Data_ETL.py 135 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411
  1. import logging
  2. from sync_amz_data.public.amz_ad_client import SPClient, Account, SBClient, SDClient, BaseClient
  3. import pandas as pd
  4. import numpy as np
  5. from dateutil.parser import parse
  6. import time
  7. pd.set_option('display.max_columns', None)
  8. import warnings
  9. warnings.filterwarnings('ignore')
  10. pd.set_option('expand_frame_repr', False)
  11. from datetime import datetime, timezone, timedelta
  12. import clickhouse_connect
  13. import pytz
  14. from typing import Literal
  15. class Common_ETLMethod(BaseClient):
  16. def timeZone(self):
  17. rel = self.get_profilesInfo()
  18. profileId = int(self.profile_id)
  19. df_info = pd.json_normalize(rel)
  20. return df_info.query("profileId==@profileId")['timezone'].values[0]
  21. def clickhouse_connect(self):
  22. conn = clickhouse_connect.get_client(host='3.93.43.158', port=8123, username='root',
  23. password='6f0eyLuiVn3slzbGWpzI')
  24. return conn
  25. def columnsName_modify(self, df):
  26. """
  27. 列名.换_,设置全部小写
  28. """
  29. df.columns = [i.replace(".", "_").lower() for i in df.columns]
  30. return df
  31. def time_stamp_convert(self, df, time_columns: list):
  32. """
  33. 时间戳转换为utc
  34. """
  35. for time_column in time_columns:
  36. df[time_column] = pd.to_datetime(df[time_column] * 1000000).map(lambda x: x.strftime("%Y-%m-%d %H:%M:%S"))
  37. df[time_columns] = df[time_columns].astype("datetime64[ns]")
  38. return df
  39. def TZ_Deal(self, df, time_columns):
  40. """
  41. TZ时间格式转换为utc
  42. """
  43. for time_column in time_columns:
  44. df[time_column] = df[time_column].map(lambda x: parse(x).strftime("%Y-%m-%d %H:%M:%S"))
  45. df[time_columns] = df[time_columns].astype("datetime64[ns]")
  46. return df
  47. def placement_segmentsplit(self, df, segment):
  48. """
  49. 拆分placement与percentage列
  50. """
  51. df[segment] = df[segment].astype("string")
  52. df[segment + str("_percentage")] = df[segment].str.extract("'percentage':.+([\d\.]{1,}),").astype('float32')
  53. df[segment + str("_placement")] = df[segment].str.extract("'placement':.+'(.+)'")
  54. df.replace(['nan', 'Nan', 'NaN'], np.nan, inplace=True)
  55. df.drop(columns=[segment], inplace=True)
  56. return df
  57. def expression_split(self, df, segment):
  58. """
  59. 拆分type,value列
  60. """
  61. df[segment] = df[segment].astype("string")
  62. df[segment + str("_type")] = df[segment].str.extract(r"'type':\s{0,1}'(.+?)',")
  63. df[segment + str("_value")] = df[segment].str.extract(r"'value':\s{0,1}[\'\[\{](.+)'")
  64. df[segment + str("_value")] = df[segment + str("_value")].map(
  65. lambda x: x if pd.isna(x) or "," not in x else "[{" + x + "'}]").str.replace("{{","{")
  66. df.replace(['nan', 'Nan', 'NaN'], np.nan, inplace=True)
  67. df.drop(columns=[segment], inplace=True)
  68. return df
  69. @classmethod
  70. def get_keyOvalue(cls,expressions, result: Literal['value', 'type']):
  71. if expressions not in [None,pd.NA,pd.NaT]:
  72. if len(expressions) > 1:
  73. return [i.get(result) for i in expressions]
  74. if len(expressions) == 1:
  75. sub_ = expressions[0].get(result)
  76. if sub_ is None:
  77. return None
  78. elif type(sub_) == str:
  79. return sub_
  80. elif type(sub_) == list:
  81. return [i.get(result) for i in sub_]
  82. else:
  83. return expressions
  84. else:
  85. return '-'
  86. def id_type_trans(self,df):
  87. id_columns = [i for i in df.columns if 'id' in i.lower() and 'bid' not in i.lower()]
  88. df[id_columns] = df[id_columns].fillna(-1).applymap(lambda x: round(int(x), 0)).astype("string")
  89. df[id_columns] = df[id_columns].applymap(lambda x: '' if x == '-1' else x)
  90. return df
  91. def type_trans(self, df_report, columns: list, timeZone_: str, extra_columns: list = []):
  92. # 添加字段
  93. df_report['profileId'] = self.profile_id
  94. df_report['timeZone'] = timeZone_
  95. df_needManualAdd = [i for i in columns if i not in df_report.columns]
  96. if len(df_needManualAdd) > 0:
  97. df_report[df_needManualAdd] = None
  98. columns.extend(extra_columns)
  99. columns.append("date") if "date" not in columns else columns
  100. columns.extend(["timeZone", "profileId"])
  101. # 修改字段类型
  102. df_report = self.id_type_trans(df_report)
  103. df_report['date'] = df_report['date'].astype("datetime64[ns]")
  104. # df_report[df_report.select_dtypes('O').columns] = df_report[df_report.select_dtypes('O').columns].astype('string')
  105. toFloat = [i for i in columns if 'sales' in i.lower() or 'percent' in i.lower() or 'video' in i.lower()]
  106. if len(toFloat) > 0:
  107. df_report[toFloat] = df_report[toFloat].applymap(lambda x: 0.0 if pd.isna(x) or x == '' else float(x))
  108. df_report[df_report.select_dtypes(["int"]).columns] = df_report[df_report.select_dtypes(["int"]).columns].fillna(0)
  109. df_report[df_report.select_dtypes(["float"]).columns] = df_report[df_report.select_dtypes(["float"]).columns].fillna(0.0)
  110. if "campaignRuleBasedBudget" in df_report.columns:
  111. df_report["campaignRuleBasedBudget"] = df_report["campaignRuleBasedBudget"].fillna(0.0)
  112. if "campaignRuleBasedBudgetAmount" in df_report.columns:
  113. df_report["campaignRuleBasedBudgetAmount"] = df_report["campaignRuleBasedBudgetAmount"].fillna(0.0)
  114. if "eCPAddToCart" in df_report.columns:
  115. df_report["eCPAddToCart"] = df_report["eCPAddToCart"].fillna(0.0)
  116. if "eCPBrandSearch" in df_report.columns:
  117. df_report["eCPBrandSearch"] =df_report["eCPBrandSearch"].fillna(0.0)
  118. if "viewClickThroughRate" in df_report.columns:
  119. df_report["viewClickThroughRate"] = df_report["viewClickThroughRate"].fillna(0.0)
  120. if "searchTermImpressionRank" in df_report.columns:
  121. df_report["searchTermImpressionRank"] = df_report["searchTermImpressionRank"].fillna(0)
  122. if "searchTermImpressionShare" in df_report.columns:
  123. df_report["searchTermImpressionShare"] = df_report["searchTermImpressionShare"].fillna(0.0)
  124. if "impressionsFrequencyAverage" in df_report.columns:
  125. df_report["impressionsFrequencyAverage"] = df_report["impressionsFrequencyAverage"].fillna(0.0)
  126. df_report.fillna(np.nan, inplace=True)
  127. # print(df_report[columns].info())
  128. # df_report.to_excel("df.xlsx")
  129. return df_report
  130. def today_(self):
  131. timeZone_ = self.timeZone()
  132. today_ = datetime.now(tz=pytz.timezone(timeZone_))
  133. logging.info(f"timezone:{timeZone_},today:{today_}")
  134. return timeZone_,today_
  135. def config_params(self,params:dict=None):
  136. timzone, today = self.today_()
  137. if params==None:
  138. params={}
  139. params["endDate"] = (datetime(today.year, today.month, today.day) - timedelta(days=1)).strftime("%Y-%m-%d")
  140. params["startDate"] = (datetime(today.year, today.month, today.day) - timedelta(days=1)).strftime("%Y-%m-%d")
  141. params["date"] = (datetime(today.year, today.month, today.day) - timedelta(days=1)).strftime("%Y%m%d")
  142. else:
  143. if params.get("endDate") == None:
  144. params["endDate"] = (datetime(today.year, today.month, today.day) - timedelta(days=1)).strftime("%Y-%m-%d")
  145. if params.get("startDate") == None:
  146. params["startDate"] = (datetime(today.year, today.month, today.day) - timedelta(days=1)).strftime("%Y-%m-%d")
  147. if params.get("date") == None:
  148. params["date"] = (datetime(today.year, today.month, today.day) - timedelta(days=1)).strftime("%Y%m%d")
  149. print(params)
  150. return params
  151. class Acount_ETL(Account, Common_ETLMethod):
  152. def portfolio_ETL(self):
  153. list_portfolio = self.get_portfolios()
  154. df_portfolio = pd.json_normalize(list_portfolio)
  155. # print(self.columnsName_modify(df_portfolio))
  156. return self.columnsName_modify(df_portfolio)
  157. class SP_ETL(SPClient, Common_ETLMethod):
  158. def campaigns_ETL(self):
  159. list_campaign_SP = list(self.iter_campaigns(**{"includeExtendedDataFields": True}))
  160. df_campaign = pd.json_normalize(list_campaign_SP)
  161. df_campaign = self.placement_segmentsplit(df_campaign, "dynamicBidding.placementBidding")
  162. df_campaign = self.TZ_Deal(df_campaign, ["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
  163. # print(df_campaign)
  164. return self.columnsName_modify(df_campaign)
  165. def adGroups_ETL(self):
  166. list_adGroup_SP = list(self.iter_adGroups(**{"includeExtendedDataFields": True}))
  167. df_adGroup_SP = pd.json_normalize(list_adGroup_SP)
  168. df_adGroup_SP = self.TZ_Deal(df_adGroup_SP,
  169. ["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
  170. return self.columnsName_modify(df_adGroup_SP)
  171. def ads_ETL(self):
  172. list_adId_SP = list(self.iter_ads(**{"includeExtendedDataFields": True}))
  173. df_adId_SP = pd.json_normalize(list_adId_SP)
  174. df_adId_SP = self.TZ_Deal(df_adId_SP, ["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
  175. return self.columnsName_modify(df_adId_SP)
  176. def keywords_ETL(self):
  177. list_keywords_SP = list(self.iter_keywords(**{"includeExtendedDataFields": True}))
  178. df_keywords_SP = pd.json_normalize(list_keywords_SP)
  179. df_keywords_SP = self.TZ_Deal(df_keywords_SP,
  180. ["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
  181. return self.columnsName_modify(df_keywords_SP)
  182. def targets_ETL(self):
  183. list_targets = list(self.iter_targets(**{"includeExtendedDataFields": True}))
  184. df_targets = pd.json_normalize(list_targets)
  185. df_targets = self.TZ_Deal(df_targets, ["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
  186. df_targets['resolvedExpressions_type'] = df_targets['resolvedExpression'].map(
  187. lambda x: self.get_keyOvalue(x, 'type'))
  188. df_targets['resolvedExpressions_value'] = df_targets['resolvedExpression'].map(
  189. lambda x: self.get_keyOvalue(x, 'value'))
  190. df_targets['expression_type'] = df_targets['expression'].map(
  191. lambda x: self.get_keyOvalue(x, 'type'))
  192. df_targets['expression_value'] = df_targets['expression'].map(
  193. lambda x: self.get_keyOvalue(x, 'value'))
  194. return self.columnsName_modify(df_targets)
  195. def negative_targets_ETL(self):
  196. list_targets = list(self.iter_negativetargeting(**{"includeExtendedDataFields": True}))
  197. df_targets = pd.json_normalize(list_targets)
  198. df_targets = self.TZ_Deal(df_targets, ["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
  199. df_targets['resolvedExpressions_type'] = df_targets['resolvedExpression'].map(
  200. lambda x: self.get_keyOvalue(x, 'type'))
  201. df_targets['resolvedExpressions_value'] = df_targets['resolvedExpression'].map(
  202. lambda x: self.get_keyOvalue(x, 'value'))
  203. df_targets['expression_type'] = df_targets['expression'].map(
  204. lambda x: self.get_keyOvalue(x, 'type'))
  205. df_targets['expression_value'] = df_targets['expression'].map(
  206. lambda x: self.get_keyOvalue(x, 'value'))
  207. return self.columnsName_modify(df_targets)
  208. def budget_ETL(self, campaign_ids: list):
  209. list_budget = self.get_budget(campaign_ids=campaign_ids)['success']
  210. df_budget = pd.json_normalize(list_budget)
  211. df_budget = self.TZ_Deal(df_budget, ["usageUpdatedTimestamp"])
  212. return self.columnsName_modify(df_budget)
  213. def reportV3_campaign_spCampaignsETL(self, conn, params:dict=None):
  214. print(params)
  215. timeZone_,today = self.today_()
  216. params = self.config_params(params)
  217. print("func_name:","reportV3_campaign_spCampaignsETL",'\n',"table_name:","SP_spCampaigns_campaignV3")
  218. if len(conn.query_df(f"select * from AmazonReport.SP_spCampaigns_campaignV3 where date='{params['startDate']}'"))>0:
  219. logging.info("数据已存在...")
  220. time.sleep(8.5)
  221. return 'Pass'
  222. params['reportType'] = "spCampaigns"
  223. params['columns'] = [
  224. 'campaignName', 'campaignId', 'campaignStatus', 'campaignBudgetAmount', 'campaignBudgetType',
  225. 'campaignRuleBasedBudgetAmount', 'campaignApplicableBudgetRuleId', 'campaignApplicableBudgetRuleName',
  226. 'campaignBudgetCurrencyCode', 'topOfSearchImpressionShare',
  227. 'impressions', 'clicks', 'cost', 'purchases1d', 'purchases7d', 'purchases14d', 'purchases30d',
  228. 'purchasesSameSku1d',
  229. 'purchasesSameSku7d', 'purchasesSameSku14d', 'purchasesSameSku30d', 'unitsSoldClicks1d',
  230. 'unitsSoldClicks7d',
  231. 'unitsSoldClicks14d', 'unitsSoldClicks30d', 'sales1d', 'sales7d', 'sales14d', 'sales30d',
  232. 'attributedSalesSameSku1d',
  233. 'attributedSalesSameSku7d', 'attributedSalesSameSku14d', 'attributedSalesSameSku30d', 'unitsSoldSameSku1d',
  234. 'unitsSoldSameSku7d', 'unitsSoldSameSku14d', 'unitsSoldSameSku30d', 'kindleEditionNormalizedPagesRead14d',
  235. 'kindleEditionNormalizedPagesRoyalties14d', 'date', 'campaignBiddingStrategy', 'costPerClick',
  236. 'clickThroughRate', 'spend'
  237. ] # 'startDate', 'endDate',
  238. params['groupby'] = ['campaign']
  239. params['timeUnit'] = 'DAILY'
  240. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  241. columns=params['columns'], startDate=params['startDate'],
  242. endDate=params['endDate'], reportType=params['reportType'])
  243. # print(list_report)
  244. df_report = pd.json_normalize(list_report)
  245. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  246. conn.insert_df("AmazonReport.SP_spCampaigns_campaignV3", df_report[params['columns']])
  247. time.sleep(1.05)
  248. print("插入完成SP_spCampaigns_campaignV3")
  249. df_rel = df_report[params['columns']]
  250. return df_rel
  251. def reportV3_adGroup_spCampaignsETL(self, conn, params:dict=None):
  252. print(params)
  253. timeZone_,today = self.today_()
  254. params = self.config_params(params)
  255. print("func_name:", "reportV3_adGroup_spCampaignsETL", '\n', "table_name:", "SP_spCampaigns_adGroupV3")
  256. if len(conn.query_df(
  257. f"select * from AmazonReport.SP_spCampaigns_adGroupV3 where date='{params['startDate']}'")) > 0:
  258. logging.info("数据已存在...")
  259. time.sleep(8.5)
  260. return 'Pass'
  261. params['reportType'] = "spCampaigns"
  262. params['columns'] = [
  263. 'adGroupName', 'adGroupId', 'adStatus','campaignName', 'campaignId', 'campaignStatus', 'campaignBudgetAmount', 'campaignBudgetType',
  264. 'campaignRuleBasedBudgetAmount', 'campaignApplicableBudgetRuleId', 'campaignApplicableBudgetRuleName',
  265. 'campaignBudgetCurrencyCode',
  266. 'impressions', 'clicks', 'cost', 'purchases1d', 'purchases7d', 'purchases14d', 'purchases30d',
  267. 'purchasesSameSku1d',
  268. 'purchasesSameSku7d', 'purchasesSameSku14d', 'purchasesSameSku30d', 'unitsSoldClicks1d',
  269. 'unitsSoldClicks7d',
  270. 'unitsSoldClicks14d', 'unitsSoldClicks30d', 'sales1d', 'sales7d', 'sales14d', 'sales30d',
  271. 'attributedSalesSameSku1d',
  272. 'attributedSalesSameSku7d', 'attributedSalesSameSku14d', 'attributedSalesSameSku30d', 'unitsSoldSameSku1d',
  273. 'unitsSoldSameSku7d', 'unitsSoldSameSku14d', 'unitsSoldSameSku30d', 'kindleEditionNormalizedPagesRead14d',
  274. 'kindleEditionNormalizedPagesRoyalties14d', 'date', 'campaignBiddingStrategy', 'costPerClick',
  275. 'clickThroughRate', 'spend'
  276. ] # 'startDate', 'endDate',
  277. params['groupby'] = ['adGroup',"campaign"]
  278. params['timeUnit'] = 'DAILY'
  279. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  280. columns=params['columns'], startDate=params['startDate'],
  281. endDate=params['endDate'], reportType=params['reportType'])
  282. # print(list_report)
  283. df_report = pd.json_normalize(list_report)
  284. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  285. conn.insert_df("AmazonReport.SP_spCampaigns_adGroupV3", df_report[params['columns']])
  286. time.sleep(1.05)
  287. print("插入完成SP_spCampaigns_adGroupV3")
  288. df_rel = df_report[params['columns']]
  289. return df_rel
  290. #
  291. def reportV3_campaignPlacement_spCampaignsETL(self, conn, params:dict=None):
  292. timeZone_,today = self.today_()
  293. params = self.config_params(params)
  294. params['reportType'] = "spCampaigns"
  295. print("func_name:", "reportV3_campaignPlacement_spCampaignsETL", '\n', "table_name:", "SP_spCampaigns_placementV3")
  296. if len(conn.query_df(
  297. f"select * from AmazonReport.SP_spCampaigns_placementV3 where date='{params['startDate']}'")) > 0:
  298. logging.info("数据已存在...")
