x86-Options.html 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
  2. <html>
  3. <!-- Copyright (C) 1988-2017 Free Software Foundation, Inc.
  4. Permission is granted to copy, distribute and/or modify this document
  5. under the terms of the GNU Free Documentation License, Version 1.3 or
  6. any later version published by the Free Software Foundation; with the
  7. Invariant Sections being "Funding Free Software", the Front-Cover
  8. Texts being (a) (see below), and with the Back-Cover Texts being (b)
  9. (see below). A copy of the license is included in the section entitled
  10. "GNU Free Documentation License".
  11. (a) The FSF's Front-Cover Text is:
  12. A GNU Manual
  13. (b) The FSF's Back-Cover Text is:
  14. You have freedom to copy and modify this GNU Manual, like GNU
  15. software. Copies published by the Free Software Foundation raise
  16. funds for GNU development. -->
  17. <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
  18. <head>
  19. <title>Using the GNU Compiler Collection (GCC): x86 Options</title>
  20. <meta name="description" content="Using the GNU Compiler Collection (GCC): x86 Options">
  21. <meta name="keywords" content="Using the GNU Compiler Collection (GCC): x86 Options">
  22. <meta name="resource-type" content="document">
  23. <meta name="distribution" content="global">
  24. <meta name="Generator" content="makeinfo">
  25. <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  26. <link href="index.html#Top" rel="start" title="Top">
  27. <link href="Option-Index.html#Option-Index" rel="index" title="Option Index">
  28. <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
  29. <link href="Submodel-Options.html#Submodel-Options" rel="up" title="Submodel Options">
  30. <link href="x86-Windows-Options.html#x86-Windows-Options" rel="next" title="x86 Windows Options">
  31. <link href="VxWorks-Options.html#VxWorks-Options" rel="prev" title="VxWorks Options">
  32. <style type="text/css">
  33. <!--
  34. a.summary-letter {text-decoration: none}
  35. blockquote.smallquotation {font-size: smaller}
  36. div.display {margin-left: 3.2em}
  37. div.example {margin-left: 3.2em}
  38. div.indentedblock {margin-left: 3.2em}
  39. div.lisp {margin-left: 3.2em}
  40. div.smalldisplay {margin-left: 3.2em}
  41. div.smallexample {margin-left: 3.2em}
  42. div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
  43. div.smalllisp {margin-left: 3.2em}
  44. kbd {font-style:oblique}
  45. pre.display {font-family: inherit}
  46. pre.format {font-family: inherit}
  47. pre.menu-comment {font-family: serif}
  48. pre.menu-preformatted {font-family: serif}
  49. pre.smalldisplay {font-family: inherit; font-size: smaller}
  50. pre.smallexample {font-size: smaller}
  51. pre.smallformat {font-family: inherit; font-size: smaller}
  52. pre.smalllisp {font-size: smaller}
  53. span.nocodebreak {white-space:nowrap}
  54. span.nolinebreak {white-space:nowrap}
  55. span.roman {font-family:serif; font-weight:normal}
  56. span.sansserif {font-family:sans-serif; font-weight:normal}
  57. ul.no-bullet {list-style: none}
  58. -->
  59. </style>
  60. </head>
  61. <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
  62. <a name="x86-Options"></a>
  63. <div class="header">
  64. <p>
  65. Next: <a href="x86-Windows-Options.html#x86-Windows-Options" accesskey="n" rel="next">x86 Windows Options</a>, Previous: <a href="VxWorks-Options.html#VxWorks-Options" accesskey="p" rel="prev">VxWorks Options</a>, Up: <a href="Submodel-Options.html#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
  66. </div>
  67. <hr>
  68. <a name="x86-Options-1"></a>
  69. <h4 class="subsection">3.18.55 x86 Options</h4>
  70. <a name="index-x86-Options"></a>
  71. <p>These &lsquo;<samp>-m</samp>&rsquo; options are defined for the x86 family of computers.
  72. </p>
  73. <dl compact="compact">
  74. <dt><code>-march=<var>cpu-type</var></code></dt>
  75. <dd><a name="index-march-12"></a>
  76. <p>Generate instructions for the machine type <var>cpu-type</var>. In contrast to
  77. <samp>-mtune=<var>cpu-type</var></samp>, which merely tunes the generated code
  78. for the specified <var>cpu-type</var>, <samp>-march=<var>cpu-type</var></samp> allows GCC
  79. to generate code that may not run at all on processors other than the one
  80. indicated. Specifying <samp>-march=<var>cpu-type</var></samp> implies
  81. <samp>-mtune=<var>cpu-type</var></samp>.
  82. </p>
  83. <p>The choices for <var>cpu-type</var> are:
  84. </p>
  85. <dl compact="compact">
  86. <dt>&lsquo;<samp>native</samp>&rsquo;</dt>
  87. <dd><p>This selects the CPU to generate code for at compilation time by determining
  88. the processor type of the compiling machine. Using <samp>-march=native</samp>
  89. enables all instruction subsets supported by the local machine (hence
  90. the result might not run on different machines). Using <samp>-mtune=native</samp>
  91. produces code optimized for the local machine under the constraints
  92. of the selected instruction set.
  93. </p>
  94. </dd>
  95. <dt>&lsquo;<samp>i386</samp>&rsquo;</dt>
  96. <dd><p>Original Intel i386 CPU.
  97. </p>
  98. </dd>
  99. <dt>&lsquo;<samp>i486</samp>&rsquo;</dt>
  100. <dd><p>Intel i486 CPU. (No scheduling is implemented for this chip.)
  101. </p>
  102. </dd>
  103. <dt>&lsquo;<samp>i586</samp>&rsquo;</dt>
  104. <dt>&lsquo;<samp>pentium</samp>&rsquo;</dt>
  105. <dd><p>Intel Pentium CPU with no MMX support.
  106. </p>
  107. </dd>
  108. <dt>&lsquo;<samp>lakemont</samp>&rsquo;</dt>
  109. <dd><p>Intel Lakemont MCU, based on Intel Pentium CPU.
  110. </p>
  111. </dd>
  112. <dt>&lsquo;<samp>pentium-mmx</samp>&rsquo;</dt>
  113. <dd><p>Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
  114. </p>
  115. </dd>
  116. <dt>&lsquo;<samp>pentiumpro</samp>&rsquo;</dt>
  117. <dd><p>Intel Pentium Pro CPU.
  118. </p>
  119. </dd>
  120. <dt>&lsquo;<samp>i686</samp>&rsquo;</dt>
  121. <dd><p>When used with <samp>-march</samp>, the Pentium Pro
  122. instruction set is used, so the code runs on all i686 family chips.
  123. When used with <samp>-mtune</samp>, it has the same meaning as &lsquo;<samp>generic</samp>&rsquo;.
  124. </p>
  125. </dd>
  126. <dt>&lsquo;<samp>pentium2</samp>&rsquo;</dt>
  127. <dd><p>Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
  128. support.
  129. </p>
  130. </dd>
  131. <dt>&lsquo;<samp>pentium3</samp>&rsquo;</dt>
  132. <dt>&lsquo;<samp>pentium3m</samp>&rsquo;</dt>
  133. <dd><p>Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
  134. set support.
  135. </p>
  136. </dd>
  137. <dt>&lsquo;<samp>pentium-m</samp>&rsquo;</dt>
  138. <dd><p>Intel Pentium M; low-power version of Intel Pentium III CPU
  139. with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
  140. </p>
  141. </dd>
  142. <dt>&lsquo;<samp>pentium4</samp>&rsquo;</dt>
  143. <dt>&lsquo;<samp>pentium4m</samp>&rsquo;</dt>
  144. <dd><p>Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
  145. </p>
  146. </dd>
  147. <dt>&lsquo;<samp>prescott</samp>&rsquo;</dt>
  148. <dd><p>Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
  149. set support.
  150. </p>
  151. </dd>
  152. <dt>&lsquo;<samp>nocona</samp>&rsquo;</dt>
  153. <dd><p>Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
  154. SSE2 and SSE3 instruction set support.
  155. </p>
  156. </dd>
  157. <dt>&lsquo;<samp>core2</samp>&rsquo;</dt>
  158. <dd><p>Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
  159. instruction set support.
  160. </p>
  161. </dd>
  162. <dt>&lsquo;<samp>nehalem</samp>&rsquo;</dt>
  163. <dd><p>Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
  164. SSE4.1, SSE4.2 and POPCNT instruction set support.
  165. </p>
  166. </dd>
  167. <dt>&lsquo;<samp>westmere</samp>&rsquo;</dt>
  168. <dd><p>Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
  169. SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
  170. </p>
  171. </dd>
  172. <dt>&lsquo;<samp>sandybridge</samp>&rsquo;</dt>
  173. <dd><p>Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
  174. SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
  175. </p>
  176. </dd>
  177. <dt>&lsquo;<samp>ivybridge</samp>&rsquo;</dt>
  178. <dd><p>Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
  179. SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
  180. instruction set support.
  181. </p>
  182. </dd>
  183. <dt>&lsquo;<samp>haswell</samp>&rsquo;</dt>
  184. <dd><p>Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
  185. SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
  186. BMI, BMI2 and F16C instruction set support.
  187. </p>
  188. </dd>
  189. <dt>&lsquo;<samp>broadwell</samp>&rsquo;</dt>
  190. <dd><p>Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
  191. SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
  192. BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
  193. </p>
  194. </dd>
  195. <dt>&lsquo;<samp>skylake</samp>&rsquo;</dt>
  196. <dd><p>Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
  197. SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
  198. BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
  199. XSAVES instruction set support.
  200. </p>
  201. </dd>
  202. <dt>&lsquo;<samp>bonnell</samp>&rsquo;</dt>
  203. <dd><p>Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
  204. instruction set support.
  205. </p>
  206. </dd>
  207. <dt>&lsquo;<samp>silvermont</samp>&rsquo;</dt>
  208. <dd><p>Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
  209. SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
  210. </p>
  211. </dd>
  212. <dt>&lsquo;<samp>knl</samp>&rsquo;</dt>
  213. <dd><p>Intel Knight&rsquo;s Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
  214. SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
  215. BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
  216. AVX512CD instruction set support.
  217. </p>
  218. </dd>
  219. <dt>&lsquo;<samp>skylake-avx512</samp>&rsquo;</dt>
  220. <dd><p>Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
  221. SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
  222. BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
  223. AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
  224. </p>
  225. </dd>
  226. <dt>&lsquo;<samp>k6</samp>&rsquo;</dt>
  227. <dd><p>AMD K6 CPU with MMX instruction set support.
  228. </p>
  229. </dd>
  230. <dt>&lsquo;<samp>k6-2</samp>&rsquo;</dt>
  231. <dt>&lsquo;<samp>k6-3</samp>&rsquo;</dt>
  232. <dd><p>Improved versions of AMD K6 CPU with MMX and 3DNow! instruction set support.
