|
@@ -0,0 +1,140 @@
|
|
|
+import requests
|
|
|
+from urllib.parse import urljoin
|
|
|
+from sync_amz_data.public.amz_ad_client import SPClient
|
|
|
+from sync_amz_data.settings import AWS_LWA_CLIENT
|
|
|
+import pandas as pd
|
|
|
+import json
|
|
|
+
|
|
|
+
|
|
|
+class RateLimitError(Exception):
|
|
|
+ def __init__(self, retry_after: str = None):
|
|
|
+ self.retry_after = retry_after
|
|
|
+
|
|
|
+
|
|
|
+def convert_row(row):
|
|
|
+ type_list = row['type']
|
|
|
+ value_list = row['value']
|
|
|
+ expressions = []
|
|
|
+ if isinstance(row['value'], list):
|
|
|
+ for i in range(len(value_list)):
|
|
|
+ for v, t in zip(value_list[i:i+1], type_list[i:i+1]):
|
|
|
+ v = v.replace("'", "")
|
|
|
+ v = v.replace(" ", "")
|
|
|
+ t = t.replace("'", "")
|
|
|
+ t = t.replace(" ", "")
|
|
|
+ temp_dict = {"type": str(t), "value": str(v)}
|
|
|
+ expressions.append(temp_dict)
|
|
|
+ else:
|
|
|
+ expressions = [{"type": type_list, "value": value_list}]
|
|
|
+ return expressions
|
|
|
+
|
|
|
+def convert_list(val):
|
|
|
+ if '[' in val:
|
|
|
+ return val.split('[')[1].split(']')[0].split(',')
|
|
|
+ else:
|
|
|
+ return val
|
|
|
+
|
|
|
+def request(url_path: str, method: str = "GET", head: dict = None, params: dict = None, body: dict = None):
|
|
|
+ ADS = "http://192.168.1.23:8001/"
|
|
|
+ resp = requests.session().request(
|
|
|
+ method=method,
|
|
|
+ url=urljoin(ADS, url_path),
|
|
|
+ headers=head,
|
|
|
+ params=params,
|
|
|
+ json=body,
|
|
|
+ )
|
|
|
+ if resp.status_code == 429:
|
|
|
+ raise RateLimitError(resp.headers.get("Retry-After"))
|
|
|
+ if resp.status_code >= 400:
|
|
|
+ raise Exception(resp.text)
|
|
|
+ return resp.json()
|
|
|
+
|
|
|
+
|
|
|
+class SpTargetsBidRecommendationsV2:
|
|
|
+ def __init__(self, profile_id):
|
|
|
+ self.profile_id = profile_id
|
|
|
+ self.re_url_path = "api/ad_manage/profiles/"
|
|
|
+ self.spt_url_path = "api/ad_manage/sptargetsv2/"
|
|
|
+ self.upcreate_url_path = "api/ad_manage/sptargetsbidrecommendationv2/updata/"
|
|
|
+ self.heads = {'X-Token': "da4ab6bc5cbf1dfa"}
|
|
|
+ self.refresh_token = self.get_refresh_token()
|
|
|
+ self.lwa_client_id = AWS_LWA_CLIENT['lwa_client_id']
|
|
|
+ self.lwa_client_secret = AWS_LWA_CLIENT['lwa_client_secret']
|
|
|
+ self.AWS_CREDENTIALS = {
|
|
|
+ 'lwa_client_id': self.lwa_client_id,
|
|
|
+ 'lwa_client_secret': self.lwa_client_secret,
|
|
|
+ 'refresh_token': self.refresh_token,
|
|
|
+ 'profile_id': self.profile_id
|
|
|
+ }
|
|
|
+
|
|
|
+ def get_refresh_token(self):
|
|
|
+ params = {'profile_id': self.profile_id}
|
|
|
+ heads = self.heads
|
|
|
+ url_path = self.re_url_path
|
|
|
+ tem = request(url_path=url_path, head=heads, params=params)
|
|
|
+ if tem.get('data') is not None:
|
|
|
+ _ = tem.get('data')
|
|
|
+ out = _[0].get('refresh_token')
|
|
|
+ else:
|
|
|
+ out = None
|
|