  299. time.sleep(8.5)
  300. return 'Pass'
  301. params['columns'] = [
  302. 'placementClassification','campaignName', 'campaignId','campaignStatus', 'campaignBudgetAmount', 'campaignBudgetType',
  303. 'campaignRuleBasedBudgetAmount', 'campaignApplicableBudgetRuleId', 'campaignApplicableBudgetRuleName',
  304. 'campaignBudgetCurrencyCode',
  305. 'impressions', 'clicks', 'cost', 'purchases1d', 'purchases7d', 'purchases14d', 'purchases30d',
  306. 'purchasesSameSku1d',
  307. 'purchasesSameSku7d', 'purchasesSameSku14d', 'purchasesSameSku30d', 'unitsSoldClicks1d',
  308. 'unitsSoldClicks7d',
  309. 'unitsSoldClicks14d', 'unitsSoldClicks30d', 'sales1d', 'sales7d', 'sales14d', 'sales30d',
  310. 'attributedSalesSameSku1d',
  311. 'attributedSalesSameSku7d', 'attributedSalesSameSku14d', 'attributedSalesSameSku30d', 'unitsSoldSameSku1d',
  312. 'unitsSoldSameSku7d', 'unitsSoldSameSku14d', 'unitsSoldSameSku30d', 'kindleEditionNormalizedPagesRead14d',
  313. 'kindleEditionNormalizedPagesRoyalties14d', 'date', 'campaignBiddingStrategy', 'costPerClick',
  314. 'clickThroughRate', 'spend'
  315. ] # 'startDate', 'endDate',
  316. params['groupby'] = ['campaign','campaignPlacement']
  317. params['timeUnit'] = 'DAILY'
  318. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  319. columns=params['columns'], startDate=params['startDate'],
  320. endDate=params['endDate'], reportType=params['reportType'])
  321. # print(list_report)
  322. df_report = pd.json_normalize(list_report)
  323. # print(df_report)
  324. # print(df_report.columns)
  325. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  326. conn.insert_df("AmazonReport.SP_spCampaigns_placementV3", df_report[params['columns']])
  327. time.sleep(1.05)
  328. print("插入完成SP_spCampaigns_placementV3")
  329. df_rel = df_report[params['columns']]
  330. return df_rel
  331. def reportV3_targeting_spTargetingETL(self, conn, params:dict=None):
  332. timeZone_,today = self.today_()
  333. params = self.config_params(params)
  334. params['reportType'] = "spTargeting"
  335. print("func_name:", "reportV3_targeting_spTargetingETL", '\n', "table_name:",
  336. "SP_spTargeting_targetingV3")
  337. if len(conn.query_df(
  338. f"select * from AmazonReport.SP_spTargeting_targetingV3 where date='{params['startDate']}'")) > 0:
  339. logging.info("数据已存在...")
  340. time.sleep(8.5)
  341. return 'Pass'
  342. params['columns'] = [
  343. 'adKeywordStatus',
  344. 'impressions', 'clicks', 'costPerClick', 'clickThroughRate', 'cost', 'purchases1d', 'purchases7d',
  345. 'purchases14d',
  346. 'purchases30d', 'purchasesSameSku1d', 'purchasesSameSku7d', 'purchasesSameSku14d', 'purchasesSameSku30d',
  347. 'unitsSoldClicks1d', 'unitsSoldClicks7d', 'unitsSoldClicks14d', 'unitsSoldClicks30d', 'sales1d', 'sales7d',
  348. 'sales14d',
  349. 'sales30d', 'attributedSalesSameSku1d', 'attributedSalesSameSku7d', 'attributedSalesSameSku14d',
  350. 'attributedSalesSameSku30d', 'unitsSoldSameSku1d', 'unitsSoldSameSku7d', 'unitsSoldSameSku14d',
  351. 'unitsSoldSameSku30d',
  352. 'kindleEditionNormalizedPagesRead14d', 'kindleEditionNormalizedPagesRoyalties14d', 'salesOtherSku7d',
  353. 'unitsSoldOtherSku7d', 'acosClicks7d', 'acosClicks14d', 'roasClicks7d', 'roasClicks14d', 'keywordId',
  354. 'keyword',
  355. 'campaignBudgetCurrencyCode', 'date', 'portfolioId', 'campaignName', 'campaignId',
  356. 'campaignBudgetType', 'campaignBudgetAmount', 'campaignStatus', 'keywordBid', 'adGroupName', 'adGroupId',
  357. 'keywordType',
  358. 'matchType', 'targeting', 'topOfSearchImpressionShare'
  359. ] # 'startDate', 'endDate',
  360. params['groupby'] = ['targeting']
  361. params['timeUnit'] = 'DAILY'
  362. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  363. columns=params['columns'], startDate=params['startDate'],
  364. endDate=params['endDate'], reportType=params['reportType'])
  365. # print(list_report)
  366. df_report = pd.json_normalize(list_report)
  367. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  368. conn.insert_df("AmazonReport.SP_spTargeting_targetingV3", df_report[params['columns']])
  369. time.sleep(1.05)
  370. print("插入完成SP_spTargeting_targetingV3")
  371. df_rel = df_report[params['columns']]
  372. return df_rel
  373. def reportV3_searchTerm_spSearchTermETL(self, conn, params:dict=None):
  374. timeZone_,today = self.today_()
  375. params = self.config_params(params)
  376. print("func_name:", "reportV3_searchTerm_spSearchTermETL", '\n', "table_name:",
  377. "SP_spSearchTerm_searchTermV3")
  378. if len(conn.query_df(
  379. f"select * from AmazonReport.SP_spSearchTerm_searchTermV3 where date='{params['startDate']}'")) > 0:
  380. logging.info("数据已存在...")
  381. time.sleep(8.5)
  382. return 'Pass'
  383. params['reportType'] = "spSearchTerm"
  384. params['columns'] = [
  385. 'adKeywordStatus',
  386. 'impressions', 'clicks', 'costPerClick', 'clickThroughRate', 'cost', 'purchases1d', 'purchases7d',
  387. 'purchases14d',
  388. 'purchases30d', 'purchasesSameSku1d', 'purchasesSameSku7d', 'purchasesSameSku14d', 'purchasesSameSku30d',
  389. 'unitsSoldClicks1d', 'unitsSoldClicks7d', 'unitsSoldClicks14d', 'unitsSoldClicks30d', 'sales1d', 'sales7d',
  390. 'sales14d',
  391. 'sales30d', 'attributedSalesSameSku1d', 'attributedSalesSameSku7d', 'attributedSalesSameSku14d',
  392. 'attributedSalesSameSku30d', 'unitsSoldSameSku1d', 'unitsSoldSameSku7d', 'unitsSoldSameSku14d',
  393. 'unitsSoldSameSku30d',
  394. 'kindleEditionNormalizedPagesRead14d', 'kindleEditionNormalizedPagesRoyalties14d', 'salesOtherSku7d',
  395. 'unitsSoldOtherSku7d', 'acosClicks7d', 'acosClicks14d', 'roasClicks7d', 'roasClicks14d', 'keywordId',
  396. 'keyword',
  397. 'campaignBudgetCurrencyCode', 'date', 'portfolioId', 'searchTerm', 'campaignName', 'campaignId',
  398. 'campaignBudgetType', 'campaignBudgetAmount', 'campaignStatus', 'keywordBid', 'adGroupName', 'adGroupId',
  399. 'keywordType',
  400. 'matchType', 'targeting'
  401. ] # 'startDate', 'endDate',
  402. params['groupby'] = ['searchTerm']
  403. params['timeUnit'] = 'DAILY'
  404. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  405. columns=params['columns'], startDate=params['startDate'],
  406. endDate=params['endDate'], reportType=params['reportType'])
  407. # print(list_report)
  408. df_report = pd.json_normalize(list_report)
  409. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  410. conn.insert_df("AmazonReport.SP_spSearchTerm_searchTermV3", df_report[params['columns']])
  411. time.sleep(1.05)
  412. print("插入完成SP_spSearchTerm_searchTermV3")
  413. df_rel = df_report[params['columns']]
  414. return df_rel
  415. def reportV3_advertiser_spAdvertisedProductETL(self, conn, params:dict=None):
  416. timeZone_,today = self.today_()
  417. params = self.config_params(params)
  418. print("func_name:", "reportV3_advertiser_spAdvertisedProductETL", '\n', "table_name:",
  419. "SP_spAdvertisedProduct_advertiserV3")
  420. if len(conn.query_df(
  421. f"select * from AmazonReport.SP_spAdvertisedProduct_advertiserV3 where date='{params['startDate']}'")) > 0:
  422. logging.info("数据已存在...")
  423. time.sleep(8.5)
  424. return 'Pass'
  425. params['reportType'] = "spAdvertisedProduct"
  426. params['columns'] = [
  427. 'date', 'campaignName', 'campaignId', 'adGroupName', 'adGroupId', 'adId', 'portfolioId', 'impressions',
  428. 'clicks', 'costPerClick', 'clickThroughRate', 'cost', 'spend', 'campaignBudgetCurrencyCode',
  429. 'campaignBudgetAmount',
  430. 'campaignBudgetType', 'campaignStatus', 'advertisedAsin', 'advertisedSku', 'purchases1d', 'purchases7d',
  431. 'purchases14d',
  432. 'purchases30d', 'purchasesSameSku1d', 'purchasesSameSku7d', 'purchasesSameSku14d', 'purchasesSameSku30d',
  433. 'unitsSoldClicks1d', 'unitsSoldClicks7d', 'unitsSoldClicks14d', 'unitsSoldClicks30d', 'sales1d', 'sales7d',
  434. 'sales14d',
  435. 'sales30d', 'attributedSalesSameSku1d', 'attributedSalesSameSku7d', 'attributedSalesSameSku14d',
  436. 'attributedSalesSameSku30d', 'salesOtherSku7d', 'unitsSoldSameSku1d', 'unitsSoldSameSku7d',
  437. 'unitsSoldSameSku14d',
  438. 'unitsSoldSameSku30d', 'unitsSoldOtherSku7d', 'kindleEditionNormalizedPagesRead14d',
  439. 'kindleEditionNormalizedPagesRoyalties14d', 'acosClicks7d', 'acosClicks14d', 'roasClicks7d', 'roasClicks14d'
  440. ] # 'startDate', 'endDate',
  441. params['groupby'] = ['advertiser']
  442. params['timeUnit'] = 'DAILY'
  443. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  444. columns=params['columns'], startDate=params['startDate'],
  445. endDate=params['endDate'], reportType=params['reportType'])
  446. # print(list_report)
  447. df_report = pd.json_normalize(list_report)
  448. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  449. # TODO
  450. df_report[df_report.select_dtypes(["object"]).columns] = df_report[df_report.select_dtypes(["object"]).columns].fillna('')
  451. df_report[df_report.select_dtypes(["string"]).columns] = df_report[df_report.select_dtypes(["string"]).columns].fillna('')
  452. # print(df_report.info())
  453. conn.insert_df("AmazonReport.SP_spAdvertisedProduct_advertiserV3", df_report[params['columns']])
  454. time.sleep(1.05)
  455. print("插入完成SP_spAdvertisedProduct_advertiserV3")
  456. df_rel = df_report[params['columns']]
  457. return df_rel
  458. def reportV3_asin_spPurchasedProductETL(self, conn, params:dict=None):
  459. timeZone_,today = self.today_()
  460. params = self.config_params(params)
  461. print("func_name:", "reportV3_asin_spPurchasedProductETL", '\n', "table_name:",
  462. "SP_spPurchasedProduct_asinV3")
  463. if params.get('Download') in [None,False]:
  464. if len(conn.query_df(
  465. f"select * from AmazonReport.SP_spPurchasedProduct_asinV3 where date='{params['startDate']}'")) > 0:
  466. logging.info("数据已存在...")
  467. time.sleep(8.5)
  468. return 'Pass'
  469. params['reportType'] = "spPurchasedProduct"
  470. params['columns'] = [
  471. 'date', 'portfolioId', 'campaignName', 'campaignId', 'adGroupName', 'adGroupId', 'keywordId', 'keyword',
  472. 'keywordType', 'advertisedAsin', 'purchasedAsin', 'advertisedSku', 'campaignBudgetCurrencyCode',
  473. 'matchType',
  474. 'unitsSoldClicks1d', 'unitsSoldClicks7d', 'unitsSoldClicks14d', 'unitsSoldClicks30d', 'sales1d', 'sales7d',
  475. 'sales14d',
  476. 'sales30d', 'purchases1d', 'purchases7d', 'purchases14d', 'purchases30d', 'unitsSoldOtherSku1d',
  477. 'unitsSoldOtherSku7d',
  478. 'unitsSoldOtherSku14d', 'unitsSoldOtherSku30d', 'salesOtherSku1d', 'salesOtherSku7d', 'salesOtherSku14d',
  479. 'salesOtherSku30d', 'purchasesOtherSku1d', 'purchasesOtherSku7d', 'purchasesOtherSku14d',
  480. 'purchasesOtherSku30d',
  481. 'kindleEditionNormalizedPagesRead14d', 'kindleEditionNormalizedPagesRoyalties14d'
  482. ] # 'startDate', 'endDate',
  483. params['groupby'] = ['asin']
  484. params['timeUnit'] = 'DAILY'
  485. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  486. columns=params['columns'], startDate=params['startDate'],
  487. endDate=params['endDate'], reportType=params['reportType'])
  488. # print(list_report)
  489. df_report = pd.json_normalize(list_report)
  490. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  491. df_report['advertisedAsin'] = df_report['advertisedAsin'].map(lambda x: str(x) if x is not None else '-')
  492. df_report['advertisedSku'] = df_report['advertisedSku'].map(lambda x: str(x) if x is not None else '-')
  493. print(df_report.dtypes)
  494. # df_report.to_excel('ATEST.xlsx')
  495. if params.get('Download') in [None, False]:
  496. conn.insert_df("AmazonReport.SP_spPurchasedProduct_asinV3", df_report[params['columns']])
  497. time.sleep(1.05)
  498. print("插入完成SP_spPurchasedProduct_asinV3")
  499. df_rel = df_report[params['columns']]
  500. return df_rel
  501. class SB_ETL(SBClient, Common_ETLMethod):
  502. def campaigns_ETL(self):
  503. list_campaign_SB = list(self.iter_campaigns(**{"includeExtendedDataFields": True}))
  504. df_campaign = pd.json_normalize(list_campaign_SB)
  505. df_campaign = self.placement_segmentsplit(df_campaign, "bidding.bidAdjustmentsByPlacement")
  506. df_campaign = self.time_stamp_convert(df_campaign, ["extendedData.creationDate", "extendedData.lastUpdateDate"])
  507. # print(df_campaign)
  508. return self.columnsName_modify(df_campaign)
  509. def adGroups_ETL(self):
  510. list_adGroup_SB = list(self.iter_adGroups(**{"includeExtendedDataFields": True}))
  511. df_adGroup_SP = pd.json_normalize(list_adGroup_SB)
  512. df_adGroup_SP = self.time_stamp_convert(df_adGroup_SP,
  513. ["extendedData.creationDate", "extendedData.lastUpdateDate"])
  514. return self.columnsName_modify(df_adGroup_SP)
  515. def ads_ETL(self):
  516. list_adId_SB = list(self.iter_ads(**{"includeExtendedDataFields": True}))
  517. df_adId_SP = pd.json_normalize(list_adId_SB)
  518. df_adId_SP = self.time_stamp_convert(df_adId_SP, ["extendedData.creationDate", "extendedData.lastUpdateDate"])
  519. return self.columnsName_modify(df_adId_SP)
  520. def keywords_ETL(self):
  521. list_keywords_SB = [row for _ in list(self.iter_keywords()) for row in _]
  522. df_keywords_SP = pd.json_normalize(list_keywords_SB)
  523. return self.columnsName_modify(df_keywords_SP)
  524. def targets_ETL(self):
  525. list_targets = list(self.iter_targets())
  526. df_targets = pd.json_normalize(list_targets)
  527. # df_targets = self.TZ_Deal(df_targets, ["extendedData.creationDateTime", "extendedData.lastUpdateDateTime"])
  528. # df_targets = self.expression_split(df_targets, "resolvedExpressions")
  529. df_targets = self.id_type_trans(df_targets)
  530. df_targets['expressions_type'] = df_targets['expressions'].map(
  531. lambda x: self.get_keyOvalue(x, 'type'))
  532. df_targets['expressions_value'] = df_targets['expressions'].map(
  533. lambda x: self.get_keyOvalue(x, 'value'))
  534. df_targets['resolvedExpressions_type'] = df_targets['resolvedExpressions'].map(lambda x:self.get_keyOvalue(x,'type'))
  535. df_targets['resolvedExpressions_value'] = df_targets['resolvedExpressions'].map(lambda x:self.get_keyOvalue(x,'value'))
  536. return self.columnsName_modify(df_targets)
  537. def budget_ETL(self, campaign_ids: list):
  538. list_budget = self.get_budget(campaignIds=campaign_ids)['success']
  539. df_budget = pd.json_normalize(list_budget)
  540. df_budget = self.TZ_Deal(df_budget, ["usageUpdatedTimestamp"])
  541. return self.columnsName_modify(df_budget)
  542. def reportV3_campaign_sbCampaigns_ETL(self, conn, params:dict=None):
  543. print(params)
  544. timeZone_,today = self.today_()
  545. params = self.config_params(params)
  546. print("func_name:", "reportV3_campaign_sbCampaigns_ETL", '\n', "table_name:",
  547. "SB_sbCampaigns_campaignV3")
  548. if len(conn.query_df(
  549. f"select * from AmazonReport.SB_sbCampaigns_campaignV3 where date='{params['startDate']}'")) > 0:
  550. logging.info("数据已存在...")