  233. </p>
  234. </dd>
  235. <dt>&lsquo;<samp>athlon</samp>&rsquo;</dt>
  236. <dt>&lsquo;<samp>athlon-tbird</samp>&rsquo;</dt>
  237. <dd><p>AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE prefetch instructions
  238. support.
  239. </p>
  240. </dd>
  241. <dt>&lsquo;<samp>athlon-4</samp>&rsquo;</dt>
  242. <dt>&lsquo;<samp>athlon-xp</samp>&rsquo;</dt>
  243. <dt>&lsquo;<samp>athlon-mp</samp>&rsquo;</dt>
  244. <dd><p>Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and full SSE
  245. instruction set support.
  246. </p>
  247. </dd>
  248. <dt>&lsquo;<samp>k8</samp>&rsquo;</dt>
  249. <dt>&lsquo;<samp>opteron</samp>&rsquo;</dt>
  250. <dt>&lsquo;<samp>athlon64</samp>&rsquo;</dt>
  251. <dt>&lsquo;<samp>athlon-fx</samp>&rsquo;</dt>
  252. <dd><p>Processors based on the AMD K8 core with x86-64 instruction set support,
  253. including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
  254. (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! and 64-bit
  255. instruction set extensions.)
  256. </p>
  257. </dd>
  258. <dt>&lsquo;<samp>k8-sse3</samp>&rsquo;</dt>
  259. <dt>&lsquo;<samp>opteron-sse3</samp>&rsquo;</dt>
  260. <dt>&lsquo;<samp>athlon64-sse3</samp>&rsquo;</dt>
  261. <dd><p>Improved versions of AMD K8 cores with SSE3 instruction set support.
  262. </p>
  263. </dd>
  264. <dt>&lsquo;<samp>amdfam10</samp>&rsquo;</dt>
  265. <dt>&lsquo;<samp>barcelona</samp>&rsquo;</dt>
  266. <dd><p>CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
  267. supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
  268. instruction set extensions.)
  269. </p>
  270. </dd>
  271. <dt>&lsquo;<samp>bdver1</samp>&rsquo;</dt>
  272. <dd><p>CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
  273. supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
  274. SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
  275. </p></dd>
  276. <dt>&lsquo;<samp>bdver2</samp>&rsquo;</dt>
  277. <dd><p>AMD Family 15h core based CPUs with x86-64 instruction set support. (This
  278. supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
  279. SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
  280. extensions.)
  281. </p></dd>
  282. <dt>&lsquo;<samp>bdver3</samp>&rsquo;</dt>
  283. <dd><p>AMD Family 15h core based CPUs with x86-64 instruction set support. (This
  284. supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
  285. PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
  286. 64-bit instruction set extensions.
  287. </p></dd>
  288. <dt>&lsquo;<samp>bdver4</samp>&rsquo;</dt>
  289. <dd><p>AMD Family 15h core based CPUs with x86-64 instruction set support. (This
  290. supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
  291. AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
  292. SSE4.2, ABM and 64-bit instruction set extensions.
  293. </p>
  294. </dd>
  295. <dt>&lsquo;<samp>znver1</samp>&rsquo;</dt>
  296. <dd><p>AMD Family 17h core based CPUs with x86-64 instruction set support. (This
  297. supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
  298. SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
  299. SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
  300. instruction set extensions.
  301. </p>
  302. </dd>
  303. <dt>&lsquo;<samp>btver1</samp>&rsquo;</dt>
  304. <dd><p>CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
  305. supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
  306. instruction set extensions.)
  307. </p>
  308. </dd>
  309. <dt>&lsquo;<samp>btver2</samp>&rsquo;</dt>
  310. <dd><p>CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
  311. includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
  312. SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
  313. </p>
  314. </dd>
  315. <dt>&lsquo;<samp>winchip-c6</samp>&rsquo;</dt>
  316. <dd><p>IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
  317. set support.
  318. </p>
  319. </dd>
  320. <dt>&lsquo;<samp>winchip2</samp>&rsquo;</dt>
  321. <dd><p>IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!
  322. instruction set support.
  323. </p>
  324. </dd>
  325. <dt>&lsquo;<samp>c3</samp>&rsquo;</dt>
  326. <dd><p>VIA C3 CPU with MMX and 3DNow! instruction set support.
  327. (No scheduling is implemented for this chip.)
  328. </p>
  329. </dd>
  330. <dt>&lsquo;<samp>c3-2</samp>&rsquo;</dt>
  331. <dd><p>VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
  332. (No scheduling is implemented for this chip.)
  333. </p>
  334. </dd>
  335. <dt>&lsquo;<samp>c7</samp>&rsquo;</dt>
  336. <dd><p>VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
  337. (No scheduling is implemented for this chip.)
  338. </p>
  339. </dd>
  340. <dt>&lsquo;<samp>samuel-2</samp>&rsquo;</dt>
  341. <dd><p>VIA Eden Samuel 2 CPU with MMX and 3DNow! instruction set support.
  342. (No scheduling is implemented for this chip.)
  343. </p>
  344. </dd>
  345. <dt>&lsquo;<samp>nehemiah</samp>&rsquo;</dt>
  346. <dd><p>VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
  347. (No scheduling is implemented for this chip.)
  348. </p>
  349. </dd>
  350. <dt>&lsquo;<samp>esther</samp>&rsquo;</dt>
  351. <dd><p>VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
  352. (No scheduling is implemented for this chip.)
  353. </p>
  354. </dd>
  355. <dt>&lsquo;<samp>eden-x2</samp>&rsquo;</dt>
  356. <dd><p>VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
  357. (No scheduling is implemented for this chip.)
  358. </p>
  359. </dd>
  360. <dt>&lsquo;<samp>eden-x4</samp>&rsquo;</dt>
  361. <dd><p>VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
  362. AVX and AVX2 instruction set support.
  363. (No scheduling is implemented for this chip.)
  364. </p>
  365. </dd>
  366. <dt>&lsquo;<samp>nano</samp>&rsquo;</dt>
  367. <dd><p>Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
  368. instruction set support.
  369. (No scheduling is implemented for this chip.)
  370. </p>
  371. </dd>
  372. <dt>&lsquo;<samp>nano-1000</samp>&rsquo;</dt>
  373. <dd><p>VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
  374. instruction set support.
  375. (No scheduling is implemented for this chip.)
  376. </p>
  377. </dd>
  378. <dt>&lsquo;<samp>nano-2000</samp>&rsquo;</dt>
  379. <dd><p>VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
  380. instruction set support.
  381. (No scheduling is implemented for this chip.)
  382. </p>
  383. </dd>
  384. <dt>&lsquo;<samp>nano-3000</samp>&rsquo;</dt>
  385. <dd><p>VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
  386. instruction set support.
  387. (No scheduling is implemented for this chip.)
  388. </p>
  389. </dd>
  390. <dt>&lsquo;<samp>nano-x2</samp>&rsquo;</dt>
  391. <dd><p>VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
  392. instruction set support.
  393. (No scheduling is implemented for this chip.)
  394. </p>
  395. </dd>
  396. <dt>&lsquo;<samp>nano-x4</samp>&rsquo;</dt>
  397. <dd><p>VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
  398. instruction set support.
  399. (No scheduling is implemented for this chip.)
  400. </p>
  401. </dd>
  402. <dt>&lsquo;<samp>geode</samp>&rsquo;</dt>
  403. <dd><p>AMD Geode embedded processor with MMX and 3DNow! instruction set support.
  404. </p></dd>
  405. </dl>
  406. </dd>
  407. <dt><code>-mtune=<var>cpu-type</var></code></dt>
  408. <dd><a name="index-mtune-15"></a>
  409. <p>Tune to <var>cpu-type</var> everything applicable about the generated code, except
  410. for the ABI and the set of available instructions.
  411. While picking a specific <var>cpu-type</var> schedules things appropriately
  412. for that particular chip, the compiler does not generate any code that
  413. cannot run on the default machine type unless you use a
  414. <samp>-march=<var>cpu-type</var></samp> option.
  415. For example, if GCC is configured for i686-pc-linux-gnu
  416. then <samp>-mtune=pentium4</samp> generates code that is tuned for Pentium 4
  417. but still runs on i686 machines.
  418. </p>
  419. <p>The choices for <var>cpu-type</var> are the same as for <samp>-march</samp>.
  420. In addition, <samp>-mtune</samp> supports 2 extra choices for <var>cpu-type</var>:
  421. </p>
  422. <dl compact="compact">
  423. <dt>&lsquo;<samp>generic</samp>&rsquo;</dt>
  424. <dd><p>Produce code optimized for the most common IA32/AMD64/EM64T processors.
  425. If you know the CPU on which your code will run, then you should use
  426. the corresponding <samp>-mtune</samp> or <samp>-march</samp> option instead of
  427. <samp>-mtune=generic</samp>. But, if you do not know exactly what CPU users
  428. of your application will have, then you should use this option.
  429. </p>
  430. <p>As new processors are deployed in the marketplace, the behavior of this
  431. option will change. Therefore, if you upgrade to a newer version of
  432. GCC, code generation controlled by this option will change to reflect
  433. the processors
  434. that are most common at the time that version of GCC is released.
  435. </p>
  436. <p>There is no <samp>-march=generic</samp> option because <samp>-march</samp>
  437. indicates the instruction set the compiler can use, and there is no
  438. generic instruction set applicable to all processors. In contrast,
  439. <samp>-mtune</samp> indicates the processor (or, in this case, collection of
  440. processors) for which the code is optimized.
  441. </p>
  442. </dd>
  443. <dt>&lsquo;<samp>intel</samp>&rsquo;</dt>
  444. <dd><p>Produce code optimized for the most current Intel processors, which are
  445. Haswell and Silvermont for this version of GCC. If you know the CPU
  446. on which your code will run, then you should use the corresponding
  447. <samp>-mtune</samp> or <samp>-march</samp> option instead of <samp>-mtune=intel</samp>.
  448. But, if you want your application performs better on both Haswell and
  449. Silvermont, then you should use this option.
  450. </p>
  451. <p>As new Intel processors are deployed in the marketplace, the behavior of
  452. this option will change. Therefore, if you upgrade to a newer version of
  453. GCC, code generation controlled by this option will change to reflect
  454. the most current Intel processors at the time that version of GCC is
  455. released.
  456. </p>
  457. <p>There is no <samp>-march=intel</samp> option because <samp>-march</samp> indicates
  458. the instruction set the compiler can use, and there is no common
  459. instruction set applicable to all processors. In contrast,
  460. <samp>-mtune</samp> indicates the processor (or, in this case, collection of
  461. processors) for which the code is optimized.
  462. </p></dd>
  463. </dl>
  464. </dd>
  465. <dt><code>-mcpu=<var>cpu-type</var></code></dt>
  466. <dd><a name="index-mcpu-15"></a>
  467. <p>A deprecated synonym for <samp>-mtune</samp>.
