123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231 |
- from sync_amz_data.public.amz_ad_client import SPClient,Account,SBClient,SDClient
- import pandas as pd
- import numpy as np
- from dateutil.parser import parse
- pd.set_option('display.max_columns', None)
- import warnings
- warnings.filterwarnings('ignore')
- pd.set_option('expand_frame_repr', False)
- from datetime import datetime,timezone,timedelta
- class Common_ETLMethod:
- def columnsName_modify(self,df):
- """
- 列名.换_,设置全部小写
- """
- df.columns = [i.replace(".","_").lower() for i in df.columns]
- return df
- def time_stamp_convert(self,df,time_columns:list):
- """
- 时间戳转换为utc
- """
- for time_column in time_columns:
- df[time_column] = pd.to_datetime(df[time_column]*1000000).map(lambda x: x.strftime("%Y-%m-%d %H:%M:%S"))
- df[time_columns] = df[time_columns].astype("datetime64")
- return df
- def TZ_Deal(self,df, time_columns):
- """
- TZ时间格式转换为utc
- """
- for time_column in time_columns:
- df[time_column] = df[time_column].map(lambda x: parse(x).strftime("%Y-%m-%d %H:%M:%S"))
- df[time_columns] = df[time_columns].astype("datetime64")
- return df
- def placement_segmentsplit(self,df,segment):
- """
- 拆分placement与percentage列
- """
- df[segment] = df[segment].astype("string")
- df[segment+str("_percentage")] = df[segment].str.extract("'percentage':.+([\d\.]{1,}),").astype('float32')
- df[segment+str("_placement")] = df[segment].str.extract("'placement':.+'(.+)'")
- df.replace(['nan','Nan','NaN'],np.nan,inplace=True)
- df.drop(columns=[segment],inplace=True)
- return df
- def expression_split(self,df,segment):
- """
- 拆分type,value列
- """
- df[segment] = df[segment].astype("string")
- df[segment+str("_type")] = df[segment].str.extract(r"'type':\s{0,1}'(.+?)',")
- df[segment+str("_value")] = df[segment].str.extract(r"'value':\s{0,1}[',[,{](.+)'")
- df[segment+str("_value")] = df[segment+str("_value")].map(lambda x: x if pd.isna(x) or "," not in x else "["+x+"'}]")
- df.replace(['nan','Nan','NaN'],np.nan,inplace=True)
- df.drop(columns=[segment],inplace=True)
- return df
- class Acount_ETL(Account,Common_ETLMethod):
- def portfolio_ETL(self):
- list_portfolio = self.get_portfolios()
- df_portfolio = pd.json_normalize(list_portfolio)
- # print(self.columnsName_modify(df_portfolio))
- return self.columnsName_modify(df_portfolio)
- class SP_ETL(SPClient,Common_ETLMethod):
- def campaigns_ETL(self):
- list_campaign_SP = list(self.iter_campaigns(**{"includeExtendedDataFields":True}))
- df_campaign = pd.json_normalize(list_campaign_SP)
- df_campaign = self.placement_segmentsplit(df_campaign, "dynamicBidding.placementBidding")
- df_campaign = self.TZ_Deal(df_campaign,["extendedData.creationDateTime","extendedData.lastUpdateDateTime"])
- # print(df_campaign)
- return self.columnsName_modify(df_campaign)
- def adGroups_ETL(self):
- list_adGroup_SP = list(self.iter_adGroups(**{"includeExtendedDataFields":True}))
- df_adGroup_SP = pd.json_normalize(list_adGroup_SP)
- df_adGroup_SP = self.TZ_Deal(df_adGroup_SP,["extendedData.creationDateTime","extendedData.lastUpdateDateTime"])
- return self.columnsName_modify(df_adGroup_SP)
- def ads_ETL(self):
- list_adId_SP = list(self.iter_ads(**{"includeExtendedDataFields":True}))
- df_adId_SP = pd.json_normalize(list_adId_SP)