  551. time.sleep(8.5)
  552. return 'Pass'
  553. params['reportType'] = "sbCampaigns" #sbCampaigns
  554. params['columns'] = ['campaignName','campaignId','campaignStatus',
  555. 'campaignBudgetAmount', 'campaignBudgetCurrencyCode', 'campaignBudgetType','impressions',
  556. 'clicks', 'cost','addToCart', 'addToCartClicks', 'addToCartRate','brandedSearches','brandedSearchesClicks'
  557. ,'costType','detailPageViews','detailPageViewsClicks','eCPAddToCart','newToBrandDetailPageViewRate',
  558. 'newToBrandDetailPageViews', 'newToBrandDetailPageViewsClicks',
  559. 'newToBrandECPDetailPageView','newToBrandSales', 'newToBrandSalesClicks','newToBrandPurchases',
  560. 'newToBrandPurchasesClicks', 'newToBrandPurchasesPercentage','newToBrandPurchasesRate','newToBrandUnitsSold',
  561. 'newToBrandUnitsSoldClicks', 'newToBrandUnitsSoldPercentage','newToBrandSalesPercentage','date', 'purchases',
  562. 'purchasesClicks', 'purchasesPromoted', 'sales', 'salesClicks', 'salesPromoted','topOfSearchImpressionShare',
  563. 'unitsSold', 'unitsSoldClicks', 'video5SecondViewRate',
  564. 'video5SecondViews', 'videoCompleteViews', 'videoFirstQuartileViews', 'videoMidpointViews',
  565. 'videoThirdQuartileViews', 'videoUnmutes', 'viewabilityRate', 'viewableImpressions',
  566. 'viewClickThroughRate'
  567. ] # 'startDate', 'endDate',
  568. params['groupby'] = ['campaign']
  569. params['timeUnit'] = 'DAILY'
  570. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  571. columns=params['columns'], startDate=params['startDate'],
  572. endDate=params['endDate'], reportType=params['reportType'])
  573. # print(list_report)
  574. df_report = pd.json_normalize(list_report)
  575. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  576. # print(df_report)
  577. conn.insert_df("AmazonReport.SB_sbCampaigns_campaignV3", df_report[params['columns']])
  578. time.sleep(1.05)
  579. print("插入完成SB_sbCampaigns_campaignV3")
  580. df_rel = df_report[params['columns']]
  581. return df_rel
  582. def reportV3_adGroup_sbAdGroup_ETL(self, conn, params:dict=None):
  583. print(params)
  584. timeZone_,today = self.today_()
  585. params = self.config_params(params)
  586. print("func_name:", "reportV3_adGroup_sbAdGroup_ETL", '\n', "table_name:",
  587. "SB_sbAdGroup_adGroupV3")
  588. if len(conn.query_df(
  589. f"select * from AmazonReport.SB_sbAdGroup_adGroupV3 where date='{params['startDate']}'")) > 0:
  590. logging.info("数据已存在...")
  591. time.sleep(8.5)
  592. return 'Pass'
  593. params['reportType'] = "sbAdGroup" #sbCampaigns
  594. params['columns'] = ['campaignName','campaignId','campaignBudgetCurrencyCode','adGroupName','adGroupId', 'impressions', 'clicks', 'cost',
  595. 'addToCartRate', 'brandedSearches', 'brandedSearchesClicks','detailPageViews', 'detailPageViewsClicks',
  596. 'eCPAddToCart','newToBrandSales', 'newToBrandSalesClicks','newToBrandPurchases', 'newToBrandPurchasesClicks',
  597. 'newToBrandUnitsSold', 'newToBrandUnitsSoldClicks','date',
  598. 'purchases', 'purchasesClicks', 'sales', 'salesClicks',
  599. 'unitsSold', 'unitsSoldClicks', 'videoCompleteViews',
  600. 'videoFirstQuartileViews', 'videoMidpointViews', 'videoThirdQuartileViews', 'videoUnmutes',
  601. 'viewabilityRate', 'viewClickThroughRate'
  602. ] # 'startDate', 'endDate',
  603. params['groupby'] = ['adGroup']
  604. params['timeUnit'] = 'DAILY'
  605. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  606. columns=params['columns'], startDate=params['startDate'],
  607. endDate=params['endDate'], reportType=params['reportType'])
  608. # print(list_report)
  609. df_report = pd.json_normalize(list_report)
  610. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  611. # print(df_report)
  612. conn.insert_df("AmazonReport.SB_sbAdGroup_adGroupV3", df_report[params['columns']])
  613. time.sleep(1.05)
  614. print("插入完成SB_sbAdGroup_adGroupV3")
  615. df_rel = df_report[params['columns']]
  616. return df_rel
  617. def reportV3_sbCampaignPlacement_ETL(self, conn, params:dict=None):
  618. print(params)
  619. timeZone_,today = self.today_()
  620. params = self.config_params(params)
  621. print("func_name:", "reportV3_sbCampaignPlacement_ETL", '\n', "table_name:",
  622. "SB_sbCampaigns_placementV3")
  623. if len(conn.query_df(
  624. f"select * from AmazonReport.SB_sbCampaigns_placementV3 where date='{params['startDate']}'")) > 0:
  625. logging.info("数据已存在...")
  626. time.sleep(8.5)
  627. return 'Pass'
  628. params['reportType'] = "sbCampaignPlacement" #sbCampaigns
  629. params['columns'] = ['placementClassification','campaignName','campaignId','campaignStatus','campaignBudgetAmount','campaignBudgetType','campaignBudgetCurrencyCode',
  630. 'impressions','clicks', 'cost','addToCart', 'addToCartClicks', 'addToCartRate', 'brandedSearches',
  631. 'brandedSearchesClicks', 'costType','detailPageViews','detailPageViewsClicks', 'eCPAddToCart', 'newToBrandDetailPageViewRate',
  632. 'newToBrandDetailPageViews', 'newToBrandDetailPageViewsClicks','newToBrandECPDetailPageView','newToBrandSales', 'newToBrandSalesClicks',
  633. 'newToBrandPurchases', 'newToBrandPurchasesClicks','newToBrandPurchasesPercentage', 'newToBrandPurchasesRate',
  634. 'newToBrandUnitsSold','newToBrandUnitsSoldClicks', 'newToBrandUnitsSoldPercentage','newToBrandSalesPercentage',
  635. 'date', 'purchases', 'purchasesClicks', 'purchasesPromoted', 'sales', 'salesClicks', 'salesPromoted',
  636. 'unitsSold', 'unitsSoldClicks', 'video5SecondViewRate', 'video5SecondViews','videoCompleteViews', 'videoFirstQuartileViews',
  637. 'videoMidpointViews', 'videoThirdQuartileViews', 'videoUnmutes','viewabilityRate', 'viewableImpressions', 'viewClickThroughRate'
  638. ] # 'startDate', 'endDate',
  639. params['groupby'] = ['campaignPlacement']
  640. params['timeUnit'] = 'DAILY'
  641. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  642. columns=params['columns'], startDate=params['startDate'],
  643. endDate=params['endDate'], reportType=params['reportType'])
  644. # print(list_report)
  645. df_report = pd.json_normalize(list_report)
  646. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  647. # print(df_report)
  648. conn.insert_df("AmazonReport.SB_sbCampaigns_placementV3", df_report[params['columns']])
  649. time.sleep(1.05)
  650. print("插入完成SB_sbCampaigns_placementV3")
  651. df_rel = df_report[params['columns']]
  652. return df_rel
  653. def reportV3_sbTargeting_ETL(self, conn, params:dict=None):
  654. print(params)
  655. timeZone_,today = self.today_()
  656. params = self.config_params(params)
  657. print("func_name:", "reportV3_sbTargeting_ETL", '\n', "table_name:",
  658. "SB_sbTargeting_targetingV3")
  659. if len(conn.query_df(
  660. f"select * from AmazonReport.SB_sbTargeting_targetingV3 where date='{params['startDate']}'")) > 0:
  661. logging.info("数据已存在...")
  662. time.sleep(8.5)
  663. return 'Pass'
  664. params['reportType'] = "sbTargeting" #sbCampaigns
  665. params['columns'] = [
  666. 'campaignName','campaignId','campaignStatus','campaignBudgetAmount','campaignBudgetType','campaignBudgetCurrencyCode',
  667. 'adGroupName','adGroupId','keywordText','keywordId', 'adKeywordStatus', 'keywordType', 'matchType','keywordBid',
  668. 'targetingText', 'targetingId', 'targetingType', 'impressions', 'clicks', 'cost',
  669. 'addToCart', 'addToCartClicks', 'addToCartRate', 'brandedSearches', 'brandedSearchesClicks',
  670. 'costType', 'detailPageViews', 'detailPageViewsClicks','eCPAddToCart','newToBrandDetailPageViewRate',
  671. 'newToBrandDetailPageViews','newToBrandDetailPageViewsClicks','newToBrandECPDetailPageView','newToBrandSales',
  672. 'newToBrandSalesClicks','newToBrandPurchases', 'newToBrandPurchasesClicks',
  673. 'newToBrandPurchasesPercentage', 'newToBrandPurchasesRate', 'newToBrandUnitsSold', 'newToBrandUnitsSoldClicks', 'newToBrandUnitsSoldPercentage',
  674. 'newToBrandSalesPercentage','date', 'purchases', 'purchasesClicks', 'purchasesPromoted',
  675. 'sales', 'salesClicks', 'salesPromoted', 'targetingExpression', 'topOfSearchImpressionShare'
  676. ] # 'startDate', 'endDate',
  677. params['groupby'] = ['targeting']
  678. params['timeUnit'] = 'DAILY'
  679. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  680. columns=params['columns'], startDate=params['startDate'],
  681. endDate=params['endDate'], reportType=params['reportType'])
  682. # print(list_report)
  683. df_report = pd.json_normalize(list_report)
  684. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  685. # print(df_report)
  686. conn.insert_df("AmazonReport.SB_sbTargeting_targetingV3", df_report[params['columns']])
  687. time.sleep(1.05)
  688. print("插入完成SB_sbTargeting_targetingV3")
  689. df_rel = df_report[params['columns']]
  690. return df_rel
  691. def reportV3_sbSearchTerm_ETL(self, conn, params:dict=None):
  692. print(params)
  693. timeZone_,today = self.today_()
  694. params = self.config_params(params)
  695. print("func_name:", "reportV3_sbSearchTerm_ETL", '\n', "table_name:",
  696. "SB_sbSearchTerm_searchTermV3")
  697. if len(conn.query_df(
  698. f"select * from AmazonReport.SB_sbSearchTerm_searchTermV3 where date='{params['startDate']}'")) > 0:
  699. logging.info("数据已存在...")
  700. time.sleep(8.5)
  701. return 'Pass'
  702. params['reportType'] = "sbSearchTerm" #sbCampaigns
  703. params['columns'] = [
  704. 'campaignName','campaignId','campaignStatus','campaignBudgetAmount','campaignBudgetType', 'campaignBudgetCurrencyCode', 'adGroupName',
  705. 'adGroupId', 'keywordText','keywordId','adKeywordStatus', 'matchType','keywordBid','impressions', 'clicks', 'cost', 'costType', 'date',
  706. 'purchases', 'purchasesClicks', 'sales', 'salesClicks', 'searchTerm', 'unitsSold',
  707. 'video5SecondViewRate', 'video5SecondViews', 'videoCompleteViews', 'videoFirstQuartileViews', 'videoMidpointViews',
  708. 'videoThirdQuartileViews', 'videoUnmutes', 'viewabilityRate', 'viewableImpressions', 'viewClickThroughRate'
  709. ] # 'startDate', 'endDate',
  710. params['groupby'] = ['searchTerm']
  711. params['timeUnit'] = 'DAILY'
  712. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  713. columns=params['columns'], startDate=params['startDate'],
  714. endDate=params['endDate'], reportType=params['reportType'])
  715. # print(list_report)
  716. df_report = pd.json_normalize(list_report)
  717. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  718. # print(df_report)
  719. conn.insert_df("AmazonReport.SB_sbSearchTerm_searchTermV3", df_report[params['columns']])
  720. time.sleep(1.05)
  721. print("插入完成SB_sbSearchTerm_searchTermV3")
  722. df_rel = df_report[params['columns']]
  723. return df_rel
  724. def reportV3_sbAds_ETL(self, conn, params:dict=None):
  725. print(params)
  726. timeZone_,today = self.today_()
  727. params = self.config_params(params)
  728. print("func_name:", "reportV3_sbAds_ETL", '\n', "table_name:",
  729. "SB_sbAds_adsV3")
  730. if len(conn.query_df(
  731. f"select * from AmazonReport.SB_sbAds_adsV3 where date='{params['startDate']}'")) > 0:
  732. logging.info("数据已存在...")
  733. time.sleep(8.5)
  734. return 'Pass'
  735. params['reportType'] = "sbAds" #sbCampaigns
  736. params['columns'] = [
  737. 'campaignName', 'campaignId','campaignStatus','campaignBudgetAmount','campaignBudgetCurrencyCode', 'campaignBudgetType',
  738. 'adGroupName','adGroupId', 'adId','impressions','clicks', 'cost',
  739. 'addToCart', 'addToCartClicks', 'addToCartRate', 'brandedSearches',
  740. 'brandedSearchesClicks', 'costType','detailPageViews', 'detailPageViewsClicks','eCPAddToCart',
  741. 'newToBrandDetailPageViewRate', 'newToBrandDetailPageViews','newToBrandDetailPageViewsClicks','newToBrandECPDetailPageView',
  742. 'newToBrandSales','newToBrandSalesClicks', 'newToBrandPurchases',
  743. 'newToBrandPurchasesClicks', 'newToBrandPurchasesPercentage', 'newToBrandPurchasesRate', 'newToBrandUnitsSold', 'newToBrandUnitsSoldClicks',
  744. 'newToBrandUnitsSoldPercentage','newToBrandSalesPercentage','date','purchases', 'purchasesClicks', 'purchasesPromoted', 'sales', 'salesClicks',
  745. 'salesPromoted', 'unitsSold', 'unitsSoldClicks', 'video5SecondViewRate', 'video5SecondViews',
  746. 'videoCompleteViews', 'videoFirstQuartileViews', 'videoMidpointViews', 'videoThirdQuartileViews', 'videoUnmutes',
  747. 'viewabilityRate', 'viewableImpressions'
  748. ] # 'startDate', 'endDate',
  749. params['groupby'] = ['ads']
  750. params['timeUnit'] = 'DAILY'
  751. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  752. columns=params['columns'], startDate=params['startDate'],
  753. endDate=params['endDate'], reportType=params['reportType'])
  754. # print(list_report)
  755. df_report = pd.json_normalize(list_report)
  756. df_report['date'] = df_report['date'].map(lambda x: params['startDate'] if type(x) != int else datetime.fromtimestamp(int(x)/1000).date(),na_action='ignore')#,na_action='ignore'
  757. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  758. # print(df_report)
  759. conn.insert_df("AmazonReport.SB_sbAds_adsV3", df_report[params['columns']])
  760. time.sleep(1.05)
  761. print("插入完成SB_sbAds_adsV3")
  762. df_rel = df_report[params['columns']]
  763. return df_rel
  764. def reportV3_purchasedAsinRecord_ETL(self, conn, params:dict=None):
  765. print(params)
  766. timeZone_,today = self.today_()
  767. params = self.config_params(params)
  768. print("func_name:", "reportV3_purchasedAsinRecord_ETL", '\n', "table_name:",
  769. "SB_sbPurchasedProduct_asinV3")
  770. if len(conn.query_df(
  771. f"select * from AmazonReport.SB_sbPurchasedProduct_asinV3 where date='{params['startDate']}'")) > 0:
  772. logging.info("数据已存在...")
  773. time.sleep(8.5)
  774. return 'Pass'
  775. params['reportType'] = "sbPurchasedProduct"
  776. params['columns'] = [
  777. 'campaignId', 'adGroupId', 'date', 'campaignBudgetCurrencyCode', 'campaignName', 'adGroupName',
  778. 'attributionType', 'purchasedAsin', 'productName', 'productCategory', 'sales14d', 'orders14d',
  779. 'unitsSold14d',
  780. 'newToBrandSales14d', 'newToBrandPurchases14d', 'newToBrandUnitsSold14d', 'newToBrandSalesPercentage14d',
  781. 'newToBrandPurchasesPercentage14d', 'newToBrandUnitsSoldPercentage14d'
  782. ] # 'startDate', 'endDate',
  783. params['groupby'] = ['purchasedAsin']
  784. params['timeUnit'] = 'DAILY'
  785. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  786. columns=params['columns'], startDate=params['startDate'],
  787. endDate=params['endDate'], reportType=params['reportType'])
  788. # print(list_report)
  789. df_report = pd.json_normalize(list_report)
  790. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  791. df_report[df_report.select_dtypes(["object"]).columns] = df_report[df_report.select_dtypes(["object"]).columns].fillna('')
  792. df_report[df_report.select_dtypes(["string"]).columns] = df_report[df_report.select_dtypes(["string"]).columns].fillna('')
  793. # print(df_report)
  794. conn.insert_df("AmazonReport.SB_sbPurchasedProduct_asinV3", df_report[params['columns']])
  795. time.sleep(1.05)
  796. print("插入完成SB_sbPurchasedProduct_asinV3")
  797. df_rel = df_report[params['columns']]
  798. return df_rel
  799. def reportV2_campaignsRecord_ETL(self, conn, params:dict=None):
  800. print(params)
  801. timeZone_,today = self.today_()
  802. params = self.config_params(params)
  803. print("func_name:", "reportV2_campaignsRecord_ETL", '\n', "table_name:",
  804. "SB_campaignsV2")
  805. if len(conn.query_df(
  806. f"select * from AmazonReport.SB_campaignsV2 where date='{params['date']}'")) > 0:
  807. logging.info("数据已存在...")