  468. </p>
  469. </dd>
  470. <dt><code>-mfpmath=<var>unit</var></code></dt>
  471. <dd><a name="index-mfpmath-1"></a>
  472. <p>Generate floating-point arithmetic for selected unit <var>unit</var>. The choices
  473. for <var>unit</var> are:
  474. </p>
  475. <dl compact="compact">
  476. <dt>&lsquo;<samp>387</samp>&rsquo;</dt>
  477. <dd><p>Use the standard 387 floating-point coprocessor present on the majority of chips and
  478. emulated otherwise. Code compiled with this option runs almost everywhere.
  479. The temporary results are computed in 80-bit precision instead of the precision
  480. specified by the type, resulting in slightly different results compared to most
  481. of other chips. See <samp>-ffloat-store</samp> for more detailed description.
  482. </p>
  483. <p>This is the default choice for non-Darwin x86-32 targets.
  484. </p>
  485. </dd>
  486. <dt>&lsquo;<samp>sse</samp>&rsquo;</dt>
  487. <dd><p>Use scalar floating-point instructions present in the SSE instruction set.
  488. This instruction set is supported by Pentium III and newer chips,
  489. and in the AMD line
  490. by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
  491. instruction set supports only single-precision arithmetic, thus the double and
  492. extended-precision arithmetic are still done using 387. A later version, present
  493. only in Pentium 4 and AMD x86-64 chips, supports double-precision
  494. arithmetic too.
  495. </p>
  496. <p>For the x86-32 compiler, you must use <samp>-march=<var>cpu-type</var></samp>, <samp>-msse</samp>
  497. or <samp>-msse2</samp> switches to enable SSE extensions and make this option
  498. effective. For the x86-64 compiler, these extensions are enabled by default.
  499. </p>
  500. <p>The resulting code should be considerably faster in the majority of cases and avoid
  501. the numerical instability problems of 387 code, but may break some existing
  502. code that expects temporaries to be 80 bits.
  503. </p>
  504. <p>This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
  505. and the default choice for x86-32 targets with the SSE2 instruction set
  506. when <samp>-ffast-math</samp> is enabled.
  507. </p>
  508. </dd>
  509. <dt>&lsquo;<samp>sse,387</samp>&rsquo;</dt>
  510. <dt>&lsquo;<samp>sse+387</samp>&rsquo;</dt>
  511. <dt>&lsquo;<samp>both</samp>&rsquo;</dt>
  512. <dd><p>Attempt to utilize both instruction sets at once. This effectively doubles the
  513. amount of available registers, and on chips with separate execution units for
  514. 387 and SSE the execution resources too. Use this option with care, as it is
  515. still experimental, because the GCC register allocator does not model separate
  516. functional units well, resulting in unstable performance.
  517. </p></dd>
  518. </dl>
  519. </dd>
  520. <dt><code>-masm=<var>dialect</var></code></dt>
  521. <dd><a name="index-masm_003ddialect"></a>
  522. <p>Output assembly instructions using selected <var>dialect</var>. Also affects
  523. which dialect is used for basic <code>asm</code> (see <a href="Basic-Asm.html#Basic-Asm">Basic Asm</a>) and
  524. extended <code>asm</code> (see <a href="Extended-Asm.html#Extended-Asm">Extended Asm</a>). Supported choices (in dialect
  525. order) are &lsquo;<samp>att</samp>&rsquo; or &lsquo;<samp>intel</samp>&rsquo;. The default is &lsquo;<samp>att</samp>&rsquo;. Darwin does
  526. not support &lsquo;<samp>intel</samp>&rsquo;.
  527. </p>
  528. </dd>
  529. <dt><code>-mieee-fp</code></dt>
  530. <dt><code>-mno-ieee-fp</code></dt>
  531. <dd><a name="index-mieee_002dfp"></a>
  532. <a name="index-mno_002dieee_002dfp"></a>
  533. <p>Control whether or not the compiler uses IEEE floating-point
  534. comparisons. These correctly handle the case where the result of a
  535. comparison is unordered.
  536. </p>
  537. </dd>
  538. <dt><code>-m80387</code></dt>
  539. <dt><code>-mhard-float</code></dt>
  540. <dd><a name="index-80387"></a>
  541. <a name="index-mhard_002dfloat-9"></a>
  542. <p>Generate output containing 80387 instructions for floating point.
  543. </p>
  544. </dd>
  545. <dt><code>-mno-80387</code></dt>
  546. <dt><code>-msoft-float</code></dt>
  547. <dd><a name="index-no_002d80387"></a>
  548. <a name="index-msoft_002dfloat-13"></a>
  549. <p>Generate output containing library calls for floating point.
  550. </p>
  551. <p><strong>Warning:</strong> the requisite libraries are not part of GCC.
  552. Normally the facilities of the machine&rsquo;s usual C compiler are used, but
  553. this cannot be done directly in cross-compilation. You must make your
  554. own arrangements to provide suitable library functions for
  555. cross-compilation.
  556. </p>
  557. <p>On machines where a function returns floating-point results in the 80387
  558. register stack, some floating-point opcodes may be emitted even if
  559. <samp>-msoft-float</samp> is used.
  560. </p>
  561. </dd>
  562. <dt><code>-mno-fp-ret-in-387</code></dt>
  563. <dd><a name="index-mno_002dfp_002dret_002din_002d387"></a>
  564. <p>Do not use the FPU registers for return values of functions.
  565. </p>
  566. <p>The usual calling convention has functions return values of types
  567. <code>float</code> and <code>double</code> in an FPU register, even if there
  568. is no FPU. The idea is that the operating system should emulate
  569. an FPU.
  570. </p>
  571. <p>The option <samp>-mno-fp-ret-in-387</samp> causes such values to be returned
  572. in ordinary CPU registers instead.
  573. </p>
  574. </dd>
  575. <dt><code>-mno-fancy-math-387</code></dt>
  576. <dd><a name="index-mno_002dfancy_002dmath_002d387"></a>
  577. <p>Some 387 emulators do not support the <code>sin</code>, <code>cos</code> and
  578. <code>sqrt</code> instructions for the 387. Specify this option to avoid
  579. generating those instructions. This option is the default on
  580. OpenBSD and NetBSD. This option is overridden when <samp>-march</samp>
  581. indicates that the target CPU always has an FPU and so the
  582. instruction does not need emulation. These
  583. instructions are not generated unless you also use the
  584. <samp>-funsafe-math-optimizations</samp> switch.
  585. </p>
  586. </dd>
  587. <dt><code>-malign-double</code></dt>
  588. <dt><code>-mno-align-double</code></dt>
  589. <dd><a name="index-malign_002ddouble"></a>
  590. <a name="index-mno_002dalign_002ddouble"></a>
  591. <p>Control whether GCC aligns <code>double</code>, <code>long double</code>, and
  592. <code>long long</code> variables on a two-word boundary or a one-word
  593. boundary. Aligning <code>double</code> variables on a two-word boundary
  594. produces code that runs somewhat faster on a Pentium at the
  595. expense of more memory.
  596. </p>
  597. <p>On x86-64, <samp>-malign-double</samp> is enabled by default.
  598. </p>
  599. <p><strong>Warning:</strong> if you use the <samp>-malign-double</samp> switch,
  600. structures containing the above types are aligned differently than
  601. the published application binary interface specifications for the x86-32
  602. and are not binary compatible with structures in code compiled
  603. without that switch.
  604. </p>
  605. </dd>
  606. <dt><code>-m96bit-long-double</code></dt>
  607. <dt><code>-m128bit-long-double</code></dt>
  608. <dd><a name="index-m96bit_002dlong_002ddouble"></a>
  609. <a name="index-m128bit_002dlong_002ddouble"></a>
  610. <p>These switches control the size of <code>long double</code> type. The x86-32
  611. application binary interface specifies the size to be 96 bits,
  612. so <samp>-m96bit-long-double</samp> is the default in 32-bit mode.
  613. </p>
  614. <p>Modern architectures (Pentium and newer) prefer <code>long double</code>
  615. to be aligned to an 8- or 16-byte boundary. In arrays or structures
  616. conforming to the ABI, this is not possible. So specifying
  617. <samp>-m128bit-long-double</samp> aligns <code>long double</code>
  618. to a 16-byte boundary by padding the <code>long double</code> with an additional
  619. 32-bit zero.
  620. </p>
  621. <p>In the x86-64 compiler, <samp>-m128bit-long-double</samp> is the default choice as
  622. its ABI specifies that <code>long double</code> is aligned on 16-byte boundary.
  623. </p>
  624. <p>Notice that neither of these options enable any extra precision over the x87
  625. standard of 80 bits for a <code>long double</code>.
  626. </p>
  627. <p><strong>Warning:</strong> if you override the default value for your target ABI, this
  628. changes the size of
  629. structures and arrays containing <code>long double</code> variables,
  630. as well as modifying the function calling convention for functions taking
  631. <code>long double</code>. Hence they are not binary-compatible
  632. with code compiled without that switch.
  633. </p>
  634. </dd>
  635. <dt><code>-mlong-double-64</code></dt>
  636. <dt><code>-mlong-double-80</code></dt>
  637. <dt><code>-mlong-double-128</code></dt>
  638. <dd><a name="index-mlong_002ddouble_002d64-1"></a>
  639. <a name="index-mlong_002ddouble_002d80"></a>
  640. <a name="index-mlong_002ddouble_002d128-1"></a>
  641. <p>These switches control the size of <code>long double</code> type. A size
  642. of 64 bits makes the <code>long double</code> type equivalent to the <code>double</code>
  643. type. This is the default for 32-bit Bionic C library. A size
  644. of 128 bits makes the <code>long double</code> type equivalent to the
  645. <code>__float128</code> type. This is the default for 64-bit Bionic C library.
  646. </p>
  647. <p><strong>Warning:</strong> if you override the default value for your target ABI, this
  648. changes the size of
  649. structures and arrays containing <code>long double</code> variables,
  650. as well as modifying the function calling convention for functions taking
  651. <code>long double</code>. Hence they are not binary-compatible
  652. with code compiled without that switch.
  653. </p>
  654. </dd>
  655. <dt><code>-malign-data=<var>type</var></code></dt>
  656. <dd><a name="index-malign_002ddata"></a>
  657. <p>Control how GCC aligns variables. Supported values for <var>type</var> are
  658. &lsquo;<samp>compat</samp>&rsquo; uses increased alignment value compatible uses GCC 4.8
  659. and earlier, &lsquo;<samp>abi</samp>&rsquo; uses alignment value as specified by the
  660. psABI, and &lsquo;<samp>cacheline</samp>&rsquo; uses increased alignment value to match
  661. the cache line size. &lsquo;<samp>compat</samp>&rsquo; is the default.
  662. </p>
  663. </dd>
  664. <dt><code>-mlarge-data-threshold=<var>threshold</var></code></dt>
  665. <dd><a name="index-mlarge_002ddata_002dthreshold"></a>
  666. <p>When <samp>-mcmodel=medium</samp> is specified, data objects larger than
  667. <var>threshold</var> are placed in the large data section. This value must be the
  668. same across all objects linked into the binary, and defaults to 65535.
