITS. (line 6)
- * JIBSET: IBSET. (line 6)
- * JIEOR: IEOR. (line 6)
- * JIOR: IOR. (line 6)
- * JISHFT: ISHFT. (line 6)
- * JISHFTC: ISHFTC. (line 6)
- * JMOD: MOD. (line 6)
- * JMVBITS: MVBITS. (line 6)
- * JNOT: NOT. (line 6)
- * KIABS: ABS. (line 6)
- * KIAND: IAND. (line 6)
- * KIBCLR: IBCLR. (line 6)
- * KIBITS: IBITS. (line 6)
- * KIBSET: IBSET. (line 6)
- * KIEOR: IEOR. (line 6)
- * KILL: KILL. (line 6)
- * kind: KIND Type Parameters.
- (line 6)
- * KIND: KIND. (line 6)
- * kind <1>: KIND. (line 6)
- * kind, character: SELECTED_CHAR_KIND. (line 6)
- * kind, integer: SELECTED_INT_KIND. (line 6)
- * kind, old-style: Old-style kind specifications.
- (line 6)
- * kind, real: SELECTED_REAL_KIND. (line 6)
- * KIOR: IOR. (line 6)
- * KISHFT: ISHFT. (line 6)
- * KISHFTC: ISHFTC. (line 6)
- * KMOD: MOD. (line 6)
- * KMVBITS: MVBITS. (line 6)
- * KNOT: NOT. (line 6)
- * L2 vector norm: NORM2. (line 6)
- * language, dialect options: Fortran Dialect Options.
- (line 6)
- * LBOUND: LBOUND. (line 6)
- * LCOBOUND: LCOBOUND. (line 6)
- * LEADZ: LEADZ. (line 6)
- * left shift, combined: DSHIFTL. (line 6)
- * LEN: LEN. (line 6)
- * LEN_TRIM: LEN_TRIM. (line 6)
- * lexical comparison of strings: LGE. (line 6)
- * lexical comparison of strings <1>: LGT. (line 6)
- * lexical comparison of strings <2>: LLE. (line 6)
- * lexical comparison of strings <3>: LLT. (line 6)
- * LGAMMA: LOG_GAMMA. (line 6)
- * LGE: LGE. (line 6)
- * LGT: LGT. (line 6)
- * libf2c calling convention: Code Gen Options. (line 25)
- * libf2c calling convention <1>: Code Gen Options. (line 110)
- * libgfortran initialization, set_args: _gfortran_set_args. (line 6)
- * libgfortran initialization, set_convert: _gfortran_set_convert.
- (line 6)
- * libgfortran initialization, set_fpe: _gfortran_set_fpe. (line 6)
- * libgfortran initialization, set_max_subrecord_length: _gfortran_set_max_subrecord_length.
- (line 6)
- * libgfortran initialization, set_options: _gfortran_set_options.
- (line 6)
- * libgfortran initialization, set_record_marker: _gfortran_set_record_marker.
- (line 6)
- * limits, largest number: HUGE. (line 6)
- * limits, smallest number: TINY. (line 6)
- * LINK: LINK. (line 6)
- * linking, static: Link Options. (line 6)
- * LLE: LLE. (line 6)
- * LLT: LLT. (line 6)
- * LNBLNK: LNBLNK. (line 6)
- * LOC: %LOC as an rvalue. (line 6)
- * LOC <1>: LOC. (line 6)
- * location of a variable in memory: LOC. (line 6)
- * LOG: LOG. (line 6)
- * LOG10: LOG10. (line 6)
- * logarithm function: LOG. (line 6)
- * logarithm function with base 10: LOG10. (line 6)
- * logarithm function, inverse: EXP. (line 6)
- * LOGICAL: LOGICAL. (line 6)
- * logical and, bitwise: AND. (line 6)
- * logical and, bitwise <1>: IAND. (line 6)
- * logical exclusive or, bitwise: IEOR. (line 6)
- * logical exclusive or, bitwise <1>: XOR. (line 6)
- * logical not, bitwise: NOT. (line 6)
- * logical or, bitwise: IOR. (line 6)
- * logical or, bitwise <1>: OR. (line 6)
- * logical, bitwise: Bitwise logical operators.
- (line 6)
- * logical, variable representation: Internal representation of LOGICAL variables.
- (line 6)
- * login name: GETLOG. (line 6)
- * LOG_GAMMA: LOG_GAMMA. (line 6)
- * LONG: LONG. (line 6)
- * LSHIFT: LSHIFT. (line 6)
- * LSTAT: LSTAT. (line 6)
- * LTIME: LTIME. (line 6)
- * MALLOC: MALLOC. (line 6)
- * 'MAP': UNION and MAP. (line 6)
- * mask, left justified: MASKL. (line 6)
- * mask, right justified: MASKR. (line 6)
- * MASKL: MASKL. (line 6)
- * MASKR: MASKR. (line 6)
- * MATMUL: MATMUL. (line 6)
- * matrix multiplication: MATMUL. (line 6)
- * matrix, transpose: TRANSPOSE. (line 6)
- * MAX: MAX. (line 6)
- * MAX0: MAX. (line 6)
- * MAX1: MAX. (line 6)
- * MAXEXPONENT: MAXEXPONENT. (line 6)
- * maximum value: MAX. (line 6)
- * maximum value <1>: MAXVAL. (line 6)
- * MAXLOC: MAXLOC. (line 6)
- * MAXVAL: MAXVAL. (line 6)
- * MCLOCK: MCLOCK. (line 6)
- * MCLOCK8: MCLOCK8. (line 6)
- * memory checking: Code Gen Options. (line 141)
- * MERGE: MERGE. (line 6)
- * MERGE_BITS: MERGE_BITS. (line 6)
- * messages, error: Error and Warning Options.
- (line 6)
- * messages, warning: Error and Warning Options.