  808. time.sleep(8.5)
  809. return 'Pass'
  810. params['record_type'] = 'campaigns'
  811. metric = ['campaignId','campaignName', 'impressions', 'clicks', 'cost',
  812. 'attributedBrandedSearches14d','applicableBudgetRuleId','applicableBudgetRuleName',
  813. 'attributedConversions14d','attributedConversions14dSameSKU','attributedDetailPageViewsClicks14d',
  814. 'attributedOrderRateNewToBrand14d','attributedOrdersNewToBrand14d','attributedOrdersNewToBrandPercentage14d',
  815. 'attributedSales14d','attributedSales14dSameSKU','attributedSalesNewToBrand14d','attributedSalesNewToBrandPercentage14d',
  816. 'attributedUnitsOrderedNewToBrand14d','attributedUnitsOrderedNewToBrandPercentage14d','campaignBudget',
  817. 'campaignBudgetType','campaignRuleBasedBudget','campaignStatus',
  818. 'dpv14d','topOfSearchImpressionShare','unitsSold14d'
  819. ]
  820. # print(metric)
  821. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  822. metrics=metric)
  823. # print(list_report)
  824. df_report = pd.json_normalize(list_report)
  825. date = datetime.strptime(params['date'], '%Y%m%d')
  826. df_report['date'] = date
  827. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=[])
  828. conn.insert_df("AmazonReport.SB_campaignsV2", df_report[metric])
  829. time.sleep(1.05)
  830. print("插入完成SB_campaignsV2")
  831. df_rel = df_report[metric]
  832. return df_rel
  833. def reportV2_campaignsVideo_ETL(self, conn, params:dict=None):
  834. print(params)
  835. timeZone_,today = self.today_()
  836. params = self.config_params(params)
  837. print("func_name:", "reportV2_campaignsVideo_ETL", '\n', "table_name:",
  838. "SB_campaignsVideoV2")
  839. if len(conn.query_df(
  840. f"select * from AmazonReport.SB_campaignsVideoV2 where date='{params['date']}'")) > 0:
  841. logging.info("数据已存在...")
  842. time.sleep(8.5)
  843. return 'Pass'
  844. params['record_type'] = 'campaigns'
  845. metric = [
  846. 'campaignId','campaignName','impressions','clicks','cost',
  847. 'attributedBrandedSearches14d','attributedConversions14d','attributedConversions14dSameSKU',
  848. 'attributedDetailPageViewsClicks14d','attributedOrderRateNewToBrand14d','attributedOrdersNewToBrand14d',
  849. 'attributedOrdersNewToBrandPercentage14d','attributedSales14d','attributedSales14dSameSKU',
  850. 'attributedSalesNewToBrand14d','attributedSalesNewToBrandPercentage14d','attributedUnitsOrderedNewToBrand14d',
  851. 'attributedUnitsOrderedNewToBrandPercentage14d','campaignBudget','campaignBudgetType','campaignStatus',
  852. 'currency','dpv14d','topOfSearchImpressionShare','vctr','vtr','video5SecondViewRate','video5SecondViews',
  853. 'videoCompleteViews','videoFirstQuartileViews','videoMidpointViews','videoThirdQuartileViews','videoUnmutes',
  854. 'viewableImpressions'
  855. ]
  856. # print(metric)
  857. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  858. metrics=metric, creative_type='video')
  859. # print(list_report)
  860. df_report = pd.json_normalize(list_report)
  861. date = datetime.strptime(params['date'], '%Y%m%d')
  862. df_report['date'] = date
  863. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=[])
  864. conn.insert_df("AmazonReport.SB_campaignsVideoV2", df_report[metric])
  865. time.sleep(1.05)
  866. print("插入完成SB_campaignsVideoV2")
  867. # print(df_report[metric].info())
  868. df_rel = df_report[metric]
  869. return df_rel
  870. def reportV2_placementRecord_ETL(self, conn, params:dict=None):
  871. print(params)
  872. timeZone_,today = self.today_()
  873. params = self.config_params(params)
  874. print("func_name:", "reportV2_placementRecord_ETL", '\n', "table_name:",
  875. "SB_campaignsPlacementV2")
  876. if len(conn.query_df(
  877. f"select * from AmazonReport.SB_campaignsPlacementV2 where date='{params['date']}'")) > 0:
  878. logging.info("数据已存在...")
  879. time.sleep(8.5)
  880. return 'Pass'
  881. params['record_type'] = 'campaigns'
  882. metric = ['campaignId','campaignName','impressions','clicks','cost',
  883. 'attributedBrandedSearches14d','applicableBudgetRuleId','applicableBudgetRuleName',
  884. 'attributedConversions14d','attributedConversions14dSameSKU','attributedDetailPageViewsClicks14d',
  885. 'attributedOrderRateNewToBrand14d','attributedOrdersNewToBrand14d','attributedOrdersNewToBrandPercentage14d',
  886. 'attributedSales14d','attributedSales14dSameSKU','attributedSalesNewToBrand14d',
  887. 'attributedSalesNewToBrandPercentage14d','attributedUnitsOrderedNewToBrand14d','attributedUnitsOrderedNewToBrandPercentage14d',
  888. 'campaignBudget','campaignBudgetType','campaignRuleBasedBudget','campaignStatus','dpv14d','unitsSold14d'
  889. ] # 'placement'
  890. # print(metric)
  891. # print(date)
  892. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  893. metrics=metric, segment='placement')
  894. df_report = pd.json_normalize(list_report)
  895. date = datetime.strptime(params['date'], '%Y%m%d')
  896. df_report['date'] = date
  897. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['placement'])
  898. conn.insert_df("AmazonReport.SB_campaignsPlacementV2", df_report[metric])
  899. time.sleep(1.05)
  900. print("插入完成SB_campaignsPlacementV2")
  901. # print(df_report[metric].info())
  902. df_rel = df_report[metric]
  903. return df_rel
  904. def reportV2_placementVideo_ETL(self, conn, params:dict=None):
  905. timeZone_,today = self.today_()
  906. params = self.config_params(params)
  907. print("func_name:", "reportV2_placementVideo_ETL", '\n', "table_name:",
  908. "SB_campaignsPlacementVideoV2")
  909. if len(conn.query_df(
  910. f"select * from AmazonReport.SB_campaignsPlacementVideoV2 where date='{params['date']}'")) > 0:
  911. logging.info("数据已存在...")
  912. time.sleep(8.5)
  913. return 'Pass'
  914. params['record_type'] = 'campaigns'
  915. metric = [
  916. 'campaignId','campaignName','impressions','clicks','cost',
  917. 'attributedBrandedSearches14d','attributedConversions14d','attributedConversions14dSameSKU',
  918. 'attributedDetailPageViewsClicks14d','attributedOrderRateNewToBrand14d','attributedOrdersNewToBrand14d',
  919. 'attributedOrdersNewToBrandPercentage14d','attributedSales14d','attributedSales14dSameSKU',
  920. 'attributedSalesNewToBrand14d','attributedSalesNewToBrandPercentage14d','attributedUnitsOrderedNewToBrand14d',
  921. 'attributedUnitsOrderedNewToBrandPercentage14d','campaignBudget','campaignBudgetType','campaignStatus',
  922. 'currency','dpv14d','vctr','vtr','video5SecondViewRate','video5SecondViews','videoCompleteViews',
  923. 'videoFirstQuartileViews','videoMidpointViews','videoThirdQuartileViews','videoUnmutes','viewableImpressions',
  924. ] # 'placement'
  925. # print(date)
  926. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  927. metrics=metric, segment='placement', creative_type='video')
  928. # print(list_report)
  929. df_report = pd.json_normalize(list_report)
  930. date = datetime.strptime(params['date'], '%Y%m%d')
  931. df_report['date'] = date
  932. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['placement'])
  933. # print(df_report.info())
  934. conn.insert_df("AmazonReport.SB_campaignsPlacementVideoV2", df_report[metric])
  935. time.sleep(1.05)
  936. print("插入完成SB_campaignsPlacementVideoV2")
  937. df_rel = df_report[metric]
  938. return df_rel
  939. def reportV2_adGroupsRecord_ETL(self, conn, params:dict=None):
  940. timeZone_,today = self.today_()
  941. params = self.config_params(params)
  942. print("func_name:", "reportV2_adGroupsRecord_ETL", '\n', "table_name:",
  943. "SB_adGroupsV2")
  944. if len(conn.query_df(
  945. f"select * from AmazonReport.SB_adGroupsV2 where date='{params['date']}'")) > 0:
  946. logging.info("数据已存在...")
  947. time.sleep(8.5)
  948. return 'Pass'
  949. params['record_type'] = 'adGroups'
  950. metric = [
  951. 'campaignId','campaignName','adGroupId','adGroupName','impressions', 'clicks', 'cost',
  952. 'attributedBrandedSearches14d','attributedConversions14d','attributedConversions14dSameSKU',
  953. 'attributedDetailPageViewsClicks14d','attributedOrderRateNewToBrand14d','attributedOrdersNewToBrand14d',
  954. 'attributedOrdersNewToBrandPercentage14d','attributedSales14d','attributedSales14dSameSKU',
  955. 'attributedSalesNewToBrand14d','attributedSalesNewToBrandPercentage14d','attributedUnitsOrderedNewToBrand14d',
  956. 'attributedUnitsOrderedNewToBrandPercentage14d','campaignBudget','campaignBudgetType','campaignStatus',
  957. 'dpv14d','unitsSold14d',
  958. ] #
  959. # print(date)
  960. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  961. metrics=metric)
  962. # print(list_report)
  963. df_report = pd.json_normalize(list_report)
  964. date = datetime.strptime(params['date'], '%Y%m%d')
  965. df_report['date'] = date
  966. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=[])
  967. # print(df_report.info())
  968. conn.insert_df("AmazonReport.SB_adGroupsV2", df_report[metric])
  969. time.sleep(1.05)
  970. print("插入完成SB_adGroupsV2")
  971. df_rel = df_report[metric]
  972. return df_rel
  973. def reportV2_adGroupsVideo_ETL(self, conn, params:dict=None):
  974. timeZone_,today = self.today_()
  975. params = self.config_params(params)
  976. params['record_type'] = 'adGroups'
  977. print("func_name:", "reportV2_adGroupsVideo_ETL", '\n', "table_name:",
  978. "SB_adGroupsVideoV2")
  979. if len(conn.query_df(
  980. f"select * from AmazonReport.SB_adGroupsVideoV2 where date='{params['date']}'")) > 0:
  981. logging.info("数据已存在...")
  982. time.sleep(8.5)
  983. return 'Pass'
  984. metric = [
  985. 'campaignId','campaignName','adGroupId','adGroupName','impressions','clicks','cost',
  986. 'attributedBrandedSearches14d','attributedConversions14d','attributedConversions14dSameSKU',
  987. 'attributedDetailPageViewsClicks14d','attributedOrderRateNewToBrand14d','attributedOrdersNewToBrand14d',
  988. 'attributedOrdersNewToBrandPercentage14d','attributedUnitsOrderedNewToBrand14d','attributedUnitsOrderedNewToBrandPercentage14d',
  989. 'attributedSales14d','attributedSales14dSameSKU','attributedSalesNewToBrand14d','attributedSalesNewToBrandPercentage14d',
  990. 'campaignBudget','campaignBudgetType','campaignStatus','currency','vctr','vtr','video5SecondViewRate',
  991. 'video5SecondViews','videoCompleteViews','videoFirstQuartileViews','videoMidpointViews','videoThirdQuartileViews',
  992. 'videoUnmutes','viewableImpressions','dpv14d'
  993. ] #
  994. # print(date)
  995. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  996. metrics=metric, creative_type='video')
  997. # print(list_report)
  998. df_report = pd.json_normalize(list_report)
  999. date = datetime.strptime(params['date'], '%Y%m%d')
  1000. df_report['date'] = date
  1001. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=[])
  1002. # print(df_report.info())
  1003. conn.insert_df("AmazonReport.SB_adGroupsVideoV2", df_report[metric])
  1004. time.sleep(1.05)
  1005. print("插入完成SB_adGroupsVideoV2")
  1006. df_rel = df_report[metric]
  1007. return df_rel
  1008. def reportV2_targetsRecord_ETL(self, conn, params:dict=None):
  1009. timeZone_,today = self.today_()
  1010. params = self.config_params(params)
  1011. print("func_name:", "reportV2_targetsRecord_ETL", '\n', "table_name:",
  1012. "SB_targetsV2")
  1013. if len(conn.query_df(
  1014. f"select * from AmazonReport.SB_targetsV2 where date='{params['date']}'")) > 0:
  1015. logging.info("数据已存在...")
  1016. time.sleep(8.5)
  1017. return 'Pass'
  1018. params['record_type'] = 'targets'
  1019. metric = [
  1020. 'campaignId','campaignName','adGroupId','adGroupName','targetId','targetingText','impressions', 'clicks', 'cost',
  1021. 'attributedBrandedSearches14d','attributedConversions14d','attributedConversions14dSameSKU','attributedDetailPageViewsClicks14d',
  1022. 'attributedOrderRateNewToBrand14d','attributedOrdersNewToBrand14d','attributedOrdersNewToBrandPercentage14d','attributedSales14d',
  1023. 'attributedSales14dSameSKU','attributedSalesNewToBrand14d','attributedSalesNewToBrandPercentage14d',
  1024. 'attributedUnitsOrderedNewToBrand14d','attributedUnitsOrderedNewToBrandPercentage14d','campaignBudget',
  1025. 'campaignBudgetType','campaignStatus','dpv14d','targetingExpression','targetingType',
  1026. 'topOfSearchImpressionShare','unitsSold14d'
  1027. ] #
  1028. # print(date)
  1029. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1030. metrics=metric)
  1031. # print(list_report)
  1032. df_report = pd.json_normalize(list_report)
  1033. date = datetime.strptime(params['date'], '%Y%m%d')
  1034. df_report['date'] = date
  1035. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=[])
  1036. # print(df_report.info())
  1037. conn.insert_df("AmazonReport.SB_targetsV2", df_report[metric])
  1038. time.sleep(1.05)
  1039. print("插入完成SB_targetsV2")
  1040. df_rel = df_report[metric]
  1041. return df_rel
  1042. def reportV2_targetsVideo_ETL(self, conn, params:dict=None):
  1043. timeZone_,today = self.today_()
  1044. params = self.config_params(params)
  1045. print("func_name:", "reportV2_targetsVideo_ETL", '\n', "table_name:",
  1046. "SB_targetsVideoV2")
  1047. if len(conn.query_df(
  1048. f"select * from AmazonReport.SB_targetsVideoV2 where date='{params['date']}'")) > 0:
  1049. logging.info("数据已存在...")
  1050. time.sleep(8.5)
  1051. return 'Pass'
  1052. params['record_type'] = 'targets'
  1053. metric = [
  1054. 'campaignId','campaignName','adGroupId','adGroupName','targetId','targetingText','impressions','clicks','cost',
  1055. 'attributedBrandedSearches14d','attributedConversions14d','attributedConversions14dSameSKU',
  1056. 'attributedDetailPageViewsClicks14d','attributedOrderRateNewToBrand14d','attributedOrdersNewToBrand14d',
  1057. 'attributedOrdersNewToBrandPercentage14d','attributedSales14d','attributedSales14dSameSKU',
  1058. 'attributedSalesNewToBrand14d','attributedSalesNewToBrandPercentage14d','attributedUnitsOrderedNewToBrand14d',
  1059. 'attributedUnitsOrderedNewToBrandPercentage14d','campaignBudget','campaignBudgetType','campaignStatus',
  1060. 'currency','dpv14d','targetingExpression','targetingType','topOfSearchImpressionShare','vctr','vtr',
  1061. 'video5SecondViewRate','video5SecondViews','videoCompleteViews','videoFirstQuartileViews','videoMidpointViews',
  1062. 'videoThirdQuartileViews','videoUnmutes','viewableImpressions',
  1063. ] #
  1064. # print(date)
  1065. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1066. metrics=metric, creative_type='video')
  1067. # print(list_report)
  1068. df_report = pd.json_normalize(list_report)
  1069. date = datetime.strptime(params['date'], '%Y%m%d')
  1070. df_report['date'] = date
  1071. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=[])
  1072. # print(df_report.info())
  1073. conn.insert_df("AmazonReport.SB_targetsVideoV2", df_report[metric])
  1074. time.sleep(1.05)
  1075. print("插入完成SB_targetsVideoV2")
  1076. df_rel = df_report[metric]
  1077. return df_rel
  1078. def reportV2_keywordsRecord_ETL(self, conn, params:dict=None):
  1079. timeZone_,today = self.today_()
  1080. params = self.config_params(params)
  1081. print("func_name:", "reportV2_keywordsRecord_ETL", '\n', "table_name:",
  1082. "SB_keywordsV2")
  1083. if len(conn.query_df(
  1084. f"select * from AmazonReport.SB_keywordsV2 where date='{params['date']}'")) > 0:
  1085. logging.info("数据已存在...")