  669. </p>
  670. </dd>
  671. <dt><code>-mrtd</code></dt>
  672. <dd><a name="index-mrtd-1"></a>
  673. <p>Use a different function-calling convention, in which functions that
  674. take a fixed number of arguments return with the <code>ret <var>num</var></code>
  675. instruction, which pops their arguments while returning. This saves one
  676. instruction in the caller since there is no need to pop the arguments
  677. there.
  678. </p>
  679. <p>You can specify that an individual function is called with this calling
  680. sequence with the function attribute <code>stdcall</code>. You can also
  681. override the <samp>-mrtd</samp> option by using the function attribute
  682. <code>cdecl</code>. See <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>.
  683. </p>
  684. <p><strong>Warning:</strong> this calling convention is incompatible with the one
  685. normally used on Unix, so you cannot use it if you need to call
  686. libraries compiled with the Unix compiler.
  687. </p>
  688. <p>Also, you must provide function prototypes for all functions that
  689. take variable numbers of arguments (including <code>printf</code>);
  690. otherwise incorrect code is generated for calls to those
  691. functions.
  692. </p>
  693. <p>In addition, seriously incorrect code results if you call a
  694. function with too many arguments. (Normally, extra arguments are
  695. harmlessly ignored.)
  696. </p>
  697. </dd>
  698. <dt><code>-mregparm=<var>num</var></code></dt>
  699. <dd><a name="index-mregparm"></a>
  700. <p>Control how many registers are used to pass integer arguments. By
  701. default, no registers are used to pass arguments, and at most 3
  702. registers can be used. You can control this behavior for a specific
  703. function by using the function attribute <code>regparm</code>.
  704. See <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>.
  705. </p>
  706. <p><strong>Warning:</strong> if you use this switch, and
  707. <var>num</var> is nonzero, then you must build all modules with the same
  708. value, including any libraries. This includes the system libraries and
  709. startup modules.
  710. </p>
  711. </dd>
  712. <dt><code>-msseregparm</code></dt>
  713. <dd><a name="index-msseregparm"></a>
  714. <p>Use SSE register passing conventions for float and double arguments
  715. and return values. You can control this behavior for a specific
  716. function by using the function attribute <code>sseregparm</code>.
  717. See <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>.
  718. </p>
  719. <p><strong>Warning:</strong> if you use this switch then you must build all
  720. modules with the same value, including any libraries. This includes
  721. the system libraries and startup modules.
  722. </p>
  723. </dd>
  724. <dt><code>-mvect8-ret-in-mem</code></dt>
  725. <dd><a name="index-mvect8_002dret_002din_002dmem"></a>
  726. <p>Return 8-byte vectors in memory instead of MMX registers. This is the
  727. default on Solaris&nbsp;8 and 9 and VxWorks to match the ABI of the Sun
  728. Studio compilers until version 12. Later compiler versions (starting
  729. with Studio 12 Update&nbsp;1) follow the ABI used by other x86 targets, which
  730. is the default on Solaris&nbsp;10 and later. <em>Only</em> use this option if
  731. you need to remain compatible with existing code produced by those
  732. previous compiler versions or older versions of GCC.
  733. </p>
  734. </dd>
  735. <dt><code>-mpc32</code></dt>
  736. <dt><code>-mpc64</code></dt>
  737. <dt><code>-mpc80</code></dt>
  738. <dd><a name="index-mpc32"></a>
  739. <a name="index-mpc64"></a>
  740. <a name="index-mpc80"></a>
  741. <p>Set 80387 floating-point precision to 32, 64 or 80 bits. When <samp>-mpc32</samp>
  742. is specified, the significands of results of floating-point operations are
  743. rounded to 24 bits (single precision); <samp>-mpc64</samp> rounds the
  744. significands of results of floating-point operations to 53 bits (double
  745. precision) and <samp>-mpc80</samp> rounds the significands of results of
  746. floating-point operations to 64 bits (extended double precision), which is
  747. the default. When this option is used, floating-point operations in higher
  748. precisions are not available to the programmer without setting the FPU
  749. control word explicitly.
  750. </p>
  751. <p>Setting the rounding of floating-point operations to less than the default
  752. 80 bits can speed some programs by 2% or more. Note that some mathematical
  753. libraries assume that extended-precision (80-bit) floating-point operations
  754. are enabled by default; routines in such libraries could suffer significant
  755. loss of accuracy, typically through so-called &ldquo;catastrophic cancellation&rdquo;,
  756. when this option is used to set the precision to less than extended precision.
  757. </p>
  758. </dd>
  759. <dt><code>-mstackrealign</code></dt>
  760. <dd><a name="index-mstackrealign"></a>
  761. <p>Realign the stack at entry. On the x86, the <samp>-mstackrealign</samp>
  762. option generates an alternate prologue and epilogue that realigns the
  763. run-time stack if necessary. This supports mixing legacy codes that keep
  764. 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
  765. SSE compatibility. See also the attribute <code>force_align_arg_pointer</code>,
  766. applicable to individual functions.
  767. </p>
  768. </dd>
  769. <dt><code>-mpreferred-stack-boundary=<var>num</var></code></dt>
  770. <dd><a name="index-mpreferred_002dstack_002dboundary"></a>
  771. <p>Attempt to keep the stack boundary aligned to a 2 raised to <var>num</var>
  772. byte boundary. If <samp>-mpreferred-stack-boundary</samp> is not specified,
  773. the default is 4 (16 bytes or 128 bits).
  774. </p>
  775. <p><strong>Warning:</strong> When generating code for the x86-64 architecture with
  776. SSE extensions disabled, <samp>-mpreferred-stack-boundary=3</samp> can be
  777. used to keep the stack boundary aligned to 8 byte boundary. Since
  778. x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
  779. intended to be used in controlled environment where stack space is
  780. important limitation. This option leads to wrong code when functions
  781. compiled with 16 byte stack alignment (such as functions from a standard
  782. library) are called with misaligned stack. In this case, SSE
  783. instructions may lead to misaligned memory access traps. In addition,
  784. variable arguments are handled incorrectly for 16 byte aligned
  785. objects (including x87 long double and __int128), leading to wrong
  786. results. You must build all modules with
  787. <samp>-mpreferred-stack-boundary=3</samp>, including any libraries. This
  788. includes the system libraries and startup modules.
  789. </p>
  790. </dd>
  791. <dt><code>-mincoming-stack-boundary=<var>num</var></code></dt>
  792. <dd><a name="index-mincoming_002dstack_002dboundary"></a>
  793. <p>Assume the incoming stack is aligned to a 2 raised to <var>num</var> byte
  794. boundary. If <samp>-mincoming-stack-boundary</samp> is not specified,
  795. the one specified by <samp>-mpreferred-stack-boundary</samp> is used.
  796. </p>
  797. <p>On Pentium and Pentium Pro, <code>double</code> and <code>long double</code> values
  798. should be aligned to an 8-byte boundary (see <samp>-malign-double</samp>) or
  799. suffer significant run time performance penalties. On Pentium III, the
  800. Streaming SIMD Extension (SSE) data type <code>__m128</code> may not work
  801. properly if it is not 16-byte aligned.
  802. </p>
  803. <p>To ensure proper alignment of this values on the stack, the stack boundary
  804. must be as aligned as that required by any value stored on the stack.
  805. Further, every function must be generated such that it keeps the stack
  806. aligned. Thus calling a function compiled with a higher preferred
  807. stack boundary from a function compiled with a lower preferred stack
  808. boundary most likely misaligns the stack. It is recommended that
  809. libraries that use callbacks always use the default setting.
  810. </p>
  811. <p>This extra alignment does consume extra stack space, and generally
  812. increases code size. Code that is sensitive to stack space usage, such
  813. as embedded systems and operating system kernels, may want to reduce the
  814. preferred alignment to <samp>-mpreferred-stack-boundary=2</samp>.