- (line 6)
- * MIN: MIN. (line 6)
- * MIN0: MIN. (line 6)
- * MIN1: MIN. (line 6)
- * MINEXPONENT: MINEXPONENT. (line 6)
- * minimum value: MIN. (line 6)
- * minimum value <1>: MINVAL. (line 6)
- * MINLOC: MINLOC. (line 6)
- * MINVAL: MINVAL. (line 6)
- * Mixed-language programming: Mixed-Language Programming.
- (line 6)
- * MOD: MOD. (line 6)
- * model representation, base: RADIX. (line 6)
- * model representation, epsilon: EPSILON. (line 6)
- * model representation, largest number: HUGE. (line 6)
- * model representation, maximum exponent: MAXEXPONENT. (line 6)
- * model representation, minimum exponent: MINEXPONENT. (line 6)
- * model representation, precision: PRECISION. (line 6)
- * model representation, radix: RADIX. (line 6)
- * model representation, range: RANGE. (line 6)
- * model representation, significant digits: DIGITS. (line 6)
- * model representation, smallest number: TINY. (line 6)
- * module entities: Fortran Dialect Options.
- (line 86)
- * module search path: Directory Options. (line 14)
- * module search path <1>: Directory Options. (line 29)
- * module search path <2>: Directory Options. (line 36)
- * MODULO: MODULO. (line 6)
- * modulo: MODULO. (line 6)
- * MOVE_ALLOC: MOVE_ALLOC. (line 6)
- * moving allocation: MOVE_ALLOC. (line 6)
- * multiply array elements: PRODUCT. (line 6)
- * MVBITS: MVBITS. (line 6)
- * 'NAM': OPEN( ... NAME=). (line 6)
- * Namelist: Extensions to namelist.
- (line 6)
- * natural logarithm function: LOG. (line 6)
- * NEAREST: NEAREST. (line 6)
- * newline: NEW_LINE. (line 6)
- * NEW_LINE: NEW_LINE. (line 6)
- * NINT: NINT. (line 6)
- * norm, Euclidean: NORM2. (line 6)
- * NORM2: NORM2. (line 6)
- * 'NOSHARED': Extended I/O specifiers.
- (line 6)
- * NOT: NOT. (line 6)
- * NULL: NULL. (line 6)
- * NUM_IMAGES: NUM_IMAGES. (line 6)
- * open, action: Files opened without an explicit ACTION= specifier.
- (line 6)
- * OpenACC: Fortran Dialect Options.
- (line 124)
- * OpenACC <1>: OpenACC. (line 6)
- * OpenMP: Fortran Dialect Options.
- (line 135)
- * OpenMP <1>: OpenMP. (line 6)
- * operators, unary: Unary operators. (line 6)
- * operators, xor: .XOR. operator. (line 6)
- * options inquiry function: COMPILER_OPTIONS. (line 6)
- * options, code generation: Code Gen Options. (line 6)
- * options, debugging: Debugging Options. (line 6)
- * options, dialect: Fortran Dialect Options.
- (line 6)
- * options, directory search: Directory Options. (line 6)
- * options, errors: Error and Warning Options.
- (line 6)
- * options, Fortran dialect: Fortran Dialect Options.
- (line 11)
- * options, 'gfortran' command: Invoking GNU Fortran.
- (line 6)
- * options, linking: Link Options. (line 6)
- * options, negative forms: Invoking GNU Fortran.
- (line 13)
- * options, preprocessor: Preprocessing Options.
- (line 6)
- * options, real kind type promotion: Fortran Dialect Options.
- (line 193)
- * options, run-time: Code Gen Options. (line 6)
- * options, runtime: Runtime Options. (line 6)
- * options, warnings: Error and Warning Options.
- (line 6)
- * OR: OR. (line 6)
- * output, newline: NEW_LINE. (line 6)
- * PACK: PACK. (line 6)
- * PARAMETER: Legacy PARAMETER statements.
- (line 6)
- * PARITY: PARITY. (line 6)
- * Parity: PARITY. (line 6)
- * parity: POPPAR. (line 6)
- * paths, search: Directory Options. (line 14)
- * paths, search <1>: Directory Options. (line 29)
- * paths, search <2>: Directory Options. (line 36)
- * PERROR: PERROR. (line 6)
- * pointer checking: Code Gen Options. (line 141)
- * pointer, C address of pointers: C_F_PROCPOINTER. (line 6)
- * pointer, C address of procedures: C_FUNLOC. (line 6)
- * pointer, C association status: C_ASSOCIATED. (line 6)
- * pointer, convert C to Fortran: C_F_POINTER. (line 6)
- * pointer, Cray: Cray pointers. (line 6)
- * pointer, cray: FREE. (line 6)
- * pointer, cray <1>: MALLOC. (line 6)
- * pointer, disassociated: NULL. (line 6)
- * pointer, status: ASSOCIATED. (line 6)
- * pointer, status <1>: NULL. (line 6)
- * POPCNT: POPCNT. (line 6)
- * POPPAR: POPPAR. (line 6)
- * positive difference: DIM. (line 6)
- * PRECISION: PRECISION. (line 6)
- * Preprocessing: Preprocessing and conditional compilation.
- (line 6)
- * preprocessing, assertion: Preprocessing Options.
- (line 113)
- * preprocessing, assertion <1>: Preprocessing Options.
- (line 119)
- * preprocessing, define macros: Preprocessing Options.
- (line 151)
- * preprocessing, define macros <1>: Preprocessing Options.
- (line 154)
- * preprocessing, include path: Preprocessing Options.
- (line 69)
- * preprocessing, include path <1>: Preprocessing Options.
- (line 76)
- * preprocessing, include path <2>: Preprocessing Options.
- (line 80)
- * preprocessing, include path <3>: Preprocessing Options.
- (line 85)
- * preprocessing, include path <4>: Preprocessing Options.
- (line 89)
- * preprocessing, include path <5>: Preprocessing Options.
- (line 96)
- * preprocessing, keep comments: Preprocessing Options.