  1086. time.sleep(8.5)
  1087. return 'Pass'
  1088. params['record_type'] = 'keywords'
  1089. metric = [
  1090. 'campaignId','campaignName','adGroupId','adGroupName','keywordId','keywordText','impressions', 'clicks', 'cost',
  1091. 'attributedBrandedSearches14d','applicableBudgetRuleId','applicableBudgetRuleName','attributedConversions14d',
  1092. 'attributedConversions14dSameSKU','attributedDetailPageViewsClicks14d','attributedOrderRateNewToBrand14d',
  1093. 'attributedOrdersNewToBrand14d','attributedOrdersNewToBrandPercentage14d','attributedSales14d',
  1094. 'attributedSales14dSameSKU','attributedSalesNewToBrand14d','attributedSalesNewToBrandPercentage14d',
  1095. 'attributedUnitsOrderedNewToBrand14d','attributedUnitsOrderedNewToBrandPercentage14d','campaignBudget',
  1096. 'campaignBudgetType','campaignRuleBasedBudget','campaignStatus','dpv14d','keywordBid','keywordStatus',
  1097. 'matchType','searchTermImpressionRank','searchTermImpressionShare','topOfSearchImpressionShare','unitsSold14d',
  1098. ] #
  1099. # print(date)
  1100. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1101. metrics=metric)
  1102. # print(list_campaigns_report)
  1103. df_report = pd.json_normalize(list_report)
  1104. date = datetime.strptime(params['date'], '%Y%m%d')
  1105. df_report['date'] = date
  1106. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=[])
  1107. # print(df_report.info())
  1108. conn.insert_df("AmazonReport.SB_keywordsV2", df_report[metric])
  1109. time.sleep(1.05)
  1110. print("插入完成SB_keywordsV2")
  1111. df_rel = df_report[metric]
  1112. return df_rel
  1113. def reportV2_keywordsVideo_ETL(self, conn, params:dict=None):
  1114. timeZone_,today = self.today_()
  1115. params = self.config_params(params)
  1116. print("func_name:", "reportV2_keywordsVideo_ETL", '\n', "table_name:",
  1117. "SB_keywordsVideoV2")
  1118. if len(conn.query_df(
  1119. f"select * from AmazonReport.SB_keywordsVideoV2 where date='{params['date']}'")) > 0:
  1120. logging.info("数据已存在...")
  1121. time.sleep(8.5)
  1122. return 'Pass'
  1123. params['record_type'] = 'keywords'
  1124. metric = [
  1125. 'campaignId','campaignName','adGroupId','adGroupName','keywordId','keywordText','impressions', 'clicks', 'cost',
  1126. 'attributedBrandedSearches14d','attributedConversions14d','attributedConversions14dSameSKU',
  1127. 'attributedDetailPageViewsClicks14d','attributedOrderRateNewToBrand14d','attributedOrdersNewToBrand14d',
  1128. 'attributedOrdersNewToBrandPercentage14d','attributedSales14d','attributedSales14dSameSKU',
  1129. 'attributedSalesNewToBrand14d','attributedSalesNewToBrandPercentage14d','attributedUnitsOrderedNewToBrand14d',
  1130. 'attributedUnitsOrderedNewToBrandPercentage14d','campaignBudget','campaignBudgetType',
  1131. 'campaignStatus','currency','dpv14d','keywordBid','keywordStatus','matchType','topOfSearchImpressionShare',
  1132. 'vctr','vtr','video5SecondViewRate','video5SecondViews','videoCompleteViews','videoFirstQuartileViews',
  1133. 'videoMidpointViews','videoThirdQuartileViews','videoUnmutes','viewableImpressions',
  1134. ] #
  1135. # print(date)
  1136. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1137. metrics=metric, creative_type='video')
  1138. # print(list_campaigns_report)
  1139. df_report = pd.json_normalize(list_report)
  1140. date = datetime.strptime(params['date'], '%Y%m%d')
  1141. df_report['date'] = date
  1142. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=[])
  1143. # print(df_report.info())
  1144. conn.insert_df("AmazonReport.SB_keywordsVideoV2", df_report[metric])
  1145. time.sleep(1.05)
  1146. print("插入完成SB_keywordsVideoV2")
  1147. df_rel = df_report[metric]
  1148. return df_rel
  1149. def reportV2_searchtermsRecord_ETL(self, conn, params:dict=None):
  1150. timeZone_,today = self.today_()
  1151. params = self.config_params(params)
  1152. print("func_name:", "reportV2_searchtermsRecord_ETL", '\n', "table_name:",
  1153. "SB_keywordsQueryV2")
  1154. if len(conn.query_df(
  1155. f"select * from AmazonReport.SB_keywordsQueryV2 where date='{params['date']}'")) > 0:
  1156. logging.info("数据已存在...")
  1157. time.sleep(8.5)
  1158. return 'Pass'
  1159. params['record_type'] = 'keywords'
  1160. metric = [
  1161. 'campaignId','campaignName','adGroupId','adGroupName','keywordId','keywordText','impressions', 'clicks', 'cost',
  1162. 'attributedConversions14d','attributedSales14d','campaignBudget','campaignBudgetType','campaignStatus','keywordBid',
  1163. 'keywordStatus','matchType','searchTermImpressionRank','searchTermImpressionShare'
  1164. ] #
  1165. # print(date)
  1166. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1167. metrics=metric, segment='query')
  1168. # print(list_report)
  1169. df_report = pd.json_normalize(list_report)
  1170. date = datetime.strptime(params['date'], '%Y%m%d')
  1171. df_report['date'] = date
  1172. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['query'])
  1173. # print(df_report.info())
  1174. conn.insert_df("AmazonReport.SB_keywordsQueryV2", df_report[metric])
  1175. time.sleep(1.05)
  1176. print("插入完成SB_keywordsQueryV2")
  1177. df_rel = df_report[metric]
  1178. return df_rel
  1179. def reportV2_searchtermsVideo_ETL(self, conn, params:dict=None):
  1180. timeZone_,today = self.today_()
  1181. params = self.config_params(params)
  1182. print("func_name:", "reportV2_searchtermsVideo_ETL", '\n', "table_name:",
  1183. "SB_keywordsQueryVideoV2")
  1184. if len(conn.query_df(
  1185. f"select * from AmazonReport.SB_keywordsQueryVideoV2 where date='{params['date']}'")) > 0:
  1186. logging.info("数据已存在...")
  1187. time.sleep(8.5)
  1188. return 'Pass'
  1189. params['record_type'] = 'keywords'
  1190. metric = [
  1191. 'campaignId','campaignName','adGroupId','adGroupName','keywordId','keywordText','impressions','clicks','cost',
  1192. 'attributedConversions14d','attributedSales14d','campaignBudget','campaignBudgetType','campaignStatus',
  1193. 'keywordBid','keywordStatus','matchType','vctr','vtr','video5SecondViewRate','video5SecondViews',
  1194. 'videoCompleteViews','videoFirstQuartileViews','videoMidpointViews','videoThirdQuartileViews',
  1195. 'videoUnmutes','viewableImpressions',
  1196. ] # 'query','currency'
  1197. # print(date)
  1198. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1199. metrics=metric, segment='query', creative_type='video')
  1200. # print(list_report)
  1201. df_report = pd.json_normalize(list_report)
  1202. date = datetime.strptime(params['date'], '%Y%m%d')
  1203. df_report['date'] = date
  1204. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['query'])
  1205. # print(df_report.info())
  1206. conn.insert_df("AmazonReport.SB_keywordsQueryVideoV2", df_report[metric])
  1207. time.sleep(1.05)
  1208. print("插入完成SB_keywordsQueryVideoV2")
  1209. df_rel = df_report[metric]
  1210. return df_rel
  1211. def reportV2_adsRecord_ETL(self, conn, params:dict=None):
  1212. timeZone_,today = self.today_()
  1213. params = self.config_params(params)
  1214. print("func_name:", "reportV2_adsRecord_ETL", '\n', "table_name:",
  1215. "SB_adsV2")
  1216. if len(conn.query_df(
  1217. f"select * from AmazonReport.SB_adsV2 where date='{params['date']}'")) > 0:
  1218. logging.info("数据已存在...")
  1219. time.sleep(8.5)
  1220. return 'Pass'
  1221. params['record_type'] = 'ads'
  1222. metric = [
  1223. 'campaignId','campaignName','adGroupId','adGroupName','adId','impressions','clicks','cost',
  1224. 'applicableBudgetRuleId','applicableBudgetRuleName','attributedBrandedSearches14d','attributedConversions14d',
  1225. 'attributedConversions14dSameSKU','attributedDetailPageViewsClicks14d','attributedOrderRateNewToBrand14d',
  1226. 'attributedOrdersNewToBrand14d','attributedOrdersNewToBrandPercentage14d','attributedSales14d',
  1227. 'attributedSales14dSameSKU','attributedSalesNewToBrand14d','attributedSalesNewToBrandPercentage14d',
  1228. 'attributedUnitsOrderedNewToBrand14d','attributedUnitsOrderedNewToBrandPercentage14d',
  1229. 'campaignBudget','campaignBudgetType','campaignRuleBasedBudget','campaignStatus',
  1230. 'dpv14d','unitsSold14d','vctr',
  1231. ] #
  1232. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1233. metrics=metric)
  1234. df_report = pd.json_normalize(list_report)
  1235. date = datetime.strptime(params['date'], '%Y%m%d')
  1236. df_report['date'] = date
  1237. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=[])
  1238. conn.insert_df("AmazonReport.SB_adsV2", df_report[metric])
  1239. time.sleep(1.05)
  1240. print("插入完成SB_adsV2")
  1241. df_rel = df_report[metric]
  1242. return df_rel
  1243. def reportV2_adsVideo_ETL(self, conn, params:dict=None):
  1244. timeZone_,today = self.today_()
  1245. params = self.config_params(params)
  1246. print("func_name:", "reportV2_adsVideo_ETL", '\n', "table_name:",
  1247. "SB_adsVideoV2")
  1248. if len(conn.query_df(
  1249. f"select * from AmazonReport.SB_adsVideoV2 where date='{params['date']}'")) > 0:
  1250. logging.info("数据已存在...")
  1251. time.sleep(8.5)
  1252. return 'Pass'
  1253. params['record_type'] = 'ads'
  1254. metric = [
  1255. 'campaignId','campaignName','adGroupId','adGroupName','adId', 'impressions', 'clicks', 'cost',
  1256. 'applicableBudgetRuleId','applicableBudgetRuleName','attributedBrandedSearches14d',
  1257. 'attributedConversions14d','attributedConversions14dSameSKU','attributedDetailPageViewsClicks14d',
  1258. 'attributedOrderRateNewToBrand14d','attributedOrdersNewToBrand14d','attributedOrdersNewToBrandPercentage14d',
  1259. 'attributedSales14d','attributedSales14dSameSKU','attributedSalesNewToBrand14d',
  1260. 'attributedSalesNewToBrandPercentage14d','attributedUnitsOrderedNewToBrand14d',
  1261. 'attributedUnitsOrderedNewToBrandPercentage14d','campaignBudget','campaignBudgetType',
  1262. 'campaignRuleBasedBudget','campaignStatus','currency','dpv14d','vctr','vtr',
  1263. 'video5SecondViewRate','video5SecondViews','videoCompleteViews','videoFirstQuartileViews',
  1264. 'videoMidpointViews','videoThirdQuartileViews','videoUnmutes','viewableImpressions',
  1265. ] #
  1266. # print(date)
  1267. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1268. metrics=metric, creative_type='video')
  1269. # print(list_report)
  1270. df_report = pd.json_normalize(list_report)
  1271. date = datetime.strptime(params['date'], '%Y%m%d')
  1272. df_report['date'] = date
  1273. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=[])
  1274. # print(df_report.info())
  1275. conn.insert_df("AmazonReport.SB_adsVideoV2", df_report[metric])
  1276. time.sleep(1.05)
  1277. print("插入完成SB_adsVideoV2")
  1278. df_rel = df_report[metric]
  1279. return df_rel
  1280. class SD_ETL(SDClient, Common_ETLMethod):
  1281. def campaigns_ETL(self):
  1282. list_campaign_SD = self.get_campaigns()
  1283. df_campaign = pd.json_normalize(list_campaign_SD)
  1284. df_campaign['startDate'] = df_campaign['startDate'].map(
  1285. lambda x: datetime.strptime(x, "%Y%m%d").date()) # 转换为标准时间格式
  1286. df_campaign['portfolioId'] = df_campaign['portfolioId'].fillna(-1).astype("int64") # 将portfolio列为空的填充为-1
  1287. return self.columnsName_modify(df_campaign)
  1288. def adGroups_ETL(self, **param):
  1289. list_adGroups_SD = [row for _ in list(self.iter_adGroups(**param)) for row in _]
  1290. df_adGroups_SD = pd.json_normalize(list_adGroups_SD)
  1291. tactic = {"T00020": "Contextual targeting", "T00030": "Audiences targeting"}
  1292. df_adGroups_SD["tactic_type"] = df_adGroups_SD['tactic'].map(tactic) # T00020、T00030解释字段
  1293. return self.columnsName_modify(df_adGroups_SD)
  1294. def ads_ETL(self):
  1295. list_ads_SD = [row for _ in list(self.iter_ads()) for row in _]
  1296. df_ads_SD = pd.json_normalize(list_ads_SD)
  1297. return self.columnsName_modify(df_ads_SD)
  1298. def targets_ETL(self, **param):
  1299. list_targets = [row for _ in list(self.iter_targets(**param)) for row in _]
  1300. df_targets = pd.json_normalize(list_targets)
  1301. # df_targets = self.expression_split(df_targets, "resolvedExpression")
  1302. df_targets = self.id_type_trans(df_targets)
  1303. df_targets['resolvedExpressions_type'] = df_targets['resolvedExpression'].map(lambda x:self.get_keyOvalue(x,'type'))
  1304. df_targets['resolvedExpressions_value'] = df_targets['resolvedExpression'].map(lambda x:self.get_keyOvalue(x,'value'))
  1305. return self.columnsName_modify(df_targets)
  1306. def budget_ETL(self, campaignsIds: list):
  1307. list_budget = self.get_budget(campaignIds=campaignsIds)['success']
  1308. df_budget = pd.json_normalize(list_budget)
  1309. df_budget = self.TZ_Deal(df_budget, ["usageUpdatedTimestamp"])
  1310. return self.columnsName_modify(df_budget)
  1311. def reportV3_campaign_sdCampaigns_ETL(self, conn, params:dict=None):
  1312. timeZone_,today = self.today_()
  1313. params = self.config_params(params)
  1314. params = self.config_params(params)
  1315. print("func_name:", "reportV3_campaign_sdCampaigns_ETL", '\n', "table_name:",
  1316. "SD_sdCampaigns_campaignV3")
  1317. if len(conn.query_df(
  1318. f"select * from AmazonReport.SD_sdCampaigns_campaignV3 where date='{params['startDate']}'")) > 0:
  1319. logging.info("数据已存在...")
  1320. time.sleep(8.5)
  1321. return 'Pass'
  1322. params['reportType'] = "sdCampaigns"
  1323. params['columns'] = [ 'campaignName', 'campaignId','campaignStatus','campaignBudgetAmount', 'impressions','clicks', 'cost',
  1324. 'addToCart', 'addToCartClicks', 'addToCartRate', 'addToCartViews',
  1325. 'brandedSearches', 'brandedSearchesClicks','brandedSearchesViews', 'brandedSearchRate',
  1326. 'costType', 'cumulativeReach','detailPageViews', 'detailPageViewsClicks','eCPAddToCart', 'eCPBrandSearch',
  1327. 'newToBrandDetailPageViewClicks','newToBrandDetailPageViewRate', 'newToBrandDetailPageViews', 'newToBrandDetailPageViewViews', 'newToBrandECPDetailPageView',
  1328. 'newToBrandSales','newToBrandPurchases', 'newToBrandPurchasesClicks', 'newToBrandSalesClicks','newToBrandUnitsSold', 'newToBrandUnitsSoldClicks',
  1329. 'campaignBudgetCurrencyCode','date',
  1330. 'impressionsViews','impressionsFrequencyAverage', 'purchases', 'purchasesClicks', 'purchasesPromotedClicks',
  1331. 'sales','salesClicks', 'salesPromotedClicks', 'unitsSold', 'unitsSoldClicks', 'videoCompleteViews',
  1332. 'videoFirstQuartileViews', 'videoMidpointViews', 'videoThirdQuartileViews', 'videoUnmutes', 'viewabilityRate','viewClickThroughRate'
  1333. ] # 'startDate', 'endDate',
  1334. params['groupby'] = ['campaign']
  1335. params['timeUnit'] = 'DAILY'
  1336. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  1337. columns=params['columns'], startDate=params['startDate'],
  1338. endDate=params['endDate'], reportType=params['reportType'])
  1339. # print(list_report)
  1340. df_report = pd.json_normalize(list_report)
  1341. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  1342. # print(df_report.columns)
  1343. conn.insert_df("AmazonReport.SD_sdCampaigns_campaignV3", df_report[params['columns']])
  1344. time.sleep(1.05)
  1345. print("插入完成SD_sdCampaigns_campaignV3")
  1346. df_rel = df_report[params['columns']]
  1347. return df_rel
  1348. def reportV3_campaignMT_sdCampaigns_ETL(self, conn, params:dict=None):
  1349. timeZone_,today = self.today_()
  1350. params = self.config_params(params)
  1351. print("func_name:", "reportV3_campaignMT_sdCampaigns_ETL", '\n', "table_name:",
  1352. "SD_sdCampaigns_campaignMatchedTargetV3")
  1353. if len(conn.query_df(
  1354. f"select * from AmazonReport.SD_sdCampaigns_campaignMatchedTargetV3 where date='{params['startDate']}'")) > 0:
  1355. logging.info("数据已存在...")