  815. </p>
  816. </dd>
  817. <dt><code>-mmmx</code></dt>
  818. <dd><a name="index-mmmx"></a>
  819. </dd>
  820. <dt><code>-msse</code></dt>
  821. <dd><a name="index-msse"></a>
  822. </dd>
  823. <dt><code>-msse2</code></dt>
  824. <dd><a name="index-msse2"></a>
  825. </dd>
  826. <dt><code>-msse3</code></dt>
  827. <dd><a name="index-msse3"></a>
  828. </dd>
  829. <dt><code>-mssse3</code></dt>
  830. <dd><a name="index-mssse3"></a>
  831. </dd>
  832. <dt><code>-msse4</code></dt>
  833. <dd><a name="index-msse4"></a>
  834. </dd>
  835. <dt><code>-msse4a</code></dt>
  836. <dd><a name="index-msse4a"></a>
  837. </dd>
  838. <dt><code>-msse4.1</code></dt>
  839. <dd><a name="index-msse4_002e1"></a>
  840. </dd>
  841. <dt><code>-msse4.2</code></dt>
  842. <dd><a name="index-msse4_002e2"></a>
  843. </dd>
  844. <dt><code>-mavx</code></dt>
  845. <dd><a name="index-mavx"></a>
  846. </dd>
  847. <dt><code>-mavx2</code></dt>
  848. <dd><a name="index-mavx2"></a>
  849. </dd>
  850. <dt><code>-mavx512f</code></dt>
  851. <dd><a name="index-mavx512f"></a>
  852. </dd>
  853. <dt><code>-mavx512pf</code></dt>
  854. <dd><a name="index-mavx512pf"></a>
  855. </dd>
  856. <dt><code>-mavx512er</code></dt>
  857. <dd><a name="index-mavx512er"></a>
  858. </dd>
  859. <dt><code>-mavx512cd</code></dt>
  860. <dd><a name="index-mavx512cd"></a>
  861. </dd>
  862. <dt><code>-mavx512vl</code></dt>
  863. <dd><a name="index-mavx512vl"></a>
  864. </dd>
  865. <dt><code>-mavx512bw</code></dt>
  866. <dd><a name="index-mavx512bw"></a>
  867. </dd>
  868. <dt><code>-mavx512dq</code></dt>
  869. <dd><a name="index-mavx512dq"></a>
  870. </dd>
  871. <dt><code>-mavx512ifma</code></dt>
  872. <dd><a name="index-mavx512ifma"></a>
  873. </dd>
  874. <dt><code>-mavx512vbmi</code></dt>
  875. <dd><a name="index-mavx512vbmi"></a>
  876. </dd>
  877. <dt><code>-msha</code></dt>
  878. <dd><a name="index-msha"></a>
  879. </dd>
  880. <dt><code>-maes</code></dt>
  881. <dd><a name="index-maes"></a>
  882. </dd>
  883. <dt><code>-mpclmul</code></dt>
  884. <dd><a name="index-mpclmul"></a>
  885. </dd>
  886. <dt><code>-mclflushopt</code></dt>
  887. <dd><a name="index-mclflushopt"></a>
  888. </dd>
  889. <dt><code>-mfsgsbase</code></dt>
  890. <dd><a name="index-mfsgsbase"></a>
  891. </dd>
  892. <dt><code>-mrdrnd</code></dt>
  893. <dd><a name="index-mrdrnd"></a>
  894. </dd>
  895. <dt><code>-mf16c</code></dt>
  896. <dd><a name="index-mf16c"></a>
  897. </dd>
  898. <dt><code>-mfma</code></dt>
  899. <dd><a name="index-mfma"></a>
  900. </dd>
  901. <dt><code>-mfma4</code></dt>
  902. <dd><a name="index-mfma4"></a>
  903. </dd>
  904. <dt><code>-mprefetchwt1</code></dt>
  905. <dd><a name="index-mprefetchwt1"></a>
  906. </dd>
  907. <dt><code>-mxop</code></dt>
  908. <dd><a name="index-mxop"></a>
  909. </dd>
  910. <dt><code>-mlwp</code></dt>
  911. <dd><a name="index-mlwp"></a>
  912. </dd>
  913. <dt><code>-m3dnow</code></dt>
  914. <dd><a name="index-m3dnow"></a>
  915. </dd>
  916. <dt><code>-m3dnowa</code></dt>
  917. <dd><a name="index-m3dnowa"></a>
  918. </dd>
  919. <dt><code>-mpopcnt</code></dt>
  920. <dd><a name="index-mpopcnt"></a>
  921. </dd>
  922. <dt><code>-mabm</code></dt>
  923. <dd><a name="index-mabm"></a>
  924. </dd>
  925. <dt><code>-mbmi</code></dt>
  926. <dd><a name="index-mbmi"></a>
  927. </dd>
  928. <dt><code>-mbmi2</code></dt>
  929. <dt><code>-mlzcnt</code></dt>
  930. <dd><a name="index-mlzcnt"></a>
  931. </dd>
  932. <dt><code>-mfxsr</code></dt>
  933. <dd><a name="index-mfxsr"></a>
  934. </dd>
  935. <dt><code>-mxsave</code></dt>
  936. <dd><a name="index-mxsave"></a>
  937. </dd>
  938. <dt><code>-mxsaveopt</code></dt>
  939. <dd><a name="index-mxsaveopt"></a>
  940. </dd>
  941. <dt><code>-mxsavec</code></dt>
  942. <dd><a name="index-mxsavec"></a>
  943. </dd>
  944. <dt><code>-mxsaves</code></dt>
  945. <dd><a name="index-mxsaves"></a>
  946. </dd>
  947. <dt><code>-mrtm</code></dt>
  948. <dd><a name="index-mrtm"></a>
  949. </dd>
  950. <dt><code>-mtbm</code></dt>
  951. <dd><a name="index-mtbm"></a>
  952. </dd>
  953. <dt><code>-mmpx</code></dt>
  954. <dd><a name="index-mmpx"></a>
  955. </dd>
  956. <dt><code>-mmwaitx</code></dt>
  957. <dd><a name="index-mmwaitx"></a>
  958. </dd>
  959. <dt><code>-mclzero</code></dt>
  960. <dd><a name="index-mclzero"></a>
  961. </dd>
  962. <dt><code>-mpku</code></dt>
  963. <dd><a name="index-mpku"></a>
  964. <p>These switches enable the use of instructions in the MMX, SSE,
  965. SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
  966. SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
  967. AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA AVX512VBMI, BMI, BMI2, FXSR,
  968. XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU, 3DNow! or enhanced 3DNow!
  969. extended instruction sets. Each has a corresponding <samp>-mno-</samp> option
  970. to disable use of these instructions.
  971. </p>
  972. <p>These extensions are also available as built-in functions: see
  973. <a href="x86-Built_002din-Functions.html#x86-Built_002din-Functions">x86 Built-in Functions</a>, for details of the functions enabled and
  974. disabled by these switches.
  975. </p>
  976. <p>To generate SSE/SSE2 instructions automatically from floating-point
  977. code (as opposed to 387 instructions), see <samp>-mfpmath=sse</samp>.
  978. </p>
  979. <p>GCC depresses SSEx instructions when <samp>-mavx</samp> is used. Instead, it
  980. generates new AVX instructions or AVX equivalence for all SSEx instructions
  981. when needed.
  982. </p>
  983. <p>These options enable GCC to use these extended instructions in
  984. generated code, even without <samp>-mfpmath=sse</samp>. Applications that
  985. perform run-time CPU detection must compile separate files for each
  986. supported architecture, using the appropriate flags. In particular,
  987. the file containing the CPU detection code should be compiled without
  988. these options.
  989. </p>
  990. </dd>
  991. <dt><code>-mdump-tune-features</code></dt>
  992. <dd><a name="index-mdump_002dtune_002dfeatures"></a>
  993. <p>This option instructs GCC to dump the names of the x86 performance
  994. tuning features and default settings. The names can be used in
  995. <samp>-mtune-ctrl=<var>feature-list</var></samp>.
  996. </p>
  997. </dd>
  998. <dt><code>-mtune-ctrl=<var>feature-list</var></code></dt>
  999. <dd><a name="index-mtune_002dctrl_003dfeature_002dlist"></a>
  1000. <p>This option is used to do fine grain control of x86 code generation features.
  1001. <var>feature-list</var> is a comma separated list of <var>feature</var> names. See also
  1002. <samp>-mdump-tune-features</samp>. When specified, the <var>feature</var> is turned
  1003. on if it is not preceded with &lsquo;<samp>^</samp>&rsquo;, otherwise, it is turned off.
  1004. <samp>-mtune-ctrl=<var>feature-list</var></samp> is intended to be used by GCC
  1005. developers. Using it may lead to code paths not covered by testing and can
  1006. potentially result in compiler ICEs or runtime errors.
  1007. </p>
  1008. </dd>
  1009. <dt><code>-mno-default</code></dt>
  1010. <dd><a name="index-mno_002ddefault"></a>
  1011. <p>This option instructs GCC to turn off all tunable features. See also
  1012. <samp>-mtune-ctrl=<var>feature-list</var></samp> and <samp>-mdump-tune-features</samp>.
  1013. </p>
  1014. </dd>
  1015. <dt><code>-mcld</code></dt>
  1016. <dd><a name="index-mcld"></a>
  1017. <p>This option instructs GCC to emit a <code>cld</code> instruction in the prologue
  1018. of functions that use string instructions. String instructions depend on
  1019. the DF flag to select between autoincrement or autodecrement mode. While the
  1020. ABI specifies the DF flag to be cleared on function entry, some operating
  1021. systems violate this specification by not clearing the DF flag in their
  1022. exception dispatchers. The exception handler can be invoked with the DF flag
  1023. set, which leads to wrong direction mode when string instructions are used.
  1024. This option can be enabled by default on 32-bit x86 targets by configuring
  1025. GCC with the <samp>--enable-cld</samp> configure option. Generation of <code>cld</code>
  1026. instructions can be suppressed with the <samp>-mno-cld</samp> compiler option
  1027. in this case.
  1028. </p>
  1029. </dd>
  1030. <dt><code>-mvzeroupper</code></dt>
  1031. <dd><a name="index-mvzeroupper"></a>
  1032. <p>This option instructs GCC to emit a <code>vzeroupper</code> instruction
  1033. before a transfer of control flow out of the function to minimize
  1034. the AVX to SSE transition penalty as well as remove unnecessary <code>zeroupper</code>
  1035. intrinsics.
  1036. </p>
  1037. </dd>
  1038. <dt><code>-mprefer-avx128</code></dt>
  1039. <dd><a name="index-mprefer_002davx128"></a>
  1040. <p>This option instructs GCC to use 128-bit AVX instructions instead of
  1041. 256-bit AVX instructions in the auto-vectorizer.
  1042. </p>
  1043. </dd>
  1044. <dt><code>-mcx16</code></dt>
  1045. <dd><a name="index-mcx16"></a>
  1046. <p>This option enables GCC to generate <code>CMPXCHG16B</code> instructions in 64-bit
  1047. code to implement compare-and-exchange operations on 16-byte aligned 128-bit
  1048. objects. This is useful for atomic updates of data structures exceeding one
  1049. machine word in size. The compiler uses this instruction to implement
  1050. <a href="_005f_005fsync-Builtins.html#g_t_005f_005fsync-Builtins">__sync Builtins</a>. However, for <a href="_005f_005fatomic-Builtins.html#g_t_005f_005fatomic-Builtins">__atomic Builtins</a> operating on
  1051. 128-bit integers, a library call is always used.
  1052. </p>
  1053. </dd>
  1054. <dt><code>-msahf</code></dt>
  1055. <dd><a name="index-msahf"></a>
  1056. <p>This option enables generation of <code>SAHF</code> instructions in 64-bit code.
  1057. Early Intel Pentium 4 CPUs with Intel 64 support,
  1058. prior to the introduction of Pentium 4 G1 step in December 2005,
  1059. lacked the <code>LAHF</code> and <code>SAHF</code> instructions
  1060. which are supported by AMD64.
  1061. These are load and store instructions, respectively, for certain status flags.
  1062. In 64-bit mode, the <code>SAHF</code> instruction is used to optimize <code>fmod</code>,
  1063. <code>drem</code>, and <code>remainder</code> built-in functions;
  1064. see <a href="Other-Builtins.html#Other-Builtins">Other Builtins</a> for details.
  1065. </p>
  1066. </dd>
  1067. <dt><code>-mmovbe</code></dt>
  1068. <dd><a name="index-mmovbe"></a>
  1069. <p>This option enables use of the <code>movbe</code> instruction to implement
  1070. <code>__builtin_bswap32</code> and <code>__builtin_bswap64</code>.
  1071. </p>
  1072. </dd>
  1073. <dt><code>-mcrc32</code></dt>
  1074. <dd><a name="index-mcrc32"></a>
  1075. <p>This option enables built-in functions <code>__builtin_ia32_crc32qi</code>,
  1076. <code>__builtin_ia32_crc32hi</code>, <code>__builtin_ia32_crc32si</code> and
  1077. <code>__builtin_ia32_crc32di</code> to generate the <code>crc32</code> machine instruction.
  1078. </p>
  1079. </dd>
  1080. <dt><code>-mrecip</code></dt>
  1081. <dd><a name="index-mrecip-1"></a>
  1082. <p>This option enables use of <code>RCPSS</code> and <code>RSQRTSS</code> instructions
  1083. (and their vectorized variants <code>RCPPS</code> and <code>RSQRTPS</code>)
  1084. with an additional Newton-Raphson step
  1085. to increase precision instead of <code>DIVSS</code> and <code>SQRTSS</code>
  1086. (and their vectorized
  1087. variants) for single-precision floating-point arguments. These instructions
  1088. are generated only when <samp>-funsafe-math-optimizations</samp> is enabled
  1089. together with <samp>-ffinite-math-only</samp> and <samp>-fno-trapping-math</samp>.