- (line 122)
- * preprocessing, keep comments <1>: Preprocessing Options.
- (line 137)
- * preprocessing, no linemarkers: Preprocessing Options.
- (line 179)
- * preprocessing, undefine macros: Preprocessing Options.
- (line 185)
- * preprocessor: Preprocessing Options.
- (line 6)
- * preprocessor, debugging: Preprocessing Options.
- (line 26)
- * preprocessor, debugging <1>: Preprocessing Options.
- (line 35)
- * preprocessor, debugging <2>: Preprocessing Options.
- (line 41)
- * preprocessor, debugging <3>: Preprocessing Options.
- (line 44)
- * preprocessor, debugging <4>: Preprocessing Options.
- (line 51)
- * preprocessor, disable: Preprocessing Options.
- (line 12)
- * preprocessor, enable: Preprocessing Options.
- (line 12)
- * preprocessor, include file handling: Preprocessing and conditional compilation.
- (line 6)
- * preprocessor, working directory: Preprocessing Options.
- (line 55)
- * PRESENT: PRESENT. (line 6)
- * private: Fortran Dialect Options.
- (line 86)
- * procedure pointer, convert C to Fortran: C_LOC. (line 6)
- * process ID: GETPID. (line 6)
- * PRODUCT: PRODUCT. (line 6)
- * product, double-precision: DPROD. (line 6)
- * product, matrix: MATMUL. (line 6)
- * product, vector: DOT_PRODUCT. (line 6)
- * program termination: EXIT. (line 6)
- * program termination, with core dump: ABORT. (line 6)
- * 'PROTECTED' statement: Fortran 2003 status. (line 114)
- * 'Q' exponent-letter: 'Q' exponent-letter. (line 6)
- * RADIX: RADIX. (line 6)
- * radix, real: SELECTED_REAL_KIND. (line 6)
- * RAN: RAN. (line 6)
- * RAND: RAND. (line 6)
- * random number generation: IRAND. (line 6)
- * random number generation <1>: RAN. (line 6)
- * random number generation <2>: RAND. (line 6)
- * random number generation <3>: RANDOM_NUMBER. (line 6)
- * random number generation, seeding: RANDOM_SEED. (line 6)
- * random number generation, seeding <1>: SRAND. (line 6)
- * RANDOM_NUMBER: RANDOM_NUMBER. (line 6)
- * RANDOM_SEED: RANDOM_SEED. (line 6)
- * RANGE: RANGE. (line 6)
- * range checking: Code Gen Options. (line 141)
- * RANK: RANK. (line 6)
- * rank: RANK. (line 6)
- * re-association of parenthesized expressions: Code Gen Options.
- (line 377)
- * read character, stream mode: FGET. (line 6)
- * read character, stream mode <1>: FGETC. (line 6)
- * 'READONLY': Extended I/O specifiers.
- (line 6)
- * REAL: REAL. (line 6)
- * real kind: SELECTED_REAL_KIND. (line 6)
- * real number, exponent: EXPONENT. (line 6)
- * real number, fraction: FRACTION. (line 6)
- * real number, nearest different: NEAREST. (line 6)
- * real number, relative spacing: RRSPACING. (line 6)
- * real number, relative spacing <1>: SPACING. (line 6)
- * real number, scale: SCALE. (line 6)
- * real number, set exponent: SET_EXPONENT. (line 6)
- * Reallocate the LHS in assignments: Code Gen Options. (line 386)
- * Reallocate the LHS in assignments, notification: Error and Warning Options.
- (line 232)
- * REALPART: REAL. (line 6)
- * 'RECORD': STRUCTURE and RECORD.
- (line 6)
- * Reduction, XOR: PARITY. (line 6)
- * remainder: MOD. (line 6)
- * RENAME: RENAME. (line 6)
- * repacking arrays: Code Gen Options. (line 281)
- * REPEAT: REPEAT. (line 6)
- * RESHAPE: RESHAPE. (line 6)
- * 'REWIND': Read/Write after EOF marker.
- (line 6)
- * right shift, combined: DSHIFTR. (line 6)
- * root: SQRT. (line 6)
- * rounding, ceiling: ANINT. (line 6)
- * rounding, ceiling <1>: CEILING. (line 6)
- * rounding, floor: AINT. (line 6)
- * rounding, floor <1>: FLOOR. (line 6)
- * rounding, nearest whole number: NINT. (line 6)
- * RRSPACING: RRSPACING. (line 6)
- * RSHIFT: RSHIFT. (line 6)
- * run-time checking: Code Gen Options. (line 141)
- * SAME_TYPE_AS: SAME_TYPE_AS. (line 6)
- * 'SAVE' statement: Code Gen Options. (line 15)
- * SCALE: SCALE. (line 6)
- * SCAN: SCAN. (line 6)
- * search path: Directory Options. (line 6)
- * search paths, for included files: Directory Options. (line 14)
- * SECNDS: SECNDS. (line 6)
- * SECOND: SECOND. (line 6)
- * seeding a random number generator: RANDOM_SEED. (line 6)
- * seeding a random number generator <1>: SRAND. (line 6)
- * SELECTED_CHAR_KIND: SELECTED_CHAR_KIND. (line 6)
- * SELECTED_INT_KIND: SELECTED_INT_KIND. (line 6)
- * SELECTED_REAL_KIND: SELECTED_REAL_KIND. (line 6)
- * SET_EXPONENT: SET_EXPONENT. (line 6)
- * SHAPE: SHAPE. (line 6)
- * 'SHARE': Extended I/O specifiers.
- (line 6)
- * 'SHARED': Extended I/O specifiers.