  1356. time.sleep(8.5)
  1357. return 'Pass'
  1358. params['reportType'] = "sdCampaigns"
  1359. params['columns'] = [
  1360. 'matchedTargetAsin','campaignName', 'campaignId','campaignStatus','campaignBudgetAmount', 'impressions','clicks', 'cost',
  1361. 'addToCart', 'addToCartClicks', 'addToCartRate', 'addToCartViews',
  1362. 'brandedSearches', 'brandedSearchesClicks','brandedSearchesViews', 'brandedSearchRate',
  1363. 'costType', 'detailPageViews', 'detailPageViewsClicks','eCPAddToCart', 'eCPBrandSearch',
  1364. 'newToBrandSales','newToBrandPurchases', 'newToBrandPurchasesClicks', 'newToBrandSalesClicks','newToBrandUnitsSold', 'newToBrandUnitsSoldClicks',
  1365. 'campaignBudgetCurrencyCode','date',
  1366. 'impressionsViews', 'purchases', 'purchasesClicks', 'purchasesPromotedClicks',
  1367. 'sales','salesClicks', 'salesPromotedClicks', 'unitsSold', 'unitsSoldClicks', 'videoCompleteViews',
  1368. 'videoFirstQuartileViews', 'videoMidpointViews', 'videoThirdQuartileViews', 'videoUnmutes', 'viewabilityRate','viewClickThroughRate'
  1369. ] # 'startDate', 'endDate',
  1370. params['groupby'] = ['campaign',"matchedTarget"]
  1371. params['timeUnit'] = 'DAILY'
  1372. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  1373. columns=params['columns'], startDate=params['startDate'],
  1374. endDate=params['endDate'], reportType=params['reportType'])
  1375. # print(list_report)
  1376. df_report = pd.json_normalize(list_report)
  1377. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  1378. # print(df_report.columns)
  1379. conn.insert_df("AmazonReport.SD_sdCampaigns_campaignMatchedTargetV3", df_report[params['columns']])
  1380. time.sleep(1.05)
  1381. print("插入完成SD_sdCampaigns_campaignMatchedTargetV3")
  1382. df_rel = df_report[params['columns']]
  1383. return df_rel
  1384. def reportV3_adgroup_sdAdGroup_ETL(self, conn, params:dict=None):
  1385. timeZone_,today = self.today_()
  1386. params = self.config_params(params)
  1387. print("func_name:", "reportV3_adgroup_sdAdGroup_ETL", '\n', "table_name:",
  1388. "SD_sdAdGroup_adGroupV3")
  1389. if len(conn.query_df(
  1390. f"select * from AmazonReport.SD_sdAdGroup_adGroupV3 where date='{params['startDate']}'")) > 0:
  1391. logging.info("数据已存在...")
  1392. time.sleep(8.5)
  1393. return 'Pass'
  1394. params['reportType'] = "sdAdGroup"
  1395. params['columns'] = ['campaignName','campaignId', 'adGroupName', 'adGroupId', 'impressions','clicks', 'cost',
  1396. 'addToCart', 'addToCartClicks', 'addToCartRate', 'addToCartViews',
  1397. 'bidOptimization','brandedSearches', 'brandedSearchesClicks', 'brandedSearchesViews', 'brandedSearchRate',
  1398. 'cumulativeReach','detailPageViews', 'detailPageViewsClicks', 'eCPAddToCart','eCPBrandSearch',
  1399. 'newToBrandDetailPageViewClicks', 'newToBrandDetailPageViewRate','newToBrandDetailPageViews', 'newToBrandDetailPageViewViews', 'newToBrandECPDetailPageView',
  1400. 'newToBrandSales', 'newToBrandPurchases', 'newToBrandPurchasesClicks','newToBrandSalesClicks', 'newToBrandUnitsSold', 'newToBrandUnitsSoldClicks',
  1401. 'campaignBudgetCurrencyCode','date', 'impressionsViews', 'impressionsFrequencyAverage', 'purchases',
  1402. 'purchasesClicks', 'purchasesPromotedClicks', 'sales', 'salesClicks', 'salesPromotedClicks', 'unitsSold',
  1403. 'unitsSoldClicks', 'videoCompleteViews', 'videoFirstQuartileViews', 'videoMidpointViews', 'videoThirdQuartileViews',
  1404. 'videoUnmutes', 'viewabilityRate', 'viewClickThroughRate'
  1405. ] # 'startDate', 'endDate',
  1406. params['groupby'] = ['adGroup']
  1407. params['timeUnit'] = 'DAILY'
  1408. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  1409. columns=params['columns'], startDate=params['startDate'],
  1410. endDate=params['endDate'], reportType=params['reportType'])
  1411. # print(list_report)
  1412. df_report = pd.json_normalize(list_report)
  1413. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  1414. # print(df_report)
  1415. conn.insert_df("AmazonReport.SD_sdAdGroup_adGroupV3", df_report[params['columns']])
  1416. time.sleep(1.05)
  1417. print("插入完成SD_sdAdGroup_adGroupV3")
  1418. df_rel = df_report[params['columns']]
  1419. return df_rel
  1420. def reportV3_adgroupMT_sdAdGroup_ETL(self, conn, params:dict=None):
  1421. timeZone_,today = self.today_()
  1422. params = self.config_params(params)
  1423. print("func_name:", "reportV3_adgroupMT_sdAdGroup_ETL", '\n', "table_name:",
  1424. "SD_sdAdGroup_adGroupMatchedTargetV3")
  1425. if len(conn.query_df(
  1426. f"select * from AmazonReport.SD_sdAdGroup_adGroupMatchedTargetV3 where date='{params['startDate']}'")) > 0:
  1427. logging.info("数据已存在...")
  1428. time.sleep(8.5)
  1429. return 'Pass'
  1430. params['reportType'] = "sdAdGroup"
  1431. params['columns'] = [
  1432. 'matchedTargetAsin','campaignName','campaignId', 'adGroupName', 'adGroupId', 'impressions','clicks', 'cost',
  1433. 'addToCart', 'addToCartClicks', 'addToCartRate', 'addToCartViews',
  1434. 'bidOptimization','brandedSearches', 'brandedSearchesClicks', 'brandedSearchesViews', 'brandedSearchRate',
  1435. 'detailPageViews', 'detailPageViewsClicks', 'eCPAddToCart','eCPBrandSearch',
  1436. 'newToBrandSales', 'newToBrandPurchases', 'newToBrandPurchasesClicks','newToBrandSalesClicks', 'newToBrandUnitsSold', 'newToBrandUnitsSoldClicks',
  1437. 'campaignBudgetCurrencyCode','date', 'impressionsViews', 'purchases',
  1438. 'purchasesClicks', 'purchasesPromotedClicks', 'sales', 'salesClicks', 'salesPromotedClicks', 'unitsSold',
  1439. 'unitsSoldClicks', 'videoCompleteViews', 'videoFirstQuartileViews', 'videoMidpointViews', 'videoThirdQuartileViews',
  1440. 'videoUnmutes', 'viewabilityRate', 'viewClickThroughRate'
  1441. ] # 'startDate', 'endDate',
  1442. params['groupby'] = ['adGroup',"matchedTarget"]
  1443. params['timeUnit'] = 'DAILY'
  1444. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  1445. columns=params['columns'], startDate=params['startDate'],
  1446. endDate=params['endDate'], reportType=params['reportType'])
  1447. # print(list_report)
  1448. df_report = pd.json_normalize(list_report)
  1449. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  1450. # print(df_report)
  1451. conn.insert_df("AmazonReport.SD_sdAdGroup_adGroupMatchedTargetV3", df_report[params['columns']])
  1452. time.sleep(1.05)
  1453. print("插入完成SD_sdAdGroup_adGroupMatchedTargetV3")
  1454. df_rel = df_report[params['columns']]
  1455. return df_rel
  1456. def reportV3_targeting_sdTargeting_ETL(self, conn, params:dict=None):
  1457. timeZone_,today = self.today_()
  1458. params = self.config_params(params)
  1459. print("func_name:", "reportV3_targeting_sdTargeting_ETL", '\n', "table_name:",
  1460. "SD_targeting_sdTargetingV3")
  1461. if len(conn.query_df(
  1462. f"select * from AmazonReport.SD_targeting_sdTargetingV3 where date='{params['startDate']}'")) > 0:
  1463. logging.info("数据已存在...")
  1464. time.sleep(8.5)
  1465. return 'Pass'
  1466. params['reportType'] = "sdTargeting"
  1467. params['columns'] = ['campaignName', 'campaignId','adGroupName','adGroupId', 'targetingText','targetingId','impressions','clicks', 'cost',
  1468. 'adKeywordStatus', 'addToCart', 'addToCartClicks', 'addToCartRate', 'addToCartViews',
  1469. 'brandedSearches',
  1470. 'brandedSearchesClicks', 'brandedSearchesViews', 'brandedSearchRate',
  1471. 'detailPageViews', 'detailPageViewsClicks', 'eCPAddToCart', 'eCPBrandSearch',
  1472. 'newToBrandDetailPageViewClicks', 'newToBrandDetailPageViewRate', 'newToBrandDetailPageViews',
  1473. 'newToBrandDetailPageViewViews', 'newToBrandECPDetailPageView','newToBrandSales','newToBrandPurchases', 'newToBrandPurchasesClicks',
  1474. 'newToBrandSalesClicks', 'newToBrandUnitsSold', 'newToBrandUnitsSoldClicks',
  1475. 'campaignBudgetCurrencyCode',
  1476. 'date',
  1477. 'impressionsViews', 'purchases', 'purchasesClicks',
  1478. 'purchasesPromotedClicks', 'sales', 'salesClicks', 'salesPromotedClicks', 'targetingExpression',
  1479. 'unitsSold', 'unitsSoldClicks', 'videoCompleteViews','videoFirstQuartileViews', 'videoMidpointViews', 'videoThirdQuartileViews',
  1480. 'videoUnmutes', 'viewabilityRate', 'viewClickThroughRate'
  1481. ] # 'startDate', 'endDate',
  1482. params['groupby'] = ['targeting']
  1483. params['timeUnit'] = 'DAILY'
  1484. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  1485. columns=params['columns'], startDate=params['startDate'],
  1486. endDate=params['endDate'], reportType=params['reportType'])
  1487. # print(list_report)
  1488. df_report = pd.json_normalize(list_report)
  1489. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  1490. # print(df_report)
  1491. conn.insert_df("AmazonReport.SD_targeting_sdTargetingV3", df_report[params['columns']])
  1492. time.sleep(1.05)
  1493. print("插入完成SD_targeting_sdTargetingV3")
  1494. df_rel = df_report[params['columns']]
  1495. return df_rel
  1496. def reportV3_targetingMT_sdTargeting_ETL(self, conn, params:dict=None):
  1497. timeZone_,today = self.today_()
  1498. params = self.config_params(params)
  1499. print("func_name:", "reportV3_targetingMT_sdTargeting_ETL", '\n', "table_name:",
  1500. "SD_targeting_sdTargetingMatchedTargetV3")
  1501. if len(conn.query_df(
  1502. f"select * from AmazonReport.SD_targeting_sdTargetingMatchedTargetV3 where date='{params['startDate']}'")) > 0:
  1503. logging.info("数据已存在...")
  1504. time.sleep(8.5)
  1505. return 'Pass'
  1506. params['reportType'] = "sdTargeting"
  1507. params['columns'] = [
  1508. 'matchedTargetAsin',
  1509. 'campaignName', 'campaignId','adGroupName','adGroupId', 'targetingText','targetingId','impressions','clicks', 'cost',
  1510. 'adKeywordStatus', 'addToCart', 'addToCartClicks', 'addToCartRate', 'addToCartViews',
  1511. 'brandedSearches',
  1512. 'brandedSearchesClicks', 'brandedSearchesViews', 'brandedSearchRate',
  1513. 'detailPageViews', 'detailPageViewsClicks', 'eCPAddToCart', 'eCPBrandSearch',
  1514. 'newToBrandSales','newToBrandPurchases', 'newToBrandPurchasesClicks',
  1515. 'newToBrandSalesClicks', 'newToBrandUnitsSold', 'newToBrandUnitsSoldClicks',
  1516. 'campaignBudgetCurrencyCode',
  1517. 'date',
  1518. 'impressionsViews', 'purchases', 'purchasesClicks',
  1519. 'purchasesPromotedClicks', 'sales', 'salesClicks', 'salesPromotedClicks', 'targetingExpression',
  1520. 'unitsSold', 'unitsSoldClicks', 'videoCompleteViews','videoFirstQuartileViews', 'videoMidpointViews', 'videoThirdQuartileViews',
  1521. 'videoUnmutes', 'viewabilityRate', 'viewClickThroughRate'
  1522. ] # 'startDate', 'endDate',
  1523. params['groupby'] = ['targeting',"matchedTarget"]
  1524. params['timeUnit'] = 'DAILY'
  1525. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  1526. columns=params['columns'], startDate=params['startDate'],
  1527. endDate=params['endDate'], reportType=params['reportType'])
  1528. # print(list_report)
  1529. df_report = pd.json_normalize(list_report)
  1530. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  1531. # print(df_report)
  1532. conn.insert_df("AmazonReport.SD_targeting_sdTargetingMatchedTargetV3", df_report[params['columns']])
  1533. time.sleep(1.05)
  1534. print("插入完成SD_targeting_sdTargetingMatchedTargetV3")
  1535. df_rel = df_report[params['columns']]
  1536. return df_rel
  1537. def reportV3_advertiser_sdAdvertisedProduct_ETL(self, conn, params:dict=None):
  1538. timeZone_,today = self.today_()
  1539. params = self.config_params(params)
  1540. print("func_name:", "reportV3_advertiser_sdAdvertisedProduct_ETL", '\n', "table_name:",
  1541. "SD_advertiser_sdAdvertisedProductV3")
  1542. if len(conn.query_df(
  1543. f"select * from AmazonReport.SD_advertiser_sdAdvertisedProductV3 where date='{params['startDate']}'")) > 0:
  1544. logging.info("数据已存在...")
  1545. time.sleep(8.5)
  1546. return 'Pass'
  1547. params['reportType'] = "sdAdvertisedProduct"
  1548. params['columns'] = ['campaignName','campaignId','adGroupName','adGroupId','adId','impressions','clicks', 'cost',
  1549. 'addToCart', 'addToCartClicks', 'addToCartRate', 'addToCartViews', 'bidOptimization',
  1550. 'brandedSearches', 'brandedSearchesClicks', 'brandedSearchesViews', 'brandedSearchRate',
  1551. 'detailPageViews', 'detailPageViewsClicks','eCPAddToCart',
  1552. 'eCPBrandSearch','newToBrandDetailPageViewClicks',
  1553. 'newToBrandDetailPageViewRate', 'newToBrandDetailPageViews', 'newToBrandDetailPageViewViews', 'newToBrandECPDetailPageView','newToBrandSales',
  1554. 'newToBrandPurchases', 'newToBrandPurchasesClicks', 'newToBrandSalesClicks', 'newToBrandUnitsSold',
  1555. 'newToBrandUnitsSoldClicks',
  1556. 'campaignBudgetCurrencyCode',
  1557. 'cumulativeReach', 'date', 'impressionsFrequencyAverage', 'impressionsViews', 'promotedAsin', 'promotedSku', 'purchases', 'purchasesClicks', 'purchasesPromotedClicks',
  1558. 'sales',
  1559. 'salesClicks', 'salesPromotedClicks', 'unitsSold', 'unitsSoldClicks', 'videoCompleteViews', 'videoFirstQuartileViews',
  1560. 'videoMidpointViews', 'videoThirdQuartileViews', 'videoUnmutes', 'viewabilityRate', 'viewClickThroughRate'
  1561. ] # 'startDate', 'endDate',
  1562. params['groupby'] = ['advertiser']
  1563. params['timeUnit'] = 'DAILY'
  1564. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  1565. columns=params['columns'], startDate=params['startDate'],
  1566. endDate=params['endDate'], reportType=params['reportType'])
  1567. # print(list_report)
  1568. df_report = pd.json_normalize(list_report)
  1569. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  1570. # print(df_report)
  1571. conn.insert_df("AmazonReport.SD_advertiser_sdAdvertisedProductV3", df_report[params['columns']])
  1572. time.sleep(1.05)
  1573. print("插入完成SD_advertiser_sdAdvertisedProductV3")
  1574. df_rel = df_report[params['columns']]
  1575. return df_rel
  1576. def reportV3_asin_sdPurchasedProduct_ETL(self, conn, params:dict=None):
  1577. timeZone_,today = self.today_()
  1578. params = self.config_params(params)
  1579. print("func_name:", "reportV3_asin_sdPurchasedProduct_ETL", '\n', "table_name:",
  1580. "SD_asin_sdPurchasedProductV3")
  1581. if len(conn.query_df(
  1582. f"select * from AmazonReport.SD_asin_sdPurchasedProductV3 where date='{params['startDate']}'")) > 0:
  1583. logging.info("数据已存在...")