  1090. Note that while the throughput of the sequence is higher than the throughput
  1091. of the non-reciprocal instruction, the precision of the sequence can be
  1092. decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
  1093. </p>
  1094. <p>Note that GCC implements <code>1.0f/sqrtf(<var>x</var>)</code> in terms of <code>RSQRTSS</code>
  1095. (or <code>RSQRTPS</code>) already with <samp>-ffast-math</samp> (or the above option
  1096. combination), and doesn&rsquo;t need <samp>-mrecip</samp>.
  1097. </p>
  1098. <p>Also note that GCC emits the above sequence with additional Newton-Raphson step
  1099. for vectorized single-float division and vectorized <code>sqrtf(<var>x</var>)</code>
  1100. already with <samp>-ffast-math</samp> (or the above option combination), and
  1101. doesn&rsquo;t need <samp>-mrecip</samp>.
  1102. </p>
  1103. </dd>
  1104. <dt><code>-mrecip=<var>opt</var></code></dt>
  1105. <dd><a name="index-mrecip_003dopt-1"></a>
  1106. <p>This option controls which reciprocal estimate instructions
  1107. may be used. <var>opt</var> is a comma-separated list of options, which may
  1108. be preceded by a &lsquo;<samp>!</samp>&rsquo; to invert the option:
  1109. </p>
  1110. <dl compact="compact">
  1111. <dt>&lsquo;<samp>all</samp>&rsquo;</dt>
  1112. <dd><p>Enable all estimate instructions.
  1113. </p>
  1114. </dd>
  1115. <dt>&lsquo;<samp>default</samp>&rsquo;</dt>
  1116. <dd><p>Enable the default instructions, equivalent to <samp>-mrecip</samp>.
  1117. </p>
  1118. </dd>
  1119. <dt>&lsquo;<samp>none</samp>&rsquo;</dt>
  1120. <dd><p>Disable all estimate instructions, equivalent to <samp>-mno-recip</samp>.
  1121. </p>
  1122. </dd>
  1123. <dt>&lsquo;<samp>div</samp>&rsquo;</dt>
  1124. <dd><p>Enable the approximation for scalar division.
  1125. </p>
  1126. </dd>
  1127. <dt>&lsquo;<samp>vec-div</samp>&rsquo;</dt>
  1128. <dd><p>Enable the approximation for vectorized division.
  1129. </p>
  1130. </dd>
  1131. <dt>&lsquo;<samp>sqrt</samp>&rsquo;</dt>
  1132. <dd><p>Enable the approximation for scalar square root.
  1133. </p>
  1134. </dd>
  1135. <dt>&lsquo;<samp>vec-sqrt</samp>&rsquo;</dt>
  1136. <dd><p>Enable the approximation for vectorized square root.
  1137. </p></dd>
  1138. </dl>
  1139. <p>So, for example, <samp>-mrecip=all,!sqrt</samp> enables
  1140. all of the reciprocal approximations, except for square root.
  1141. </p>
  1142. </dd>
  1143. <dt><code>-mveclibabi=<var>type</var></code></dt>
  1144. <dd><a name="index-mveclibabi-1"></a>
  1145. <p>Specifies the ABI type to use for vectorizing intrinsics using an
  1146. external library. Supported values for <var>type</var> are &lsquo;<samp>svml</samp>&rsquo;
  1147. for the Intel short
  1148. vector math library and &lsquo;<samp>acml</samp>&rsquo; for the AMD math core library.
  1149. To use this option, both <samp>-ftree-vectorize</samp> and
  1150. <samp>-funsafe-math-optimizations</samp> have to be enabled, and an SVML or ACML
  1151. ABI-compatible library must be specified at link time.
  1152. </p>
  1153. <p>GCC currently emits calls to <code>vmldExp2</code>,
  1154. <code>vmldLn2</code>, <code>vmldLog102</code>, <code>vmldLog102</code>, <code>vmldPow2</code>,
  1155. <code>vmldTanh2</code>, <code>vmldTan2</code>, <code>vmldAtan2</code>, <code>vmldAtanh2</code>,
  1156. <code>vmldCbrt2</code>, <code>vmldSinh2</code>, <code>vmldSin2</code>, <code>vmldAsinh2</code>,
  1157. <code>vmldAsin2</code>, <code>vmldCosh2</code>, <code>vmldCos2</code>, <code>vmldAcosh2</code>,
  1158. <code>vmldAcos2</code>, <code>vmlsExp4</code>, <code>vmlsLn4</code>, <code>vmlsLog104</code>,
  1159. <code>vmlsLog104</code>, <code>vmlsPow4</code>, <code>vmlsTanh4</code>, <code>vmlsTan4</code>,
  1160. <code>vmlsAtan4</code>, <code>vmlsAtanh4</code>, <code>vmlsCbrt4</code>, <code>vmlsSinh4</code>,
  1161. <code>vmlsSin4</code>, <code>vmlsAsinh4</code>, <code>vmlsAsin4</code>, <code>vmlsCosh4</code>,
  1162. <code>vmlsCos4</code>, <code>vmlsAcosh4</code> and <code>vmlsAcos4</code> for corresponding
  1163. function type when <samp>-mveclibabi=svml</samp> is used, and <code>__vrd2_sin</code>,
  1164. <code>__vrd2_cos</code>, <code>__vrd2_exp</code>, <code>__vrd2_log</code>, <code>__vrd2_log2</code>,
  1165. <code>__vrd2_log10</code>, <code>__vrs4_sinf</code>, <code>__vrs4_cosf</code>,
  1166. <code>__vrs4_expf</code>, <code>__vrs4_logf</code>, <code>__vrs4_log2f</code>,
  1167. <code>__vrs4_log10f</code> and <code>__vrs4_powf</code> for the corresponding function type
  1168. when <samp>-mveclibabi=acml</samp> is used.
  1169. </p>
  1170. </dd>
  1171. <dt><code>-mabi=<var>name</var></code></dt>
  1172. <dd><a name="index-mabi-4"></a>
  1173. <p>Generate code for the specified calling convention. Permissible values
  1174. are &lsquo;<samp>sysv</samp>&rsquo; for the ABI used on GNU/Linux and other systems, and
  1175. &lsquo;<samp>ms</samp>&rsquo; for the Microsoft ABI. The default is to use the Microsoft
  1176. ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
  1177. You can control this behavior for specific functions by
  1178. using the function attributes <code>ms_abi</code> and <code>sysv_abi</code>.
  1179. See <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>.
  1180. </p>
  1181. </dd>
  1182. <dt><code>-mtls-dialect=<var>type</var></code></dt>
  1183. <dd><a name="index-mtls_002ddialect-1"></a>
  1184. <p>Generate code to access thread-local storage using the &lsquo;<samp>gnu</samp>&rsquo; or
  1185. &lsquo;<samp>gnu2</samp>&rsquo; conventions. &lsquo;<samp>gnu</samp>&rsquo; is the conservative default;
  1186. &lsquo;<samp>gnu2</samp>&rsquo; is more efficient, but it may add compile- and run-time
  1187. requirements that cannot be satisfied on all systems.
  1188. </p>
  1189. </dd>
  1190. <dt><code>-mpush-args</code></dt>
  1191. <dt><code>-mno-push-args</code></dt>
  1192. <dd><a name="index-mpush_002dargs"></a>
  1193. <a name="index-mno_002dpush_002dargs"></a>
  1194. <p>Use PUSH operations to store outgoing parameters. This method is shorter
  1195. and usually equally fast as method using SUB/MOV operations and is enabled
  1196. by default. In some cases disabling it may improve performance because of
  1197. improved scheduling and reduced dependencies.
  1198. </p>
  1199. </dd>
  1200. <dt><code>-maccumulate-outgoing-args</code></dt>
  1201. <dd><a name="index-maccumulate_002doutgoing_002dargs-1"></a>
  1202. <p>If enabled, the maximum amount of space required for outgoing arguments is
  1203. computed in the function prologue. This is faster on most modern CPUs
  1204. because of reduced dependencies, improved scheduling and reduced stack usage
  1205. when the preferred stack boundary is not equal to 2. The drawback is a notable
  1206. increase in code size. This switch implies <samp>-mno-push-args</samp>.
  1207. </p>
  1208. </dd>
  1209. <dt><code>-mthreads</code></dt>
  1210. <dd><a name="index-mthreads"></a>
  1211. <p>Support thread-safe exception handling on MinGW. Programs that rely
  1212. on thread-safe exception handling must compile and link all code with the
  1213. <samp>-mthreads</samp> option. When compiling, <samp>-mthreads</samp> defines
  1214. <samp>-D_MT</samp>; when linking, it links in a special thread helper library
  1215. <samp>-lmingwthrd</samp> which cleans up per-thread exception-handling data.
  1216. </p>
  1217. </dd>
  1218. <dt><code>-mms-bitfields</code></dt>
  1219. <dt><code>-mno-ms-bitfields</code></dt>
  1220. <dd><a name="index-mms_002dbitfields"></a>
  1221. <a name="index-mno_002dms_002dbitfields"></a>
  1222. <p>Enable/disable bit-field layout compatible with the native Microsoft
  1223. Windows compiler.
  1224. </p>
  1225. <p>If <code>packed</code> is used on a structure, or if bit-fields are used,
  1226. it may be that the Microsoft ABI lays out the structure differently
  1227. than the way GCC normally does. Particularly when moving packed
  1228. data between functions compiled with GCC and the native Microsoft compiler
  1229. (either via function call or as data in a file), it may be necessary to access
  1230. either format.
  1231. </p>
  1232. <p>This option is enabled by default for Microsoft Windows
  1233. targets. This behavior can also be controlled locally by use of variable
  1234. or type attributes. For more information, see <a href="x86-Variable-Attributes.html#x86-Variable-Attributes">x86 Variable Attributes</a>
  1235. and <a href="x86-Type-Attributes.html#x86-Type-Attributes">x86 Type Attributes</a>.
  1236. </p>
  1237. <p>The Microsoft structure layout algorithm is fairly simple with the exception
  1238. of the bit-field packing.
  1239. The padding and alignment of members of structures and whether a bit-field
  1240. can straddle a storage-unit boundary are determine by these rules:
  1241. </p>
  1242. <ol>
  1243. <li> Structure members are stored sequentially in the order in which they are
  1244. declared: the first member has the lowest memory address and the last member
  1245. the highest.
  1246. </li><li> Every data object has an alignment requirement. The alignment requirement
  1247. for all data except structures, unions, and arrays is either the size of the
  1248. object or the current packing size (specified with either the
  1249. <code>aligned</code> attribute or the <code>pack</code> pragma),
  1250. whichever is less. For structures, unions, and arrays,
  1251. the alignment requirement is the largest alignment requirement of its members.