- (line 6)
- * shift, left: DSHIFTL. (line 6)
- * shift, left <1>: SHIFTL. (line 6)
- * shift, right: DSHIFTR. (line 6)
- * shift, right <1>: SHIFTR. (line 6)
- * shift, right with fill: SHIFTA. (line 6)
- * SHIFTA: SHIFTA. (line 6)
- * SHIFTL: SHIFTL. (line 6)
- * SHIFTR: SHIFTR. (line 6)
- * SHORT: INT2. (line 6)
- * SIGN: SIGN. (line 6)
- * sign copying: SIGN. (line 6)
- * SIGNAL: SIGNAL. (line 6)
- * SIN: SIN. (line 6)
- * SIND: SIND. (line 6)
- * sine: SIN. (line 6)
- * sine, degrees: SIND. (line 6)
- * sine, hyperbolic: SINH. (line 6)
- * sine, hyperbolic, inverse: ASINH. (line 6)
- * sine, inverse: ASIN. (line 6)
- * sine, inverse, degrees: ASIND. (line 6)
- * SINH: SINH. (line 6)
- * SIZE: SIZE. (line 6)
- * size of a variable, in bits: BIT_SIZE. (line 6)
- * size of an expression: C_SIZEOF. (line 6)
- * size of an expression <1>: SIZEOF. (line 6)
- * SIZEOF: SIZEOF. (line 6)
- * SLEEP: SLEEP. (line 6)
- * SNGL: REAL. (line 6)
- * SPACING: SPACING. (line 6)
- * SPREAD: SPREAD. (line 6)
- * SQRT: SQRT. (line 6)
- * square-root: SQRT. (line 6)
- * SRAND: SRAND. (line 6)
- * Standards: Standards. (line 6)
- * STAT: STAT. (line 6)
- * statement, 'ENUM': Fortran 2003 status. (line 93)
- * statement, 'ENUMERATOR': Fortran 2003 status. (line 93)
- * statement, 'FLUSH': Fortran 2003 status. (line 89)
- * statement, 'IMPORT': Fortran 2003 status. (line 120)
- * statement, 'ISO_FORTRAN_ENV': Fortran 2003 status. (line 128)
- * statement, 'PROTECTED': Fortran 2003 status. (line 114)
- * statement, 'SAVE': Code Gen Options. (line 15)
- * statement, 'USE, INTRINSIC': Fortran 2003 status. (line 128)
- * statement, 'VALUE': Fortran 2003 status. (line 116)
- * statement, 'VOLATILE': Fortran 2003 status. (line 118)
- * 'STATIC': AUTOMATIC and STATIC attributes.
- (line 6)
- * storage size: STORAGE_SIZE. (line 6)
- * STORAGE_SIZE: STORAGE_SIZE. (line 6)
- * 'STREAM' I/O: Fortran 2003 status. (line 103)
- * stream mode, read character: FGET. (line 6)
- * stream mode, read character <1>: FGETC. (line 6)
- * stream mode, write character: FPUT. (line 6)
- * stream mode, write character <1>: FPUTC. (line 6)
- * string, adjust left: ADJUSTL. (line 6)
- * string, adjust right: ADJUSTR. (line 6)
- * string, comparison: LGE. (line 6)
- * string, comparison <1>: LGT. (line 6)
- * string, comparison <2>: LLE. (line 6)
- * string, comparison <3>: LLT. (line 6)
- * string, concatenate: REPEAT. (line 6)
- * string, find missing set: VERIFY. (line 6)
- * string, find non-blank character: LNBLNK. (line 6)
- * string, find subset: SCAN. (line 6)
- * string, find substring: INDEX intrinsic. (line 6)
- * string, length: LEN. (line 6)
- * string, length, without trailing whitespace: LEN_TRIM. (line 6)
- * string, remove trailing whitespace: TRIM. (line 6)
- * string, repeat: REPEAT. (line 6)
- * strings, varying length: Varying Length Character Strings.
- (line 6)
- * 'STRUCTURE': STRUCTURE and RECORD.
- (line 6)
- * structure packing: Code Gen Options. (line 275)
- * subscript checking: Code Gen Options. (line 141)
- * substring position: INDEX intrinsic. (line 6)
- * SUM: SUM. (line 6)
- * sum array elements: SUM. (line 6)
- * suppressing warnings: Error and Warning Options.
- (line 6)
- * symbol names: Fortran Dialect Options.
- (line 68)
- * symbol names, transforming: Code Gen Options. (line 54)
- * symbol names, transforming <1>: Code Gen Options. (line 110)
- * symbol names, underscores: Code Gen Options. (line 54)
- * symbol names, underscores <1>: Code Gen Options. (line 110)
- * SYMLNK: SYMLNK. (line 6)
- * syntax checking: Error and Warning Options.
- (line 33)
- * SYSTEM: SYSTEM. (line 6)
- * system, error handling: GERROR. (line 6)
- * system, error handling <1>: IERRNO. (line 6)
- * system, error handling <2>: PERROR. (line 6)
- * system, group ID: GETGID. (line 6)
- * system, host name: HOSTNM. (line 6)
- * system, login name: GETLOG. (line 6)
- * system, process ID: GETPID. (line 6)
- * system, signal handling: SIGNAL. (line 6)
- * system, system call: EXECUTE_COMMAND_LINE.
- (line 6)
- * system, system call <1>: SYSTEM. (line 6)
- * system, terminal: ISATTY. (line 6)
- * system, terminal <1>: TTYNAM. (line 6)
- * system, user ID: GETUID. (line 6)
- * system, working directory: CHDIR. (line 6)
- * system, working directory <1>: GETCWD. (line 6)
- * SYSTEM_CLOCK: SYSTEM_CLOCK. (line 6)
- * tabulators: Error and Warning Options.
- (line 182)
- * TAN: TAN. (line 6)
- * TAND: TAND. (line 6)
- * tangent: TAN. (line 6)
- * tangent, degrees: TAND. (line 6)
- * tangent, hyperbolic: TANH. (line 6)
- * tangent, hyperbolic, inverse: ATANH. (line 6)
- * tangent, inverse: ATAN. (line 6)
- * tangent, inverse <1>: ATAN2. (line 6)
- * tangent, inverse, degrees: ATAND. (line 6)
- * tangent, inverse, degrees <1>: ATAN2D. (line 6)
- * TANH: TANH. (line 6)
- * terminate program: EXIT. (line 6)
- * terminate program, with core dump: ABORT. (line 6)
- * THIS_IMAGE: THIS_IMAGE. (line 6)
- * thread-safety, threads: Thread-safety of the runtime library.