  1584. time.sleep(8.5)
  1585. return 'Pass'
  1586. params['reportType'] = "sdPurchasedProduct"
  1587. params['columns'] = ['campaignName','campaignId', 'adGroupName','adGroupId', 'promotedAsin', 'promotedSku',
  1588. 'asinBrandHalo', 'campaignBudgetCurrencyCode',
  1589. 'conversionsBrandHalo', 'conversionsBrandHaloClicks', 'date', 'salesBrandHalo',
  1590. 'salesBrandHaloClicks', 'unitsSoldBrandHalo', 'unitsSoldBrandHaloClicks'
  1591. ] # 'startDate', 'endDate',
  1592. params['groupby'] = ['asin']
  1593. params['timeUnit'] = 'DAILY'
  1594. list_report = self.get_v3_report(timeUnit=params['timeUnit'], groupby=params['groupby'],
  1595. columns=params['columns'], startDate=params['startDate'],
  1596. endDate=params['endDate'], reportType=params['reportType'])
  1597. # print(list_report)
  1598. df_report = pd.json_normalize(list_report)
  1599. df_report = self.type_trans(df_report, params['columns'], timeZone_, extra_columns=[])
  1600. # print(df_report)
  1601. conn.insert_df("AmazonReport.SD_asin_sdPurchasedProductV3", df_report[params['columns']])
  1602. time.sleep(1.05)
  1603. print("插入完成SD_asin_sdPurchasedProductV3")
  1604. df_rel = df_report[params['columns']]
  1605. return df_rel
  1606. campaigns_metrics = [
  1607. 'campaignId','campaignName','impressions','clicks','cost','attributedBrandedSearches14d',
  1608. 'attributedConversions1d','attributedConversions1dSameSKU','attributedConversions7d',
  1609. 'attributedConversions7dSameSKU','attributedConversions14d','attributedConversions14dSameSKU',
  1610. 'attributedConversions30d','attributedConversions30dSameSKU','attributedDetailPageView14d',
  1611. 'attributedOrdersNewToBrand14d','attributedSales1d','attributedSales1dSameSKU',
  1612. 'attributedSales7d','attributedSales7dSameSKU','attributedSales14d',
  1613. 'attributedSales14dSameSKU','attributedSales30d','attributedSales30dSameSKU',
  1614. 'attributedSalesNewToBrand14d','attributedUnitsOrdered1d','attributedUnitsOrdered7d',
  1615. 'attributedUnitsOrdered14d','attributedUnitsOrdered30d','attributedUnitsOrderedNewToBrand14d',
  1616. 'avgImpressionsFrequency','campaignBudget','campaignStatus','cumulativeReach','costType',
  1617. 'currency','vctr','vtr', 'viewImpressions','viewAttributedConversions14d','viewAttributedDetailPageView14d',
  1618. 'viewAttributedSales14d','viewAttributedUnitsOrdered14d','viewAttributedOrdersNewToBrand14d',
  1619. 'viewAttributedSalesNewToBrand14d','viewAttributedUnitsOrderedNewToBrand14d','viewAttributedBrandedSearches14d',
  1620. 'videoCompleteViews','videoFirstQuartileViews','videoMidpointViews','videoThirdQuartileViews','videoUnmutes',
  1621. ]
  1622. def reportV2_campaignsRecord_t2_ETL(self, conn, params:dict=None):
  1623. timeZone_,today = self.today_()
  1624. params = self.config_params(params)
  1625. print("func_name:", "reportV2_campaignsRecord_t2_ETL", '\n', "table_name:",
  1626. "SD_campaignsV2")
  1627. if len(conn.query_df(
  1628. f"select * from AmazonReport.SD_campaignsV2 where date='{params['date']}'")) > 0:
  1629. logging.info("数据已存在...")
  1630. time.sleep(8.5)
  1631. return 'Pass'
  1632. params['record_type'] = 'campaigns'
  1633. metric = self.campaigns_metrics
  1634. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1635. metrics=metric, tactic="T00020")
  1636. # print(list_report)
  1637. df_report = pd.json_normalize(list_report)
  1638. date = datetime.strptime(params['date'], '%Y%m%d')
  1639. df_report['date'] = date
  1640. df_report['tactic'] = 'Contextual targeting'
  1641. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['tactic'])
  1642. conn.insert_df("AmazonReport.SD_campaignsV2", df_report[metric])
  1643. time.sleep(1.05)
  1644. print("插入完成SD_campaignsV2—")
  1645. df_rel = df_report[metric]
  1646. return df_rel
  1647. def reportV2_campaignsRecord_t3_ETL(self, conn, params:dict=None):
  1648. timeZone_,today = self.today_()
  1649. params = self.config_params(params)
  1650. print("func_name:", "reportV2_campaignsRecord_t3_ETL", '\n', "table_name:",
  1651. "SD_campaignsV2")
  1652. if len(conn.query_df(
  1653. f"select * from AmazonReport.SD_campaignsV2 where date='{params['date']}'")) > 0:
  1654. logging.info("数据已存在...")
  1655. time.sleep(8.5)
  1656. return 'Pass'
  1657. params['record_type'] = 'campaigns'
  1658. metric = self.campaigns_metrics
  1659. print("tactic:t3")
  1660. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1661. metrics=metric, tactic="T00030")#
  1662. df_report = pd.json_normalize(list_report)
  1663. print(df_report.columns)
  1664. date = datetime.strptime(params['date'], '%Y%m%d')
  1665. df_report['date'] = date
  1666. df_report['tactic'] = 'Audiences targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  1667. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['tactic'])
  1668. conn.insert_df("AmazonReport.SD_campaignsV2", df_report[metric])
  1669. time.sleep(1.05)
  1670. print("插入完成SD_campaignsV2")
  1671. df_rel = df_report[metric]
  1672. return df_rel
  1673. adGroups_metrics = [
  1674. 'campaignId','campaignName','adGroupId','adGroupName','impressions','clicks','cost',
  1675. 'attributedBrandedSearches14d','attributedConversions1d','attributedConversions1dSameSKU',
  1676. 'attributedConversions7d','attributedConversions7dSameSKU','attributedConversions14d',
  1677. 'attributedConversions14dSameSKU','attributedConversions30d','attributedConversions30dSameSKU',
  1678. 'attributedDetailPageView14d','attributedOrdersNewToBrand14d','attributedSales1d',
  1679. 'attributedSales1dSameSKU','attributedSales7d','attributedSales7dSameSKU',
  1680. 'attributedSales14d','attributedSales14dSameSKU','attributedSales30d','attributedSales30dSameSKU',
  1681. 'attributedUnitsOrdered1d','attributedUnitsOrdered7d','attributedUnitsOrdered14d','attributedUnitsOrdered30d',
  1682. 'attributedUnitsOrderedNewToBrand14d','avgImpressionsFrequency','bidOptimization','cumulativeReach',
  1683. 'currency','vctr','vtr', 'viewImpressions','viewAttributedConversions14d','viewAttributedDetailPageView14d',
  1684. 'viewAttributedSales14d','viewAttributedUnitsOrdered14d','viewAttributedOrdersNewToBrand14d',
  1685. 'viewAttributedSalesNewToBrand14d','viewAttributedUnitsOrderedNewToBrand14d','viewAttributedBrandedSearches14d',
  1686. 'videoCompleteViews','videoFirstQuartileViews','videoMidpointViews','videoThirdQuartileViews','videoUnmutes',
  1687. ]
  1688. def reportV2_adGroupsRecord_t2_ETL(self, conn, params:dict=None):
  1689. timeZone_,today = self.today_()
  1690. params = self.config_params(params)
  1691. print("func_name:", "reportV2_adGroupsRecord_t2_ETL", '\n', "table_name:",
  1692. "SD_adGroupsV2")
  1693. if len(conn.query_df(
  1694. f"select * from AmazonReport.SD_adGroupsV2 where date='{params['date']}'")) > 0:
  1695. logging.info("数据已存在...")
  1696. time.sleep(8.5)
  1697. return 'Pass'
  1698. params['record_type'] = 'adGroups'
  1699. metric = self.adGroups_metrics
  1700. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1701. metrics=metric, tactic="T00020")
  1702. df_report = pd.json_normalize(list_report)
  1703. date = datetime.strptime(params['date'], '%Y%m%d')
  1704. df_report['date'] = date
  1705. df_report['tactic'] = 'Contextual targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  1706. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['tactic'])
  1707. conn.insert_df("AmazonReport.SD_adGroupsV2", df_report[metric])
  1708. time.sleep(1.05)
  1709. print("插入完成SD_adGroupsV2")
  1710. df_rel = df_report[metric]
  1711. return df_rel
  1712. def reportV2_adGroupsRecord_t3_ETL(self, conn, params:dict=None):
  1713. timeZone_,today = self.today_()
  1714. params = self.config_params(params)
  1715. print("func_name:", "reportV2_adGroupsRecord_t3_ETL", '\n', "table_name:",
  1716. "SD_adGroupsV2")
  1717. if len(conn.query_df(
  1718. f"select * from AmazonReport.SD_adGroupsV2 where date='{params['date']}'")) > 0:
  1719. logging.info("数据已存在...")
  1720. time.sleep(8.5)
  1721. return 'Pass'
  1722. params['record_type'] = 'adGroups'
  1723. metric = self.adGroups_metrics
  1724. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1725. metrics=metric, tactic="T00020")
  1726. df_report = pd.json_normalize(list_report)
  1727. date = datetime.strptime(params['date'], '%Y%m%d')
  1728. df_report['date'] = date
  1729. df_report['tactic'] = 'Audiences targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  1730. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['tactic'])
  1731. # print(df_report.info())
  1732. conn.insert_df("AmazonReport.SD_adGroupsV2", df_report[metric])
  1733. time.sleep(1.05)
  1734. print("插入完成SD_adGroupsV2")
  1735. df_rel = df_report[metric]
  1736. return df_rel
  1737. productAds_metrics = [
  1738. 'campaignId','campaignName','adGroupId','adGroupName','adId','asin','sku', 'impressions', 'clicks','cost',
  1739. 'attributedBrandedSearches14d','attributedConversions1d','attributedConversions1dSameSKU','attributedConversions7d',
  1740. 'attributedConversions7dSameSKU','attributedConversions14d','attributedConversions14dSameSKU',
  1741. 'attributedConversions30d','attributedConversions30dSameSKU','attributedDetailPageView14d',
  1742. 'attributedOrdersNewToBrand14d','attributedSales1d','attributedSales1dSameSKU','attributedSales7d',
  1743. 'attributedSales7dSameSKU','attributedSales14d','attributedSales14dSameSKU','attributedSales30d',
  1744. 'attributedSales30dSameSKU','attributedSalesNewToBrand14d','attributedUnitsOrdered1d','attributedUnitsOrdered7d',
  1745. 'attributedUnitsOrdered14d','attributedUnitsOrdered30d','attributedUnitsOrderedNewToBrand14d','avgImpressionsFrequency',
  1746. 'cumulativeReach','currency','vctr','vtr','viewImpressions','viewAttributedConversions14d','viewAttributedDetailPageView14d',
  1747. 'viewAttributedSales14d','viewAttributedUnitsOrdered14d','viewAttributedOrdersNewToBrand14d','viewAttributedSalesNewToBrand14d',
  1748. 'viewAttributedUnitsOrderedNewToBrand14d','viewAttributedBrandedSearches14d','videoCompleteViews','videoFirstQuartileViews',
  1749. 'videoMidpointViews','videoThirdQuartileViews','videoUnmutes',
  1750. ]
  1751. def reportV2_productAds_t2_ETL(self, conn, params:dict=None):
  1752. timeZone_,today = self.today_()
  1753. params = self.config_params(params)
  1754. print("func_name:", "reportV2_productAds_t2_ETL", '\n', "table_name:",
  1755. "SD_adsV2")
  1756. if len(conn.query_df(
  1757. f"select * from AmazonReport.SD_adsV2 where date='{params['date']}'")) > 0:
  1758. logging.info("数据已存在...")
  1759. time.sleep(8.5)
  1760. return 'Pass'
  1761. params['record_type'] = 'productAds'
  1762. metric = self.productAds_metrics
  1763. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1764. metrics=metric, tactic="T00020")
  1765. # print(list_report)
  1766. df_report = pd.json_normalize(list_report)
  1767. date = datetime.strptime(params['date'], '%Y%m%d')
  1768. df_report['date'] = date
  1769. df_report['tactic'] = 'Contextual targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  1770. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['tactic'])
  1771. conn.insert_df("AmazonReport.SD_adsV2", df_report[metric])
  1772. time.sleep(1.05)
  1773. print("插入完成SD_adsV2")
  1774. df_rel = df_report[metric]
  1775. return df_rel
  1776. def reportV2_productAds_t3_ETL(self, conn, params:dict=None):
  1777. timeZone_,today = self.today_()
  1778. params = self.config_params(params)
  1779. print("func_name:", "reportV2_productAds_t3_ETL", '\n', "table_name:",
  1780. "SD_adsV2")
  1781. if len(conn.query_df(
  1782. f"select * from AmazonReport.SD_adsV2 where date='{params['date']}'")) > 0:
  1783. logging.info("数据已存在...")
  1784. time.sleep(8.5)
  1785. return 'Pass'
  1786. params['record_type'] = 'productAds'
  1787. metric = self.productAds_metrics
  1788. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1789. metrics=metric, tactic="T00030")
  1790. # print(list_report)
  1791. df_report = pd.json_normalize(list_report)
  1792. date = datetime.strptime(params['date'], '%Y%m%d')
  1793. df_report['date'] = date
  1794. df_report['tactic'] = 'Audiences targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  1795. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['tactic'])
  1796. # print(df_report.info())
  1797. conn.insert_df("AmazonReport.SD_adsV2", df_report[metric])
  1798. time.sleep(1.05)
  1799. print("插入完成SD_adsV2")
  1800. df_rel = df_report[metric]
  1801. return df_rel
  1802. targets_metrics = [
  1803. 'campaignId','campaignName','adGroupId','adGroupName','targetId','targetingText','impressions','clicks','cost',
  1804. 'attributedBrandedSearches14d','attributedConversions1d','attributedConversions1dSameSKU','attributedConversions7d',
  1805. 'attributedConversions7dSameSKU','attributedConversions14d','attributedConversions14dSameSKU','attributedConversions30d',
  1806. 'attributedConversions30dSameSKU','attributedDetailPageView14d','attributedOrdersNewToBrand14d',
  1807. 'attributedSales1d','attributedSales1dSameSKU','attributedSales7d','attributedSales7dSameSKU',
  1808. 'attributedSales14d','attributedSales14dSameSKU','attributedSales30d','attributedSales30dSameSKU',
  1809. 'attributedSalesNewToBrand14d','attributedUnitsOrdered1d','attributedUnitsOrdered7d','attributedUnitsOrdered14d',
  1810. 'attributedUnitsOrdered30d','attributedUnitsOrderedNewToBrand14d','currency','targetingExpression','targetingType',
  1811. 'vctr','vtr','viewImpressions','viewAttributedConversions14d','viewAttributedDetailPageView14d','viewAttributedSales14d',
  1812. 'viewAttributedUnitsOrdered14d','viewAttributedOrdersNewToBrand14d','viewAttributedSalesNewToBrand14d',
  1813. 'viewAttributedUnitsOrderedNewToBrand14d','viewAttributedBrandedSearches14d','videoCompleteViews',
  1814. 'videoFirstQuartileViews','videoMidpointViews','videoThirdQuartileViews','videoUnmutes',
  1815. ]
  1816. def reportV2_targets_t2_ETL(self, conn, params:dict=None):
  1817. timeZone_,today = self.today_()
  1818. params = self.config_params(params)
  1819. print("func_name:", "reportV2_targets_t2_ETL", '\n', "table_name:",
  1820. "SD_targetsV2")
  1821. if len(conn.query_df(
  1822. f"select * from AmazonReport.SD_targetsV2 where date='{params['date']}'")) > 0:
  1823. logging.info("数据已存在...")
  1824. time.sleep(8.5)
  1825. return 'Pass'
  1826. params['record_type'] = 'targets'
  1827. metric = self.targets_metrics
  1828. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1829. metrics=metric, tactic="T00020")
  1830. # print(list_report)
  1831. df_report = pd.json_normalize(list_report)
  1832. date = datetime.strptime(params['date'], '%Y%m%d')
  1833. df_report['date'] = date
  1834. df_report['tactic'] = 'Contextual targeting' # {"T00020":"","T00030":"Audiences targeting"}
  1835. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['tactic'])
  1836. # print(df_report[metric].info())
  1837. conn.insert_df("AmazonReport.SD_targetsV2", df_report[metric])
  1838. time.sleep(1.05)
  1839. print("插入完成SD_targetsV2")
  1840. df_rel = df_report[metric]
  1841. return df_rel
  1842. def reportV2_targets_t3_ETL(self, conn, params:dict=None):
  1843. timeZone_,today = self.today_()
  1844. params = self.config_params(params)
  1845. print("func_name:", "reportV2_targets_t3_ETL", '\n', "table_name:",
  1846. "SD_targetsV2")
  1847. if len(conn.query_df(
  1848. f"select * from AmazonReport.SD_targetsV2 where date='{params['date']}'")) > 0:
  1849. logging.info("数据已存在...")
  1850. time.sleep(8.5)
  1851. return 'Pass'
  1852. params['record_type'] = 'targets'
  1853. metric = self.targets_metrics
  1854. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1855. metrics=metric, tactic="T00030")
  1856. # print(list_report)
  1857. df_report = pd.json_normalize(list_report)
  1858. date = datetime.strptime(params['date'], '%Y%m%d')
  1859. df_report['date'] = date
  1860. df_report['tactic'] = 'Audiences targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  1861. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['tactic'])
  1862. # print(df_report.info())
  1863. conn.insert_df("AmazonReport.SD_targetsV2", df_report[metric])
  1864. time.sleep(1.05)
  1865. print("插入完成SD_targetsV2")
  1866. df_rel = df_report[metric]
  1867. return df_rel
  1868. asins_metrics = [
  1869. 'campaignId','campaignName','adGroupId','adGroupName','asin','sku','attributedConversions1dOtherSKU',
  1870. 'attributedConversions7dOtherSKU','attributedConversions14dOtherSKU','attributedConversions30dOtherSKU',
  1871. 'attributedSales1dOtherSKU','attributedSales7dOtherSKU','attributedSales14dOtherSKU','attributedSales30dOtherSKU',
  1872. 'attributedUnitsOrdered1dOtherSKU','attributedUnitsOrdered7dOtherSKU','attributedUnitsOrdered14dOtherSKU',
  1873. 'attributedUnitsOrdered30dOtherSKU','currency','otherAsin','viewAttributedUnitsOrdered1dOtherSKU',
  1874. 'viewAttributedUnitsOrdered7dOtherSKU','viewAttributedUnitsOrdered14dOtherSKU','viewAttributedUnitsOrdered30dOtherSKU',
  1875. 'viewAttributedSales1dOtherSKU','viewAttributedSales7dOtherSKU','viewAttributedSales14dOtherSKU',
  1876. 'viewAttributedSales30dOtherSKU','viewAttributedConversions1dOtherSKU','viewAttributedConversions7dOtherSKU',
  1877. 'viewAttributedConversions14dOtherSKU','viewAttributedConversions30dOtherSKU',
  1878. ]
  1879. def reportV2_asins_t2_ETL(self, conn, params:dict=None):
  1880. timeZone_,today = self.today_()
  1881. params = self.config_params(params)
  1882. print("func_name:", "reportV2_asins_t2_ETL", '\n', "table_name:",
  1883. "SD_asinsV2")
  1884. if len(conn.query_df(
  1885. f"select * from AmazonReport.SD_asinsV2 where date='{params['date']}'")) > 0:
  1886. logging.info("数据已存在...")