  1252. Every object is allocated an offset so that:
  1253. <div class="smallexample">
  1254. <pre class="smallexample">offset % alignment_requirement == 0
  1255. </pre></div>
  1256. </li><li> Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
  1257. unit if the integral types are the same size and if the next bit-field fits
  1258. into the current allocation unit without crossing the boundary imposed by the
  1259. common alignment requirements of the bit-fields.
  1260. </li></ol>
  1261. <p>MSVC interprets zero-length bit-fields in the following ways:
  1262. </p>
  1263. <ol>
  1264. <li> If a zero-length bit-field is inserted between two bit-fields that
  1265. are normally coalesced, the bit-fields are not coalesced.
  1266. <p>For example:
  1267. </p>
  1268. <div class="smallexample">
  1269. <pre class="smallexample">struct
  1270. {
  1271. unsigned long bf_1 : 12;
  1272. unsigned long : 0;
  1273. unsigned long bf_2 : 12;
  1274. } t1;
  1275. </pre></div>
  1276. <p>The size of <code>t1</code> is 8 bytes with the zero-length bit-field. If the
  1277. zero-length bit-field were removed, <code>t1</code>&rsquo;s size would be 4 bytes.
  1278. </p>
  1279. </li><li> If a zero-length bit-field is inserted after a bit-field, <code>foo</code>, and the
  1280. alignment of the zero-length bit-field is greater than the member that follows it,
  1281. <code>bar</code>, <code>bar</code> is aligned as the type of the zero-length bit-field.
  1282. <p>For example:
  1283. </p>
  1284. <div class="smallexample">
  1285. <pre class="smallexample">struct
  1286. {
  1287. char foo : 4;
  1288. short : 0;
  1289. char bar;
  1290. } t2;
  1291. struct
  1292. {
  1293. char foo : 4;
  1294. short : 0;
  1295. double bar;
  1296. } t3;
  1297. </pre></div>
  1298. <p>For <code>t2</code>, <code>bar</code> is placed at offset 2, rather than offset 1.
  1299. Accordingly, the size of <code>t2</code> is 4. For <code>t3</code>, the zero-length
  1300. bit-field does not affect the alignment of <code>bar</code> or, as a result, the size
  1301. of the structure.
  1302. </p>
  1303. <p>Taking this into account, it is important to note the following:
  1304. </p>
  1305. <ol>
  1306. <li> If a zero-length bit-field follows a normal bit-field, the type of the
  1307. zero-length bit-field may affect the alignment of the structure as whole. For
  1308. example, <code>t2</code> has a size of 4 bytes, since the zero-length bit-field follows a
  1309. normal bit-field, and is of type short.
  1310. </li><li> Even if a zero-length bit-field is not followed by a normal bit-field, it may
  1311. still affect the alignment of the structure:
  1312. <div class="smallexample">
  1313. <pre class="smallexample">struct
  1314. {
  1315. char foo : 6;
  1316. long : 0;
  1317. } t4;
  1318. </pre></div>
  1319. <p>Here, <code>t4</code> takes up 4 bytes.
  1320. </p></li></ol>
  1321. </li><li> Zero-length bit-fields following non-bit-field members are ignored:
  1322. <div class="smallexample">
  1323. <pre class="smallexample">struct
  1324. {
  1325. char foo;
  1326. long : 0;
  1327. char bar;
  1328. } t5;
  1329. </pre></div>
  1330. <p>Here, <code>t5</code> takes up 2 bytes.
  1331. </p></li></ol>
  1332. </dd>
  1333. <dt><code>-mno-align-stringops</code></dt>
  1334. <dd><a name="index-mno_002dalign_002dstringops"></a>
  1335. <p>Do not align the destination of inlined string operations. This switch reduces
  1336. code size and improves performance in case the destination is already aligned,
  1337. but GCC doesn&rsquo;t know about it.
  1338. </p>
  1339. </dd>
  1340. <dt><code>-minline-all-stringops</code></dt>
  1341. <dd><a name="index-minline_002dall_002dstringops"></a>
  1342. <p>By default GCC inlines string operations only when the destination is
  1343. known to be aligned to least a 4-byte boundary.
  1344. This enables more inlining and increases code
  1345. size, but may improve performance of code that depends on fast
  1346. <code>memcpy</code>, <code>strlen</code>,
  1347. and <code>memset</code> for short lengths.
  1348. </p>
  1349. </dd>
  1350. <dt><code>-minline-stringops-dynamically</code></dt>
  1351. <dd><a name="index-minline_002dstringops_002ddynamically"></a>
  1352. <p>For string operations of unknown size, use run-time checks with
  1353. inline code for small blocks and a library call for large blocks.
  1354. </p>
  1355. </dd>
  1356. <dt><code>-mstringop-strategy=<var>alg</var></code></dt>
  1357. <dd><a name="index-mstringop_002dstrategy_003dalg"></a>
  1358. <p>Override the internal decision heuristic for the particular algorithm to use
  1359. for inlining string operations. The allowed values for <var>alg</var> are:
  1360. </p>
  1361. <dl compact="compact">
  1362. <dt>&lsquo;<samp>rep_byte</samp>&rsquo;</dt>
  1363. <dt>&lsquo;<samp>rep_4byte</samp>&rsquo;</dt>
  1364. <dt>&lsquo;<samp>rep_8byte</samp>&rsquo;</dt>
  1365. <dd><p>Expand using i386 <code>rep</code> prefix of the specified size.
  1366. </p>
  1367. </dd>
  1368. <dt>&lsquo;<samp>byte_loop</samp>&rsquo;</dt>
  1369. <dt>&lsquo;<samp>loop</samp>&rsquo;</dt>
  1370. <dt>&lsquo;<samp>unrolled_loop</samp>&rsquo;</dt>
  1371. <dd><p>Expand into an inline loop.
  1372. </p>
  1373. </dd>
  1374. <dt>&lsquo;<samp>libcall</samp>&rsquo;</dt>
  1375. <dd><p>Always use a library call.
  1376. </p></dd>
  1377. </dl>
  1378. </dd>
  1379. <dt><code>-mmemcpy-strategy=<var>strategy</var></code></dt>
  1380. <dd><a name="index-mmemcpy_002dstrategy_003dstrategy"></a>
  1381. <p>Override the internal decision heuristic to decide if <code>__builtin_memcpy</code>
  1382. should be inlined and what inline algorithm to use when the expected size
  1383. of the copy operation is known. <var>strategy</var>
  1384. is a comma-separated list of <var>alg</var>:<var>max_size</var>:<var>dest_align</var> triplets.
  1385. <var>alg</var> is specified in <samp>-mstringop-strategy</samp>, <var>max_size</var> specifies
  1386. the max byte size with which inline algorithm <var>alg</var> is allowed. For the last
  1387. triplet, the <var>max_size</var> must be <code>-1</code>. The <var>max_size</var> of the triplets
  1388. in the list must be specified in increasing order. The minimal byte size for
  1389. <var>alg</var> is <code>0</code> for the first triplet and <code><var>max_size</var> + 1</code> of the
  1390. preceding range.
  1391. </p>
  1392. </dd>
  1393. <dt><code>-mmemset-strategy=<var>strategy</var></code></dt>
  1394. <dd><a name="index-mmemset_002dstrategy_003dstrategy"></a>
  1395. <p>The option is similar to <samp>-mmemcpy-strategy=</samp> except that it is to control
  1396. <code>__builtin_memset</code> expansion.
  1397. </p>
  1398. </dd>
  1399. <dt><code>-momit-leaf-frame-pointer</code></dt>
  1400. <dd><a name="index-momit_002dleaf_002dframe_002dpointer-2"></a>
  1401. <p>Don&rsquo;t keep the frame pointer in a register for leaf functions. This
  1402. avoids the instructions to save, set up, and restore frame pointers and
  1403. makes an extra register available in leaf functions. The option
  1404. <samp>-fomit-leaf-frame-pointer</samp> removes the frame pointer for leaf functions,
  1405. which might make debugging harder.
  1406. </p>
  1407. </dd>
  1408. <dt><code>-mtls-direct-seg-refs</code></dt>
  1409. <dt><code>-mno-tls-direct-seg-refs</code></dt>
  1410. <dd><a name="index-mtls_002ddirect_002dseg_002drefs"></a>
  1411. <p>Controls whether TLS variables may be accessed with offsets from the
  1412. TLS segment register (<code>%gs</code> for 32-bit, <code>%fs</code> for 64-bit),
  1413. or whether the thread base pointer must be added. Whether or not this
  1414. is valid depends on the operating system, and whether it maps the
  1415. segment to cover the entire TLS area.
  1416. </p>
  1417. <p>For systems that use the GNU C Library, the default is on.
  1418. </p>
  1419. </dd>
  1420. <dt><code>-msse2avx</code></dt>
  1421. <dt><code>-mno-sse2avx</code></dt>
  1422. <dd><a name="index-msse2avx"></a>
  1423. <p>Specify that the assembler should encode SSE instructions with VEX
  1424. prefix. The option <samp>-mavx</samp> turns this on by default.
  1425. </p>
  1426. </dd>
  1427. <dt><code>-mfentry</code></dt>
  1428. <dt><code>-mno-fentry</code></dt>
  1429. <dd><a name="index-mfentry"></a>
  1430. <p>If profiling is active (<samp>-pg</samp>), put the profiling
  1431. counter call before the prologue.
  1432. Note: On x86 architectures the attribute <code>ms_hook_prologue</code>
  1433. isn&rsquo;t possible at the moment for <samp>-mfentry</samp> and <samp>-pg</samp>.
  1434. </p>
  1435. </dd>
  1436. <dt><code>-mrecord-mcount</code></dt>
  1437. <dt><code>-mno-record-mcount</code></dt>
  1438. <dd><a name="index-mrecord_002dmcount"></a>
  1439. <p>If profiling is active (<samp>-pg</samp>), generate a __mcount_loc section
  1440. that contains pointers to each profiling call. This is useful for
  1441. automatically patching and out calls.
  1442. </p>
  1443. </dd>
  1444. <dt><code>-mnop-mcount</code></dt>
  1445. <dt><code>-mno-nop-mcount</code></dt>
  1446. <dd><a name="index-mnop_002dmcount"></a>
  1447. <p>If profiling is active (<samp>-pg</samp>), generate the calls to
  1448. the profiling functions as NOPs. This is useful when they
  1449. should be patched in later dynamically. This is likely only
  1450. useful together with <samp>-mrecord-mcount</samp>.
  1451. </p>
  1452. </dd>
  1453. <dt><code>-mskip-rax-setup</code></dt>
  1454. <dt><code>-mno-skip-rax-setup</code></dt>
  1455. <dd><a name="index-mskip_002drax_002dsetup"></a>
  1456. <p>When generating code for the x86-64 architecture with SSE extensions
  1457. disabled, <samp>-mskip-rax-setup</samp> can be used to skip setting up RAX
  1458. register when there are no variable arguments passed in vector registers.
