|  | @@ -38,7 +38,7 @@ class Common_ETLMethod(BaseClient):
 | 
											
												
													
														|  |          """
 |  |          """
 | 
											
												
													
														|  |          for time_column in time_columns:
 |  |          for time_column in time_columns:
 | 
											
												
													
														|  |              df[time_column] = pd.to_datetime(df[time_column] * 1000000).map(lambda x: x.strftime("%Y-%m-%d %H:%M:%S"))
 |  |              df[time_column] = pd.to_datetime(df[time_column] * 1000000).map(lambda x: x.strftime("%Y-%m-%d %H:%M:%S"))
 | 
											
												
													
														|  | -        df[time_columns] = df[time_columns].astype("datetime64")
 |  | 
 | 
											
												
													
														|  | 
 |  | +        df[time_columns] = df[time_columns].astype("datetime64[ns]")
 | 
											
												
													
														|  |          return df
 |  |          return df
 | 
											
												
													
														|  |  
 |  |  
 | 
											
												
													
														|  |      def TZ_Deal(self, df, time_columns):
 |  |      def TZ_Deal(self, df, time_columns):
 | 
											
										
											
												
													
														|  | @@ -47,7 +47,7 @@ class Common_ETLMethod(BaseClient):
 | 
											
												
													
														|  |          """
 |  |          """
 | 
											
												
													
														|  |          for time_column in time_columns:
 |  |          for time_column in time_columns:
 | 
											
												
													
														|  |              df[time_column] = df[time_column].map(lambda x: parse(x).strftime("%Y-%m-%d %H:%M:%S"))
 |  |              df[time_column] = df[time_column].map(lambda x: parse(x).strftime("%Y-%m-%d %H:%M:%S"))
 | 
											
												
													
														|  | -        df[time_columns] = df[time_columns].astype("datetime64")
 |  | 
 | 
											
												
													
														|  | 
 |  | +        df[time_columns] = df[time_columns].astype("datetime64[ns]")
 | 
											
												
													
														|  |          return df
 |  |          return df
 | 
											
												
													
														|  |  
 |  |  
 | 
											
												
													
														|  |      def placement_segmentsplit(self, df, segment):
 |  |      def placement_segmentsplit(self, df, segment):
 | 
											
										
											
												
													
														|  | @@ -109,7 +109,7 @@ class Common_ETLMethod(BaseClient):
 | 
											
												
													
														|  |  
 |  |  
 | 
											
												
													
														|  |          # 修改字段类型
 |  |          # 修改字段类型
 | 
											
												
													
														|  |          df_report = self.id_type_trans(df_report)
 |  |          df_report = self.id_type_trans(df_report)
 | 
											
												
													
														|  | -        df_report['date'] = df_report['date'].astype("datetime64")
 |  | 
 | 
											
												
													
														|  | 
 |  | +        df_report['date'] = df_report['date'].astype("datetime64[ns]")
 | 
											
												
													
														|  |  
 |  |  
 | 
											
												
													
														|  |          # df_report[df_report.select_dtypes('O').columns] = df_report[df_report.select_dtypes('O').columns].astype('string')
 |  |          # df_report[df_report.select_dtypes('O').columns] = df_report[df_report.select_dtypes('O').columns].astype('string')
 | 
											
												
													
														|  |          toFloat = [i for i in columns if 'sales' in i.lower() or 'percent' in i.lower() or 'video' in i.lower()]
 |  |          toFloat = [i for i in columns if 'sales' in i.lower() or 'percent' in i.lower() or 'video' in i.lower()]
 |