- df_adId_SP = self.TZ_Deal(df_adId_SP,["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
- return self.columnsName_modify(df_adId_SP)
- def keywords_ETL(self):
- list_keywords_SP = list(self.iter_keywords(**{"includeExtendedDataFields":True}))
- df_keywords_SP = pd.json_normalize(list_keywords_SP)
- df_keywords_SP = self.TZ_Deal(df_keywords_SP, ["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
- return self.columnsName_modify(df_keywords_SP)
- def targets_ETL(self):
- list_targets = list(self.iter_targets())
- df_targets = pd.json_normalize(list_targets)
- df_targets = self.TZ_Deal(df_targets, ["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
- return self.columnsName_modify(df_targets)
- def budget_ETL(self,campaign_ids:list):
- list_budget = self.get_budget(campaign_ids = campaign_ids)['success']
- df_budget = pd.json_normalize(list_budget)
- df_budget = self.TZ_Deal(df_budget,["usageUpdatedTimestamp"])
- return self.columnsName_modify(df_budget)
- class SB_ETL(SBClient,Common_ETLMethod):
- reportMetrics = [
- 'applicableBudgetRuleId',
- 'applicableBudgetRuleName',
- 'attributedConversions14d',
- 'attributedConversions14dSameSKU',
- 'attributedDetailPageViewsClicks14d',
- 'attributedOrderRateNewToBrand14d',
- 'attributedOrdersNewToBrand14d',
- 'attributedOrdersNewToBrandPercentage14d',
- 'attributedSales14d',
- 'attributedSales14dSameSKU',
- 'attributedSalesNewToBrand14d',
- 'attributedSalesNewToBrandPercentage14d',
- 'attributedUnitsOrderedNewToBrand14d',
- 'attributedUnitsOrderedNewToBrandPercentage14d',
- 'campaignBudget',
- 'campaignBudgetType',
- 'campaignId',
- 'campaignName',
- 'campaignRuleBasedBudget',
- 'campaignStatus',
- 'clicks',
- 'cost',
- 'dpv14d',
- 'impressions',
- 'unitsSold14d',
- 'attributedBrandedSearches14d',
- 'topOfSearchImpressionShare']
- def campaigns_ETL(self):
- list_campaign_SB = list(self.iter_campaigns(**{"includeExtendedDataFields":True}))
- df_campaign = pd.json_normalize(list_campaign_SB)
- df_campaign = self.placement_segmentsplit(df_campaign, "bidding.bidAdjustmentsByPlacement")
- df_campaign = self.time_stamp_convert(df_campaign,["extendedData.creationDate","extendedData.lastUpdateDate"])
- # print(df_campaign)
- return self.columnsName_modify(df_campaign)
- def adGroups_ETL(self):
- list_adGroup_SB = list(self.iter_adGroups(**{"includeExtendedDataFields":True}))
- df_adGroup_SP = pd.json_normalize(list_adGroup_SB)
- df_adGroup_SP = self.time_stamp_convert(df_adGroup_SP,["extendedData.creationDate","extendedData.lastUpdateDate"])
- return self.columnsName_modify(df_adGroup_SP)
- def ads_ETL(self):
- list_adId_SB = list(self.iter_ads(**{"includeExtendedDataFields":True}))
- df_adId_SP = pd.json_normalize(list_adId_SB)
- df_adId_SP = self.time_stamp_convert(df_adId_SP,["extendedData.creationDate","extendedData.lastUpdateDate"])
- return self.columnsName_modify(df_adId_SP)
- def keywords_ETL(self):
- list_keywords_SB = [row for _ in list(self.iter_keywords()) for row in _]
- df_keywords_SP = pd.json_normalize(list_keywords_SB)
- return self.columnsName_modify(df_keywords_SP)
- def targets_ETL(self):
- list_targets = list(self.iter_targets())
- df_targets = pd.json_normalize(list_targets)
- # df_targets = self.TZ_Deal(df_targets, ["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
- df_targets = self.expression_split(df_targets,"resolvedExpressions")