  1459. </p>
  1460. <p><strong>Warning:</strong> Since RAX register is used to avoid unnecessarily
  1461. saving vector registers on stack when passing variable arguments, the
  1462. impacts of this option are callees may waste some stack space,
  1463. misbehave or jump to a random location. GCC 4.4 or newer don&rsquo;t have
  1464. those issues, regardless the RAX register value.
  1465. </p>
  1466. </dd>
  1467. <dt><code>-m8bit-idiv</code></dt>
  1468. <dt><code>-mno-8bit-idiv</code></dt>
  1469. <dd><a name="index-m8bit_002didiv"></a>
  1470. <p>On some processors, like Intel Atom, 8-bit unsigned integer divide is
  1471. much faster than 32-bit/64-bit integer divide. This option generates a
  1472. run-time check. If both dividend and divisor are within range of 0
  1473. to 255, 8-bit unsigned integer divide is used instead of
  1474. 32-bit/64-bit integer divide.
  1475. </p>
  1476. </dd>
  1477. <dt><code>-mavx256-split-unaligned-load</code></dt>
  1478. <dt><code>-mavx256-split-unaligned-store</code></dt>
  1479. <dd><a name="index-mavx256_002dsplit_002dunaligned_002dload"></a>
  1480. <a name="index-mavx256_002dsplit_002dunaligned_002dstore"></a>
  1481. <p>Split 32-byte AVX unaligned load and store.
  1482. </p>
  1483. </dd>
  1484. <dt><code>-mstack-protector-guard=<var>guard</var></code></dt>
  1485. <dd><a name="index-mstack_002dprotector_002dguard_003dguard"></a>
  1486. <p>Generate stack protection code using canary at <var>guard</var>. Supported
  1487. locations are &lsquo;<samp>global</samp>&rsquo; for global canary or &lsquo;<samp>tls</samp>&rsquo; for per-thread
  1488. canary in the TLS block (the default). This option has effect only when
  1489. <samp>-fstack-protector</samp> or <samp>-fstack-protector-all</samp> is specified.
  1490. </p>
  1491. </dd>
  1492. <dt><code>-mmitigate-rop</code></dt>
  1493. <dd><a name="index-mmitigate_002drop"></a>
  1494. <p>Try to avoid generating code sequences that contain unintended return
  1495. opcodes, to mitigate against certain forms of attack. At the moment,
  1496. this option is limited in what it can do and should not be relied
  1497. on to provide serious protection.
  1498. </p>
  1499. </dd>
  1500. <dt><code>-mgeneral-regs-only</code></dt>
  1501. <dd><a name="index-mgeneral_002dregs_002donly-1"></a>
  1502. <p>Generate code that uses only the general-purpose registers. This
  1503. prevents the compiler from using floating-point, vector, mask and bound
  1504. registers.
  1505. </p>
  1506. </dd>
  1507. <dt><code>-mindirect-branch=<var>choice</var></code></dt>
  1508. <dd><a name="index-_002dmindirect_002dbranch"></a>
  1509. <p>Convert indirect call and jump with <var>choice</var>. The default is
  1510. &lsquo;<samp>keep</samp>&rsquo;, which keeps indirect call and jump unmodified.
  1511. &lsquo;<samp>thunk</samp>&rsquo; converts indirect call and jump to call and return thunk.
  1512. &lsquo;<samp>thunk-inline</samp>&rsquo; converts indirect call and jump to inlined call
  1513. and return thunk. &lsquo;<samp>thunk-extern</samp>&rsquo; converts indirect call and jump
  1514. to external call and return thunk provided in a separate object file.
  1515. You can control this behavior for a specific function by using the
  1516. function attribute <code>indirect_branch</code>. See <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>.
  1517. </p>
  1518. <p>Note that <samp>-mcmodel=large</samp> is incompatible with
  1519. <samp>-mindirect-branch=thunk</samp> nor
  1520. <samp>-mindirect-branch=thunk-extern</samp> since the thunk function may
  1521. not be reachable in large code model.
  1522. </p>
  1523. </dd>
  1524. <dt><code>-mfunction-return=<var>choice</var></code></dt>
  1525. <dd><a name="index-_002dmfunction_002dreturn"></a>
  1526. <p>Convert function return with <var>choice</var>. The default is &lsquo;<samp>keep</samp>&rsquo;,
  1527. which keeps function return unmodified. &lsquo;<samp>thunk</samp>&rsquo; converts function
  1528. return to call and return thunk. &lsquo;<samp>thunk-inline</samp>&rsquo; converts function
  1529. return to inlined call and return thunk. &lsquo;<samp>thunk-extern</samp>&rsquo; converts
  1530. function return to external call and return thunk provided in a separate
  1531. object file. You can control this behavior for a specific function by
  1532. using the function attribute <code>function_return</code>.
  1533. See <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>.
  1534. </p>
  1535. <p>Note that <samp>-mcmodel=large</samp> is incompatible with
  1536. <samp>-mfunction-return=thunk</samp> nor
  1537. <samp>-mfunction-return=thunk-extern</samp> since the thunk function may
  1538. not be reachable in large code model.
  1539. </p>
  1540. </dd>
  1541. <dt><code>-mindirect-branch-register</code></dt>
  1542. <dd><a name="index-_002dmindirect_002dbranch_002dregister"></a>
  1543. <p>Force indirect call and jump via register.
  1544. </p>
  1545. </dd>
  1546. </dl>
  1547. <p>These &lsquo;<samp>-m</samp>&rsquo; switches are supported in addition to the above
  1548. on x86-64 processors in 64-bit environments.
  1549. </p>
  1550. <dl compact="compact">
  1551. <dt><code>-m32</code></dt>
  1552. <dt><code>-m64</code></dt>
  1553. <dt><code>-mx32</code></dt>
  1554. <dt><code>-m16</code></dt>
  1555. <dt><code>-miamcu</code></dt>
  1556. <dd><a name="index-m32-5"></a>
  1557. <a name="index-m64-5"></a>
  1558. <a name="index-mx32"></a>
  1559. <a name="index-m16"></a>
  1560. <a name="index-miamcu"></a>
  1561. <p>Generate code for a 16-bit, 32-bit or 64-bit environment.
  1562. The <samp>-m32</samp> option sets <code>int</code>, <code>long</code>, and pointer types
  1563. to 32 bits, and
  1564. generates code that runs on any i386 system.
  1565. </p>
  1566. <p>The <samp>-m64</samp> option sets <code>int</code> to 32 bits and <code>long</code> and pointer
  1567. types to 64 bits, and generates code for the x86-64 architecture.
  1568. For Darwin only the <samp>-m64</samp> option also turns off the <samp>-fno-pic</samp>
  1569. and <samp>-mdynamic-no-pic</samp> options.
  1570. </p>
  1571. <p>The <samp>-mx32</samp> option sets <code>int</code>, <code>long</code>, and pointer types
  1572. to 32 bits, and
  1573. generates code for the x86-64 architecture.
  1574. </p>
  1575. <p>The <samp>-m16</samp> option is the same as <samp>-m32</samp>, except for that
  1576. it outputs the <code>.code16gcc</code> assembly directive at the beginning of
  1577. the assembly output so that the binary can run in 16-bit mode.
  1578. </p>
  1579. <p>The <samp>-miamcu</samp> option generates code which conforms to Intel MCU
  1580. psABI. It requires the <samp>-m32</samp> option to be turned on.
  1581. </p>
  1582. </dd>
  1583. <dt><code>-mno-red-zone</code></dt>
  1584. <dd><a name="index-mno_002dred_002dzone"></a>
  1585. <p>Do not use a so-called &ldquo;red zone&rdquo; for x86-64 code. The red zone is mandated
  1586. by the x86-64 ABI; it is a 128-byte area beyond the location of the
  1587. stack pointer that is not modified by signal or interrupt handlers
  1588. and therefore can be used for temporary data without adjusting the stack
  1589. pointer. The flag <samp>-mno-red-zone</samp> disables this red zone.
  1590. </p>
  1591. </dd>
  1592. <dt><code>-mcmodel=small</code></dt>
  1593. <dd><a name="index-mcmodel_003dsmall-3"></a>
  1594. <p>Generate code for the small code model: the program and its symbols must
  1595. be linked in the lower 2 GB of the address space. Pointers are 64 bits.
  1596. Programs can be statically or dynamically linked. This is the default
  1597. code model.
  1598. </p>
  1599. </dd>
  1600. <dt><code>-mcmodel=kernel</code></dt>
  1601. <dd><a name="index-mcmodel_003dkernel"></a>
  1602. <p>Generate code for the kernel code model. The kernel runs in the
  1603. negative 2 GB of the address space.
  1604. This model has to be used for Linux kernel code.
  1605. </p>
  1606. </dd>
  1607. <dt><code>-mcmodel=medium</code></dt>
  1608. <dd><a name="index-mcmodel_003dmedium-1"></a>
  1609. <p>Generate code for the medium model: the program is linked in the lower 2
  1610. GB of the address space. Small symbols are also placed there. Symbols
  1611. with sizes larger than <samp>-mlarge-data-threshold</samp> are put into
  1612. large data or BSS sections and can be located above 2GB. Programs can
  1613. be statically or dynamically linked.
  1614. </p>
  1615. </dd>
  1616. <dt><code>-mcmodel=large</code></dt>
  1617. <dd><a name="index-mcmodel_003dlarge-3"></a>
  1618. <p>Generate code for the large model. This model makes no assumptions
  1619. about addresses and sizes of sections.
  1620. </p>
  1621. </dd>
  1622. <dt><code>-maddress-mode=long</code></dt>
  1623. <dd><a name="index-maddress_002dmode_003dlong"></a>
  1624. <p>Generate code for long address mode. This is only supported for 64-bit
  1625. and x32 environments. It is the default address mode for 64-bit
  1626. environments.
  1627. </p>
  1628. </dd>
  1629. <dt><code>-maddress-mode=short</code></dt>
  1630. <dd><a name="index-maddress_002dmode_003dshort"></a>
  1631. <p>Generate code for short address mode. This is only supported for 32-bit
  1632. and x32 environments. It is the default address mode for 32-bit and
  1633. x32 environments.
  1634. </p></dd>
  1635. </dl>
  1636. <hr>
  1637. <div class="header">
  1638. <p>
  1639. Next: <a href="x86-Windows-Options.html#x86-Windows-Options" accesskey="n" rel="next">x86 Windows Options</a>, Previous: <a href="VxWorks-Options.html#VxWorks-Options" accesskey="p" rel="prev">VxWorks Options</a>, Up: <a href="Submodel-Options.html#Submodel-Options" accesskey="u" rel="up">Submodel Options</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Option-Index.html#Option-Index" title="Index" rel="index">Index</a>]</p>
  1640. </div>
  1641. </body>
  1642. </html>