  1887. time.sleep(8.5)
  1888. return 'Pass'
  1889. params['record_type'] = 'asins'
  1890. metric = self.asins_metrics
  1891. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1892. metrics=metric, tactic="T00020")
  1893. # print(list_report)
  1894. df_report = pd.json_normalize(list_report)
  1895. date = datetime.strptime(params['date'], '%Y%m%d')
  1896. df_report['date'] = date
  1897. df_report['tactic'] = 'Contextual targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  1898. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['tactic'])
  1899. # print(df_report.info())
  1900. conn.insert_df("AmazonReport.SD_asinsV2", df_report[metric])
  1901. time.sleep(1.05)
  1902. print("插入完成SD_asinsV2")
  1903. df_rel = df_report[metric]
  1904. return df_rel
  1905. def reportV2_asins_t3_ETL(self, conn, params:dict=None):
  1906. timeZone_,today = self.today_()
  1907. params = self.config_params(params)
  1908. params['record_type'] = 'asins'
  1909. metric = self.asins_metrics
  1910. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1911. metrics=metric, tactic="T00030")
  1912. # print(list_report)
  1913. df_report = pd.json_normalize(list_report)
  1914. date = datetime.strptime(params['date'], '%Y%m%d')
  1915. df_report['date'] = date
  1916. df_report['tactic'] = 'Audiences targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  1917. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['tactic'])
  1918. conn.insert_df("AmazonReport.SD_asinsV2", df_report[metric])
  1919. time.sleep(1.05)
  1920. print("插入完成SD_asinsV2")
  1921. df_rel = df_report[metric]
  1922. return df_rel
  1923. campaigns_MT_metrics = [
  1924. 'campaignId','campaignName','impressions','clicks','cost','attributedBrandedSearches14d',
  1925. 'attributedConversions1d','attributedConversions1dSameSKU', 'attributedConversions7d',
  1926. 'attributedConversions7dSameSKU', 'attributedConversions14d','attributedConversions14dSameSKU',
  1927. 'attributedConversions30d','attributedConversions30dSameSKU','attributedDetailPageView14d',
  1928. 'attributedOrdersNewToBrand14d','attributedSales1d','attributedSales1dSameSKU', 'attributedSales7d',
  1929. 'attributedSales7dSameSKU', 'attributedSales14d','attributedSales14dSameSKU','attributedSales30d',
  1930. 'attributedSales30dSameSKU','attributedSalesNewToBrand14d',
  1931. 'attributedUnitsOrdered1d', 'attributedUnitsOrdered7d', 'attributedUnitsOrdered14d',
  1932. 'attributedUnitsOrdered30d','attributedUnitsOrderedNewToBrand14d','campaignBudget',
  1933. 'campaignStatus','costType','currency', 'viewImpressions','viewAttributedBrandedSearches14d',
  1934. 'viewAttributedConversions14d','viewAttributedDetailPageView14d','viewAttributedSales14d',
  1935. 'viewAttributedUnitsOrdered14d','viewAttributedOrdersNewToBrand14d','viewAttributedSalesNewToBrand14d',
  1936. 'viewAttributedUnitsOrderedNewToBrand14d',
  1937. ] # 'matchedTarget'
  1938. def reportV2_campaign_matchedTarget_t2_ETL(self, conn, params:dict=None):
  1939. timeZone_,today = self.today_()
  1940. params = self.config_params(params)
  1941. print("func_name:", "reportV2_campaign_matchedTarget_t2_ETL", '\n', "table_name:",
  1942. "SD_campaignsMatchedTargetV2")
  1943. if len(conn.query_df(
  1944. f"select * from AmazonReport.SD_campaignsMatchedTargetV2 where date='{params['date']}'")) > 0:
  1945. logging.info("数据已存在...")
  1946. time.sleep(8.5)
  1947. return 'Pass'
  1948. params['record_type'] = 'campaigns'
  1949. metric = self.campaigns_MT_metrics
  1950. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1951. metrics=metric, tactic="T00020", segment='matchedTarget')
  1952. # print(list_report)
  1953. df_report = pd.json_normalize(list_report)
  1954. date = datetime.strptime(params['date'], '%Y%m%d')
  1955. df_report['date'] = date
  1956. df_report['tactic'] = 'Contextual targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  1957. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['matchedTarget', 'tactic'])
  1958. conn.insert_df("AmazonReport.SD_campaignsMatchedTargetV2", df_report[metric])
  1959. time.sleep(1.05)
  1960. print("插入完成SD_campaignsMatchedTargetV2")
  1961. df_rel = df_report[metric]
  1962. return df_rel
  1963. def reportV2_campaign_matchedTarget_t3_ETL(self, conn, params:dict=None):
  1964. timeZone_,today = self.today_()
  1965. params = self.config_params(params)
  1966. print("func_name:", "reportV2_campaign_matchedTarget_t3_ETL", '\n', "table_name:",
  1967. "SD_campaignsMatchedTargetV2")
  1968. if len(conn.query_df(
  1969. f"select * from AmazonReport.SD_campaignsMatchedTargetV2 where date='{params['date']}'")) > 0:
  1970. logging.info("数据已存在...")
  1971. time.sleep(8.5)
  1972. return 'Pass'
  1973. params['record_type'] = 'campaigns'
  1974. metric = self.campaigns_MT_metrics
  1975. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  1976. metrics=metric, tactic="T00030", segment='matchedTarget')
  1977. # print(list_report)
  1978. df_report = pd.json_normalize(list_report)
  1979. date = datetime.strptime(params['date'], '%Y%m%d')
  1980. df_report['date'] = date
  1981. df_report['tactic'] = 'Audiences targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  1982. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['matchedTarget', 'tactic'])
  1983. conn.insert_df("AmazonReport.SD_campaignsMatchedTargetV2", df_report[metric])
  1984. time.sleep(1.05)
  1985. print("插入完成SD_campaignsMatchedTargetV2")
  1986. df_rel = df_report[metric]
  1987. return df_rel
  1988. adGroups_MT_metrics = [
  1989. 'campaignId','campaignName','adGroupId','adGroupName','impressions','clicks','cost',
  1990. 'attributedBrandedSearches14d','attributedConversions1d', 'attributedConversions1dSameSKU',
  1991. 'attributedConversions7d', 'attributedConversions7dSameSKU','attributedConversions14d',
  1992. 'attributedConversions14dSameSKU','attributedConversions30d','attributedConversions30dSameSKU',
  1993. 'attributedDetailPageView14d', 'attributedOrdersNewToBrand14d','attributedSales1d','attributedSales1dSameSKU',
  1994. 'attributedSales7d','attributedSales7dSameSKU','attributedSales14d','attributedSales14dSameSKU','attributedSales30d',
  1995. 'attributedSales30dSameSKU','attributedUnitsOrdered1d','attributedUnitsOrdered7d','attributedUnitsOrdered14d',
  1996. 'attributedUnitsOrdered30d','attributedUnitsOrderedNewToBrand14d','bidOptimization',
  1997. 'currency','viewImpressions','viewAttributedBrandedSearches14d','viewAttributedConversions14d',
  1998. 'viewAttributedDetailPageView14d','viewAttributedSales14d','viewAttributedUnitsOrdered14d',
  1999. 'viewAttributedOrdersNewToBrand14d','viewAttributedSalesNewToBrand14d','viewAttributedUnitsOrderedNewToBrand14d',
  2000. ] # , 'matchedTarget'
  2001. def reportV2_adGroups_matchedTarget_t2_ETL(self, conn, params:dict=None):
  2002. timeZone_,today = self.today_()
  2003. params = self.config_params(params)
  2004. print("func_name:", "reportV2_adGroups_matchedTarget_t2_ETL", '\n', "table_name:",
  2005. "SD_adGroupsMatchedTargetV2")
  2006. if len(conn.query_df(
  2007. f"select * from AmazonReport.SD_adGroupsMatchedTargetV2 where date='{params['date']}'")) > 0:
  2008. logging.info("数据已存在...")
  2009. time.sleep(8.5)
  2010. return 'Pass'
  2011. params['record_type'] = 'adGroups'
  2012. metric = self.adGroups_MT_metrics
  2013. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  2014. metrics=metric, tactic="T00020", segment='matchedTarget')
  2015. # print(list_report)
  2016. df_report = pd.json_normalize(list_report)
  2017. date = datetime.strptime(params['date'], '%Y%m%d')
  2018. df_report['date'] = date
  2019. df_report['tactic'] = 'Contextual targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  2020. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['matchedTarget', 'tactic'])
  2021. conn.insert_df("AmazonReport.SD_adGroupsMatchedTargetV2", df_report[metric])
  2022. time.sleep(1.05)
  2023. print("插入完成SD_adGroupsMatchedTargetV2")
  2024. df_rel = df_report[metric]
  2025. return df_rel
  2026. def reportV2_adGroups_matchedTarget_t3_ETL(self, conn, params:dict=None):
  2027. timeZone_,today = self.today_()
  2028. params = self.config_params(params)
  2029. print("func_name:", "reportV2_adGroups_matchedTarget_t3_ETL", '\n', "table_name:",
  2030. "SD_adGroupsMatchedTargetV2")
  2031. if len(conn.query_df(
  2032. f"select * from AmazonReport.SD_adGroupsMatchedTargetV2 where date='{params['date']}'")) > 0:
  2033. logging.info("数据已存在...")
  2034. time.sleep(8.5)
  2035. return 'Pass'
  2036. params['record_type'] = 'adGroups'
  2037. metric = self.adGroups_MT_metrics
  2038. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  2039. metrics=metric, tactic="T00030", segment='matchedTarget')
  2040. df_report = pd.json_normalize(list_report)
  2041. date = datetime.strptime(params['date'], '%Y%m%d')
  2042. df_report['date'] = date
  2043. df_report['tactic'] = 'Audiences targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  2044. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['matchedTarget', 'tactic'])
  2045. conn.insert_df("AmazonReport.SD_adGroupsMatchedTargetV2", df_report[metric])
  2046. time.sleep(1.05)
  2047. print("插入完成SD_adGroupsMatchedTargetV2")
  2048. df_rel = df_report[metric]
  2049. return df_rel
  2050. targets_MT_metrics = [
  2051. 'campaignId','campaignName','adGroupId','adGroupName','targetId','targetingText','impressions','clicks','cost',
  2052. 'attributedBrandedSearches14d','attributedConversions1d','attributedConversions1dSameSKU',
  2053. 'attributedConversions7d','attributedConversions7dSameSKU','attributedConversions14d',
  2054. 'attributedConversions14dSameSKU','attributedConversions30d', 'attributedConversions30dSameSKU',
  2055. 'attributedDetailPageView14d','attributedOrdersNewToBrand14d','attributedSales1d',
  2056. 'attributedSales1dSameSKU','attributedSales7d','attributedSales7dSameSKU','attributedSales14d',
  2057. 'attributedSales14dSameSKU','attributedSales30d','attributedSales30dSameSKU','attributedSalesNewToBrand14d',
  2058. 'attributedUnitsOrdered1d','attributedUnitsOrdered7d','attributedUnitsOrdered14d','attributedUnitsOrdered30d',
  2059. 'attributedUnitsOrderedNewToBrand14d','currency','targetingExpression','targetingType','viewAttributedBrandedSearches14d',
  2060. 'viewAttributedConversions14d','viewAttributedDetailPageView14d','viewAttributedSales14d','viewAttributedUnitsOrdered14d',
  2061. 'viewAttributedOrdersNewToBrand14d','viewAttributedSalesNewToBrand14d','viewAttributedUnitsOrderedNewToBrand14d',
  2062. ]
  2063. def reportV2_targets_matchedTarget_t2_ETL(self, conn, params:dict=None):
  2064. timeZone_,today = self.today_()
  2065. params = self.config_params(params)
  2066. print("func_name:", "reportV2_targets_matchedTarget_t2_ETL", '\n', "table_name:",
  2067. "SD_targetsMatchedTargetV2")
  2068. if len(conn.query_df(
  2069. f"select * from AmazonReport.SD_targetsMatchedTargetV2 where date='{params['date']}'")) > 0:
  2070. logging.info("数据已存在...")
  2071. time.sleep(8.5)
  2072. return 'Pass'
  2073. params['record_type'] = 'targets'
  2074. metric = self.targets_MT_metrics
  2075. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  2076. metrics=metric, tactic="T00020", segment='matchedTarget')
  2077. df_report = pd.json_normalize(list_report)
  2078. date = datetime.strptime(params['date'], '%Y%m%d')
  2079. df_report['date'] = date
  2080. df_report['tactic'] = 'Contextual targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  2081. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['matchedTarget', 'tactic'])
  2082. conn.insert_df("AmazonReport.SD_targetsMatchedTargetV2", df_report[metric])
  2083. time.sleep(1.05)
  2084. print("插入完成SD_targetsMatchedTargetV2")
  2085. df_rel = df_report[metric]
  2086. return df_rel
  2087. def reportV2_targets_matchedTarget_t3_ETL(self, conn, params:dict=None):
  2088. timeZone_,today = self.today_()
  2089. params = self.config_params(params)
  2090. print("func_name:", "reportV2_targets_matchedTarget_t3_ETL", '\n', "table_name:",
  2091. "SD_targetsMatchedTargetV2")
  2092. if len(conn.query_df(
  2093. f"select * from AmazonReport.SD_targetsMatchedTargetV2 where date='{params['date']}'")) > 0:
  2094. logging.info("数据已存在...")
  2095. time.sleep(8.5)
  2096. return 'Pass'
  2097. params['record_type'] = 'targets'
  2098. metric = self.targets_MT_metrics
  2099. list_report = self.get_v2_report(record_type=params['record_type'], report_date=params["date"],
  2100. metrics=metric, tactic="T00030", segment='matchedTarget')
  2101. df_report = pd.json_normalize(list_report)
  2102. date = datetime.strptime(params['date'], '%Y%m%d')
  2103. df_report['date'] = date
  2104. df_report['tactic'] = 'Audiences targeting' # {"T00020":"Contextual targeting","T00030":"Audiences targeting"}
  2105. df_report = self.type_trans(df_report, metric, timeZone_, extra_columns=['matchedTarget', 'tactic'])
  2106. conn.insert_df("AmazonReport.SD_targetsMatchedTargetV2", df_report[metric])
  2107. time.sleep(1.05)
  2108. print("插入完成SD_targetsMatchedTargetV2")
  2109. df_rel = df_report[metric]
  2110. return df_rel
  2111. if __name__ == '__main__':
  2112. AWS_CREDENTIALS = {
  2113. 'lwa_client_id': 'amzn1.application-oa2-client.ebd701cd07854fb38c37ee49ec4ba109',
  2114. 'refresh_token': "Atzr|IwEBIL4ur8kbcwRyxVu_srprAAoTYzujnBvA6jU-0SMxkRgOhGjYJSUNGKvw24EQwJa1jG5RM76mQD2P22AKSq8qSD94LddoXGdKDO74eQVYl0RhuqOMFqdrEZpp1p4bIR6_N8VeSJDHr7UCuo8FiabkSHrkq7tsNvRP-yI-bnpQv4EayPBh7YwHVX3hYdRbhxaBvgJENgCuiEPb35Q2-Z6w6ujjiKUAK2VSbCFpENlEfcHNsjDeY7RCvFlwlCoHj1IeiNIaFTE9yXFu3aEWlExe3LzHv6PZyunEi88QJSXKSh56Um0e0eEg05rMv-VBM83cAqc5POmZnTP1vUdZO8fQv3NFLZ-xU6e1WQVxVPi5Cyqk4jYhGf1Y9t98N654y0tVvw74qNIsTrB-8bGS0Uhfe24oBEWmzObvBY3zhtT1d42myGUJv4pMTU6yPoS83zhPKm3LbUDEpBA1hvvc_09jHk7vUEAuFB-UAZzlht2C1yklzQ",
  2115. 'lwa_client_secret': 'cbf0514186db4df91e04a8905f0a91b605eae4201254ced879d8bb90df4b474d',
  2116. 'profile_id': "3006125408623189"
  2117. }
  2118. conn = Common_ETLMethod(**AWS_CREDENTIALS).clickhouse_connect()
  2119. sb_ = SB_ETL(**AWS_CREDENTIALS)
  2120. conn = sb_.clickhouse_connect()
  2121. # print(sb_.reportV2_adGroupsRecord_ETL(conn))
  2122. # list_date = ['2023-11-20']
  2123. list_date = [f'2023-11-{"0" + str(i) if len(str(i)) == 1 else i}' for i in range(28, 30)]
  2124. for date_ in list_date:
  2125. print(date_)
  2126. print(date_.replace("-",""))
  2127. sb_ = SB_ETL(**AWS_CREDENTIALS)
  2128. rel = sb_.reportV3_sbAds_ETL(conn,params={"startDate":date_,"endDate":date_,"date":date_.replace("-","")})
  2129. # print(rel)
  2130. # print(rel.info())
  2131. # print(rel.columns)