|
+ return out
|
|
|
+
|
|
|
+ def get_arg(self):
|
|
|
+ heads = self.heads
|
|
|
+ url_path = self.spt_url_path
|
|
|
+ data = []
|
|
|
+ page = 1
|
|
|
+ params = {'profile_id': self.profile_id, 'limit': 999, 'page': page}
|
|
|
+ tem = request(url_path=url_path, head=heads, params=params)
|
|
|
+ data.extend(tem.get('data'))
|
|
|
+ while tem.get('is_next') is True:
|
|
|
+ page += 1
|
|
|
+ params = {'profile_id': self.profile_id, 'limit': 999, 'page': page}
|
|
|
+ tem = request(url_path=url_path, head=heads, params=params)
|
|
|
+ data.extend(tem.get('data'))
|
|
|
+ _ = pd.json_normalize(data)
|
|
|
+ df = _.copy()
|
|
|
+ df['expression_type'] = df['expression_type'].str.replace('_', '')
|
|
|
+ df.rename(columns={'expression_value': 'value', 'expression_type': 'type'}, inplace=True)
|
|
|
+ df['value'] = df['value'].apply(convert_list)
|
|
|
+ df['type'] = df['type'].apply(convert_list)
|
|
|
+ df['expressions'] = df.apply(convert_row, axis=1)
|
|
|
+ df_grouped = df.groupby('adGroupId').agg({'expressions': list}).reset_index()
|
|
|
+ return df, df_grouped
|
|
|
+
|
|
|
+ def get_sptargetsbidrecommendation_data(self):
|
|
|
+ tem = SPClient(**self.AWS_CREDENTIALS)
|
|
|
+ df_old, df_arg = self.get_arg()
|
|
|
+ data_json = df_arg.to_json(orient='records')
|
|
|
+ list_arg = json.loads(data_json)
|
|
|
+ out_data = []
|
|
|
+ for i in list_arg:
|
|
|
+ res = tem.iter_bidrecommendationList(**i)
|
|
|
+ out_data.extend(list(res))
|
|
|
+ temtest = pd.json_normalize(out_data)
|
|
|
+ temtest['expression'] = temtest['expression'].astype(str).str.lower()
|
|
|
+ df_old.rename(columns={'expressions': 'expression'}, inplace=True)
|
|
|
+ df_old['expression'] = df_old['expression'].astype(str).str.lower()
|
|
|
+ _ = pd.merge(left=df_old, right=temtest, on=['expression', 'adGroupId'], how='left')
|
|
|
+ outall = _[['targetId', 'suggestedBid.rangeEnd', 'suggestedBid.rangeStart', 'suggestedBid.suggested']].copy()
|
|
|
+ outall = outall.dropna(subset=['suggestedBid.rangeEnd'])
|
|
|
+ outall.rename(columns={'suggestedBid.suggested': 'suggestedBid',
|
|
|
+ 'suggestedBid.rangeStart': 'suggestedBid_lower',
|
|
|
+ 'suggestedBid.rangeEnd': 'suggestedBid_upper',
|
|
|
+ 'targetId': 'target'
|
|
|
+ }, inplace=True)
|
|
|
+ json_data = json.loads(outall.to_json(orient='records', force_ascii=False))
|
|
|
+ return json_data
|
|
|
+
|
|
|
+ def updata_create(self):
|
|
|
+ body = self.get_sptargetsbidrecommendation_data()
|
|
|
+ heads = self.heads
|
|
|
+ url_path = self.upcreate_url_path
|
|
|
+ tem = request(url_path=url_path, head=heads, body=body, method="POST")
|
|
|
+ return tem
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ a = SpTargetsBidRecommendationsV2(profile_id="3006125408623189")
|
|
|
+ # out = a.get_sptargetsbidrecommendation_data()
|
|
|
+ out = a.updata_create()
|
|
|
+ print(out)
|