- return self.columnsName_modify(df_targets)
- def budget_ETL(self,campaign_ids:list):
- list_budget = self.get_budget(campaignIds = campaign_ids)['success']
- df_budget = pd.json_normalize(list_budget)
- df_budget = self.TZ_Deal(df_budget,["usageUpdatedTimestamp"])
- return self.columnsName_modify(df_budget)
- def report_campaignsRecord_ETL(self):
- today = datetime.today()
- date = (datetime(today.year,today.month,today.day,tzinfo=timezone.utc)-timedelta(days=1)).strftime("%Y%m%d")
- print(date)
- need_removedList = []
- if need_removedList is not None:
- [SB_ETL.reportMetrics.remove(i) for i in need_removedList]
- list_campaigns_report = self.get_v3_report(record_type="campaigns",metrics=SB_ETL.reportMetrics,report_date=date)
- # print(list_campaigns_report)
- df_campaign_report = pd.json_normalize(list_campaigns_report)
- return df_campaign_report
- class SD_ETL(SDClient,Common_ETLMethod):
- def campaigns_ETL(self):
- list_campaign_SD = self.get_campaigns()
- df_campaign = pd.json_normalize(list_campaign_SD)
- df_campaign['startDate'] = df_campaign['startDate'].map(lambda x: datetime.strptime(x,"%Y%m%d").date()) # 转换为标准时间格式
- df_campaign['portfolioId'] = df_campaign['portfolioId'].fillna(-1).astype("int64") # 将portfolio列为空的填充为-1
- return self.columnsName_modify(df_campaign)
- def adGroups_ETL(self,**param):
- list_adGroups_SD = [row for _ in list(self.iter_adGroups(**param)) for row in _]
- df_adGroups_SD = pd.json_normalize(list_adGroups_SD)
- tactic = {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
- df_adGroups_SD["tactic_type"] = df_adGroups_SD['tactic'].map(tactic) # T00020、T00030解释字段
- return self.columnsName_modify(df_adGroups_SD)
- def ads_ETL(self):
- list_ads_SD = [row for _ in list(self.iter_ads()) for row in _]
- df_ads_SD = pd.json_normalize(list_ads_SD)
- return self.columnsName_modify(df_ads_SD)
- def targets_ETL(self,**param):
- list_targets = [row for _ in list(self.iter_targets(**param)) for row in _]
- df_targets = pd.json_normalize(list_targets)
- df_targets = self.expression_split(df_targets, "resolvedExpression")
- return self.columnsName_modify(df_targets)
- def budget_ETL(self,campaignsIds:list):
- list_budget = self.get_budget(campaignIds=campaignsIds)['success']
- df_budget = pd.json_normalize(list_budget)
- df_budget = self.TZ_Deal(df_budget,["usageUpdatedTimestamp"])
- return self.columnsName_modify(df_budget)
- if __name__ == '__main__':
- AWS_CREDENTIALS = {
- 'lwa_client_id': 'amzn1.application-oa2-client.ebd701cd07854fb38c37ee49ec4ba109',
- 'refresh_token': "Atzr|IwEBIL4ur8kbcwRyxVu_srprAAoTYzujnBvA6jU-0SMxkRgOhGjYJSUNGKvw24EQwJa1jG5RM76mQD2P22AKSq8qSD94LddoXGdKDO74eQVYl0RhuqOMFqdrEZpp1p4bIR6_N8VeSJDHr7UCuo8FiabkSHrkq7tsNvRP-yI-bnpQv4EayPBh7YwHVX3hYdRbhxaBvgJENgCuiEPb35Q2-Z6w6ujjiKUAK2VSbCFpENlEfcHNsjDeY7RCvFlwlCoHj1IeiNIaFTE9yXFu3aEWlExe3LzHv6PZyunEi88QJSXKSh56Um0e0eEg05rMv-VBM83cAqc5POmZnTP1vUdZO8fQv3NFLZ-xU6e1WQVxVPi5Cyqk4jYhGf1Y9t98N654y0tVvw74qNIsTrB-8bGS0Uhfe24oBEWmzObvBY3zhtT1d42myGUJv4pMTU6yPoS83zhPKm3LbUDEpBA1hvvc_09jHk7vUEAuFB-UAZzlht2C1yklzQ",
- 'lwa_client_secret': 'cbf0514186db4df91e04a8905f0a91b605eae4201254ced879d8bb90df4b474d',
- 'profile_id': "3006125408623189"
- }
- ac_etl = SB_ETL(**AWS_CREDENTIALS)
- # print(ac_etl.budget_ETL(campaign_ids=["126327624499318"]))
- print(ac_etl.report_targetsRecord_ETL())
|