- (line 6)
- * TIME: TIME. (line 6)
- * time, clock ticks: MCLOCK. (line 6)
- * time, clock ticks <1>: MCLOCK8. (line 6)
- * time, clock ticks <2>: SYSTEM_CLOCK. (line 6)
- * time, conversion to GMT info: GMTIME. (line 6)
- * time, conversion to local time info: LTIME. (line 6)
- * time, conversion to string: CTIME. (line 6)
- * time, current: DATE_AND_TIME. (line 6)
- * time, current <1>: FDATE. (line 6)
- * time, current <2>: ITIME. (line 6)
- * time, current <3>: TIME. (line 6)
- * time, current <4>: TIME8. (line 6)
- * time, elapsed: CPU_TIME. (line 6)
- * time, elapsed <1>: DTIME. (line 6)
- * time, elapsed <2>: ETIME. (line 6)
- * time, elapsed <3>: SECNDS. (line 6)
- * time, elapsed <4>: SECOND. (line 6)
- * TIME8: TIME8. (line 6)
- * TINY: TINY. (line 6)
- * TR 15581: Fortran 2003 status. (line 98)
- * trace: Debugging Options. (line 61)
- * TRAILZ: TRAILZ. (line 6)
- * TRANSFER: TRANSFER. (line 6)
- * transforming symbol names: Code Gen Options. (line 54)
- * transforming symbol names <1>: Code Gen Options. (line 110)
- * TRANSPOSE: TRANSPOSE. (line 6)
- * transpose: TRANSPOSE. (line 6)
- * trigonometric function, cosine: COS. (line 6)
- * trigonometric function, cosine, degrees: COSD. (line 6)
- * trigonometric function, cosine, inverse: ACOS. (line 6)
- * trigonometric function, cosine, inverse, degrees: ACOSD. (line 6)
- * trigonometric function, cotangent: COTAN. (line 6)
- * trigonometric function, cotangent, degrees: COTAND. (line 6)
- * trigonometric function, sine: SIN. (line 6)
- * trigonometric function, sine, degrees: SIND. (line 6)
- * trigonometric function, sine, inverse: ASIN. (line 6)
- * trigonometric function, sine, inverse, degrees: ASIND. (line 6)
- * trigonometric function, tangent: TAN. (line 6)
- * trigonometric function, tangent, degrees: TAND. (line 6)
- * trigonometric function, tangent, inverse: ATAN. (line 6)
- * trigonometric function, tangent, inverse <1>: ATAN2. (line 6)
- * trigonometric function, tangent, inverse, degrees: ATAND. (line 6)
- * trigonometric function, tangent, inverse, degrees <1>: ATAN2D.
- (line 6)
- * TRIM: TRIM. (line 6)
- * TTYNAM: TTYNAM. (line 6)
- * type alias print: TYPE as an alias for PRINT.
- (line 6)
- * type cast: TRANSFER. (line 6)
- * UBOUND: UBOUND. (line 6)
- * UCOBOUND: UCOBOUND. (line 6)
- * UMASK: UMASK. (line 6)
- * underflow: Error and Warning Options.
- (line 195)
- * underscore: Code Gen Options. (line 54)
- * underscore <1>: Code Gen Options. (line 110)
- * 'UNION': UNION and MAP. (line 6)
- * UNLINK: UNLINK. (line 6)
- * UNPACK: UNPACK. (line 6)
- * unused dummy argument: Error and Warning Options.
- (line 211)
- * unused parameter: Error and Warning Options.
- (line 215)
- * 'USE, INTRINSIC' statement: Fortran 2003 status. (line 128)
- * user id: GETUID. (line 6)
- * 'VALUE' statement: Fortran 2003 status. (line 116)
- * variable attributes: AUTOMATIC and STATIC attributes.
- (line 6)
- * Varying length character strings: Varying Length Character Strings.
- (line 6)
- * Varying length strings: Varying Length Character Strings.
- (line 6)
- * vector product: DOT_PRODUCT. (line 6)
- * VERIFY: VERIFY. (line 6)
- * version of the compiler: COMPILER_VERSION. (line 6)
- * 'VOLATILE': Volatile COMMON blocks.
- (line 6)
- * 'VOLATILE' statement: Fortran 2003 status. (line 118)
- * warning, C binding type: Error and Warning Options.
- (line 106)
- * warnings, aliasing: Error and Warning Options.
- (line 71)
- * warnings, alignment of 'COMMON' blocks: Error and Warning Options.
- (line 222)
- * warnings, all: Error and Warning Options.
- (line 62)
- * warnings, ampersand: Error and Warning Options.
- (line 88)
- * warnings, argument mismatch: Error and Warning Options.
- (line 96)
- * warnings, array temporaries: Error and Warning Options.
- (line 101)
- * warnings, character truncation: Error and Warning Options.
- (line 113)
- * warnings, conversion: Error and Warning Options.
- (line 122)
- * warnings, conversion <1>: Error and Warning Options.
- (line 126)
- * warnings, division of integers: Error and Warning Options.
- (line 145)
- * warnings, extra: Error and Warning Options.
- (line 130)
- * warnings, function elimination: Error and Warning Options.
- (line 228)
- * warnings, implicit interface: Error and Warning Options.
- (line 135)
- * warnings, implicit procedure: Error and Warning Options.
- (line 141)
- * warnings, integer division: Error and Warning Options.
- (line 145)
- * warnings, interface mismatch: Error and Warning Options.
- (line 96)
- * warnings, intrinsic: Error and Warning Options.
- (line 200)
- * warnings, intrinsics of other standards: Error and Warning Options.
- (line 149)
- * warnings, line truncation: Error and Warning Options.
- (line 116)
- * warnings, non-standard intrinsics: Error and Warning Options.
- (line 149)
- * warnings, parameter mismatch: Error and Warning Options.
- (line 96)
- * warnings, 'q' exponent-letter: Error and Warning Options.
- (line 156)
- * warnings, suppressing: Error and Warning Options.
- (line 6)
- * warnings, suspicious code: Error and Warning Options.
- (line 160)
- * warnings, tabs: Error and Warning Options.
- (line 182)
- * warnings, to errors: Error and Warning Options.
- (line 261)
- * warnings, undefined do loop: Error and Warning Options.
- (line 190)
- * warnings, underflow: Error and Warning Options.
- (line 195)
- * warnings, unused dummy argument: Error and Warning Options.
- (line 211)
- * warnings, unused parameter: Error and Warning Options.
- (line 215)
- * warnings, use statements: Error and Warning Options.
- (line 207)
- * write character, stream mode: FPUT. (line 6)
- * write character, stream mode <1>: FPUTC. (line 6)
- * XOR: XOR. (line 6)
- * XOR reduction: PARITY. (line 6)
- * ZABS: ABS. (line 6)
- * ZCOS: COS. (line 6)
- * ZCOSD: COSD. (line 6)
- * zero bits: LEADZ. (line 6)
- * zero bits <1>: TRAILZ. (line 6)
- * ZEXP: EXP. (line 6)
- * ZLOG: LOG. (line 6)
- * ZSIN: SIN. (line 6)
- * ZSIND: SIND. (line 6)
- * ZSQRT: SQRT. (line 6)
- Tag Table:
- Node: Top1950
- Node: Introduction3361
- Node: About GNU Fortran4110
- Node: GNU Fortran and GCC8099
- Node: Preprocessing and conditional compilation10213
- Node: GNU Fortran and G7711858
- Node: Project Status12431
- Node: Standards15159
- Node: Varying Length Character Strings16517
- Node: Invoking GNU Fortran17269
- Node: Option Summary18992
- Node: Fortran Dialect Options22683
- Node: Preprocessing Options33438
- Node: Error and Warning Options41679
- Node: Debugging Options52847
- Node: Directory Options56315
- Node: Link Options57750
- Node: Runtime Options58376
- Node: Code Gen Options60283
- Node: Environment Variables79085
- Node: Runtime79690
- Node: TMPDIR80790
- Node: GFORTRAN_STDIN_UNIT81460
- Node: GFORTRAN_STDOUT_UNIT81842
- Node: GFORTRAN_STDERR_UNIT82243
- Node: GFORTRAN_UNBUFFERED_ALL82645
- Node: GFORTRAN_UNBUFFERED_PRECONNECTED83176
- Node: GFORTRAN_SHOW_LOCUS83820
- Node: GFORTRAN_OPTIONAL_PLUS84316
- Node: GFORTRAN_DEFAULT_RECL84792
- Node: GFORTRAN_LIST_SEPARATOR85280
- Node: GFORTRAN_CONVERT_UNIT85889
- Node: GFORTRAN_ERROR_BACKTRACE88744
- Node: Fortran 2003 and 2008 status89301
- Node: Fortran 2003 status89581
- Node: Fortran 2008 status94824
- Node: TS 29113 status100202
- Node: TS 18508 status101205
- Node: Compiler Characteristics101996
- Node: KIND Type Parameters102625
- Node: Internal representation of LOGICAL variables104053
- Node: Thread-safety of the runtime library104913
- Node: Data consistency and durability107316
- Node: Files opened without an explicit ACTION= specifier110429
- Node: File operations on symbolic links111120
- Node: Extensions112188
- Node: Extensions implemented in GNU Fortran112793
- Node: Old-style kind specifications114676
- Node: Old-style variable initialization115778
- Node: Extensions to namelist117090
- Node: X format descriptor without count field119393
- Node: Commas in FORMAT specifications119920
- Node: Missing period in FORMAT specifications120437
- Node: I/O item lists120999
- Node: 'Q' exponent-letter121386
- Node: BOZ literal constants121986
- Node: Real array indices124567
- Node: Unary operators124866
- Node: Implicitly convert LOGICAL and INTEGER values125280
- Node: Hollerith constants support126239
- Node: Cray pointers128011
- Node: CONVERT specifier133458
- Node: OpenMP135453
- Node: OpenACC137711
- Node: Argument list functions139020
- Node: Read/Write after EOF marker140663
- Node: STRUCTURE and RECORD141266
- Node: UNION and MAP145857
- Node: Type variants for integer intrinsics148825
- Node: AUTOMATIC and STATIC attributes150827
- Node: Extended math intrinsics152361
- Node: Form feed as whitespace154157
- Node: TYPE as an alias for PRINT154703
- Node: %LOC as an rvalue155168
- Node: .XOR. operator155815
- Node: Bitwise logical operators156215
- Node: Extended I/O specifiers157767
- Node: Legacy PARAMETER statements161487
- Node: Default exponents162092
- Node: Extensions not implemented in GNU Fortran162444
- Node: ENCODE and DECODE statements163389
- Node: Variable FORMAT expressions164720
- Node: Alternate complex function syntax165825
- Node: Volatile COMMON blocks166375
- Node: OPEN( ... NAME=)166877
- Node: Mixed-Language Programming167279
- Node: Interoperability with C167859
- Node: Intrinsic Types169193
- Node: Derived Types and struct170189
- Node: Interoperable Global Variables171547
- Node: Interoperable Subroutines and Functions172822
- Node: Working with Pointers176616
- Node: Further Interoperability of Fortran with C181092
- Node: GNU Fortran Compiler Directives184446
- Node: Non-Fortran Main Program187698
- Node: _gfortran_set_args189886
- Node: _gfortran_set_options190824
- Node: _gfortran_set_convert194224
- Node: _gfortran_set_record_marker195092
- Node: _gfortran_set_fpe195902
- Node: _gfortran_set_max_subrecord_length197100
- Node: Naming and argument-passing conventions198023
- Node: Naming conventions198742
- Node: Argument passing conventions200214
- Node: Coarray Programming204708
- Node: Type and enum ABI Documentation204955
- Node: caf_token_t205253
- Node: caf_register_t205489
- Node: caf_deregister_t206700
- Node: caf_reference_t207202
- Node: caf_team_t211526
- Node: Function ABI Documentation211825
- Node: _gfortran_caf_init214275
- Node: _gfortran_caf_finish215701
- Node: _gfortran_caf_this_image216640
- Node: _gfortran_caf_num_images217395
- Node: _gfortran_caf_image_status218506
- Node: _gfortran_caf_failed_images219626
- Node: _gfortran_caf_stopped_images220796
- Node: _gfortran_caf_register221969
- Node: _gfortran_caf_deregister226134
- Node: _gfortran_caf_is_present227737
- Node: _gfortran_caf_send228816
- Node: _gfortran_caf_get232006
- Node: _gfortran_caf_sendget235087
- Node: _gfortran_caf_send_by_ref238998
- Node: _gfortran_caf_get_by_ref242346
- Node: _gfortran_caf_sendget_by_ref245608
- Node: _gfortran_caf_lock249386
- Node: _gfortran_caf_unlock251169
- Node: _gfortran_caf_event_post252647
- Node: _gfortran_caf_event_wait254093
- Node: _gfortran_caf_event_query256197
- Node: _gfortran_caf_sync_all257528
- Node: _gfortran_caf_sync_images258453
- Node: _gfortran_caf_sync_memory259985
- Node: _gfortran_caf_error_stop260974
- Node: _gfortran_caf_error_stop_str261582
- Node: _gfortran_caf_fail_image262288
- Node: _gfortran_caf_atomic_define262824
- Node: _gfortran_caf_atomic_ref264139
- Node: _gfortran_caf_atomic_cas265443
- Node: _gfortran_caf_atomic_op267204
- Node: _gfortran_caf_co_broadcast269306
- Node: _gfortran_caf_co_max270408
- Node: _gfortran_caf_co_min272031
- Node: _gfortran_caf_co_sum273648
- Node: _gfortran_caf_co_reduce275185
- Node: Intrinsic Procedures277826
- Node: Introduction to Intrinsics294882
- Node: ABORT297232
- Node: ABS297977
- Node: ACCESS299927
- Node: ACHAR301857
- Node: ACOS303061
- Node: ACOSD304347
- Node: ACOSH305659
- Node: ADJUSTL306655
- Node: ADJUSTR307597
- Node: AIMAG308547
- Node: AINT309919
- Node: ALARM311525
- Node: ALL313157
- Node: ALLOCATED315081
- Node: AND316220
- Node: ANINT317519
- Node: ANY319016
- Node: ASIN320942
- Node: ASIND322217
- Node: ASINH323515
- Node: ASSOCIATED324521
- Node: ATAN327532
- Node: ATAND328982
- Node: ATAN2330452
- Node: ATAN2D332317
- Node: ATANH334292
- Node: ATOMIC_ADD335298
- Node: ATOMIC_AND336830
- Node: ATOMIC_CAS338418
- Node: ATOMIC_DEFINE340277
- Node: ATOMIC_FETCH_ADD341996
- Node: ATOMIC_FETCH_AND343796
- Node: ATOMIC_FETCH_OR345586
- Node: ATOMIC_FETCH_XOR347363
- Node: ATOMIC_OR349146
- Node: ATOMIC_REF350731
- Node: ATOMIC_XOR352627
- Node: BACKTRACE354212
- Node: BESSEL_J0354792
- Node: BESSEL_J1355808
- Node: BESSEL_JN356825
- Node: BESSEL_Y0358650
- Node: BESSEL_Y1359605
- Node: BESSEL_YN360560
- Node: BGE362391
- Node: BGT363083
- Node: BIT_SIZE363733
- Node: BLE364555
- Node: BLT365237
- Node: BTEST365875
- Node: C_ASSOCIATED367332
- Node: C_F_POINTER368543
- Node: C_F_PROCPOINTER369978
- Node: C_FUNLOC371485
- Node: C_LOC372856
- Node: C_SIZEOF374135
- Node: CEILING375548
- Node: CHAR376556
- Node: CHDIR377768
- Node: CHMOD378942
- Node: CMPLX380857
- Node: CO_BROADCAST382300
- Node: CO_MAX384073
- Node: CO_MIN385953
- Node: CO_REDUCE387819
- Node: CO_SUM391322
- Node: COMMAND_ARGUMENT_COUNT393229
- Node: COMPILER_OPTIONS394146
- Node: COMPILER_VERSION395172
- Node: COMPLEX396136
- Node: CONJG397275
- Node: COS398331
- Node: COSD399786
- Node: COSH401235
- Node: COTAN402418
- Node: COTAND403557
- Node: COUNT404736
- Node: CPU_TIME406761
- Node: CSHIFT408118
- Node: CTIME409778
- Node: DATE_AND_TIME411286
- Node: DBLE413766
- Node: DCMPLX414561
- Node: DIGITS415743
- Node: DIM416710
- Node: DOT_PRODUCT417991
- Node: DPROD419634
- Node: DREAL420561
- Node: DSHIFTL421227
- Node: DSHIFTR422560
- Node: DTIME423894
- Node: EOSHIFT426709
- Node: EPSILON428782
- Node: ERF429509
- Node: ERFC430290
- Node: ERFC_SCALED431100
- Node: ETIME431793
- Node: EVENT_QUERY434032
- Node: EXECUTE_COMMAND_LINE435621
- Node: EXIT438216
- Node: EXP439094
- Node: EXPONENT440347
- Node: EXTENDS_TYPE_OF441111
- Node: FDATE441969
- Node: FGET443455
- Node: FGETC445282
- Node: FLOOR447090
- Node: FLUSH448079
- Node: FNUM449958
- Node: FPUT450683
- Node: FPUTC452317
- Node: FRACTION454098
- Node: FREE455002
- Node: FSEEK455845
- Node: FSTAT458151
- Node: FTELL459238
- Node: GAMMA460220
- Node: GERROR461274
- Node: GETARG461996
- Node: GET_COMMAND463769
- Node: GET_COMMAND_ARGUMENT465143
- Node: GETCWD467191
- Node: GETENV468171
- Node: GET_ENVIRONMENT_VARIABLE469603
- Node: GETGID471766
- Node: GETLOG472303
- Node: GETPID473165
- Node: GETUID473895
- Node: GMTIME474411
- Node: HOSTNM476171
- Node: HUGE477092
- Node: HYPOT477814
- Node: IACHAR478640
- Node: IALL479808
- Node: IAND481293
- Node: IANY482866
- Node: IARGC484360
- Node: IBCLR485381
- Node: IBITS486629
- Node: IBSET488133
- Node: ICHAR489376
- Node: IDATE491546
- Node: IEOR492846
- Node: IERRNO494312
- Node: IMAGE_INDEX494861
- Node: INDEX intrinsic495889
- Node: INT497415
- Node: INT2499174
- Node: INT8499942
- Node: IOR500657
- Node: IPARITY502099
- Node: IRAND503631
- Node: IS_IOSTAT_END504990
- Node: IS_IOSTAT_EOR506089
- Node: ISATTY507218
- Node: ISHFT508001
- Node: ISHFTC509570
- Node: ISNAN511377
- Node: ITIME512144
- Node: KILL513442
- Node: KIND514351
- Node: LBOUND515197
- Node: LCOBOUND516535
- Node: LEADZ517670
- Node: LEN518531
- Node: LEN_TRIM519827
- Node: LGE520815
- Node: LGT522328
- Node: LINK523806
- Node: LLE524845
- Node: LLT526345
- Node: LNBLNK527816
- Node: LOC528594
- Node: LOG529326
- Node: LOG10530671
- Node: LOG_GAMMA531661
- Node: LOGICAL532763
- Node: LONG533575
- Node: LSHIFT534333
- Node: LSTAT535419
- Node: LTIME536619
- Node: MALLOC538301
- Node: MASKL539763
- Node: MASKR540530
- Node: MATMUL541300
- Node: MAX542398
- Node: MAXEXPONENT543933
- Node: MAXLOC544750
- Node: MAXVAL546775
- Node: MCLOCK548415
- Node: MCLOCK8549438
- Node: MERGE550668
- Node: MERGE_BITS551420
- Node: MIN552285
- Node: MINEXPONENT553823
- Node: MINLOC554454
- Node: MINVAL556479
- Node: MOD558132
- Node: MODULO560296
- Node: MOVE_ALLOC561599
- Node: MVBITS562632
- Node: NEAREST564284
- Node: NEW_LINE565384
- Node: NINT566157
- Node: NORM2567578
- Node: NOT568720
- Node: NULL569890
- Node: NUM_IMAGES570798
- Node: OR572499
- Node: PACK573785
- Node: PARITY575793
- Node: PERROR577014
- Node: POPCNT577639
- Node: POPPAR578511
- Node: PRECISION579565
- Node: PRESENT580452
- Node: PRODUCT581564
- Node: RADIX583098
- Node: RAN583910
- Node: RAND584366
- Node: RANDOM_NUMBER585701
- Node: RANDOM_SEED586915
- Node: RANGE589364
- Node: RANK590045
- Node: REAL590826
- Node: RENAME592815
- Node: REPEAT593837
- Node: RESHAPE594565
- Node: RRSPACING596032
- Node: RSHIFT596725
- Node: SAME_TYPE_AS597865
- Node: SCALE598697
- Node: SCAN599478
- Node: SECNDS601036
- Node: SECOND602128
- Node: SELECTED_CHAR_KIND603004
- Node: SELECTED_INT_KIND604599
- Node: SELECTED_REAL_KIND605776
- Node: SET_EXPONENT608453
- Node: SHAPE609450
- Node: SHIFTA610874
- Node: SHIFTL611838
- Node: SHIFTR612675
- Node: SIGN613513
- Node: SIGNAL614739
- Node: SIN616245
- Node: SIND617336
- Node: SINH618665
- Node: SIZE619678
- Node: SIZEOF620997
- Node: SLEEP622652
- Node: SPACING623213
- Node: SPREAD624227
- Node: SQRT625378
- Node: SRAND626710
- Node: STAT627944
- Node: STORAGE_SIZE631112
- Node: SUM631991
- Node: SYMLNK633483
- Node: SYSTEM634618
- Node: SYSTEM_CLOCK635873
- Node: TAN638703
- Node: TAND639774
- Node: TANH640858
- Node: THIS_IMAGE642033
- Node: TIME644333
- Node: TIME8645504
- Node: TINY646703
- Node: TRAILZ647304
- Node: TRANSFER648122
- Node: TRANSPOSE650158
- Node: TRIM650848
- Node: TTYNAM651706
- Node: UBOUND652624
- Node: UCOBOUND654014
- Node: UMASK655151
- Node: UNLINK655833
- Node: UNPACK656813
- Node: VERIFY658108
- Node: XOR659837
- Node: Intrinsic Modules661210
- Node: ISO_FORTRAN_ENV661499
- Node: ISO_C_BINDING665902
- Node: IEEE modules669608
- Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS670751
- Node: OpenACC Module OPENACC672291
- Node: Contributing673218
- Node: Contributors674072
- Node: Projects675703
- Node: Proposed Extensions676510
- Node: Copying678520
- Node: GNU Free Documentation License716066
- Node: Funding741190
- Node: Option Index743716
- Node: Keyword Index760745
- End Tag Table
|